第二型曲线积分格林公式
- 格式:pptx
- 大小:1.95 MB
- 文档页数:42
2019考研数学:第二类曲线积分的计算来源:文都教育曲线曲面积分的计算是高等数学中非常重要的一部分知识,在考研数学一中每年都会考查。
下面,文都教育的数学老师给2019考研的同学们总结一下一些考研数学经常用到的计算第二类曲线积分的基本方法,希望对同学们有些帮助。
(一)直接法(1)设有光滑曲线L:):(,)()(βα→⎩⎨⎧==t t y y t x x ,其起点和终点分别对应参数βα==t t ,,),(),,(y x Q y x P 在L 上连续,则dtt y t y t x Q t x t y t x P Qdy Pdx L⎰⎰+=+βα)]('))(),(()('))(),(([这里的βα,谁大谁小无关紧要,关键是要和起点和终点分别对应。
(二)格林公式法设闭区域D 是分段光滑的曲线L 围成,函数),(),,(y x Q y x P 在D 上具有一阶连续偏导数,则有dxdy y P x Q Qdy Pdx D L ⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=+,D 其中L 为D 取正向的边界曲线(所谓正向就是当沿曲线正向行走时,区域在左手边)。
但是考研数学中涉及到格林公式时,一般不能直接使用,是因为命题人会故意破坏格林公式的使用条件:L 不是封闭曲线,也就没有有界闭区域;虽然有有界闭区域,但),(),,(y x Q y x P 在D 上没有一阶连续偏导数。
这就要求同学们要学会使用“补线法”,补上一条或多条曲线,使得封闭出满足格林公式使用条件的有界闭区域。
(三)利用线积分与路径无关 1. 理论依据:定理:设函数),(),,(y x Q y x P 在单连通区域D 上有一阶连续偏导数,则以下四条等价:(1) ⎰+L Qdy Pdx 与路径无关;(2)0=+⎰L Qdy Pdx ,其中L 为D 中任一分段光滑闭曲线; (3)yPx Q ∂∂=∂∂ (4)),(),(),(y x dF dy y x Q dx y x P =+ 2. 计算(1)改变积分路径:一般是沿平行于坐标轴的直线积分,⎰⎰⎰+=+21212211),(),(),(),(21),(),(x x y y y x y x dy y x Q dx y x P dy y x Q dx y x P 或⎰⎰⎰+=+21212211),(),(),(),(21),(),(x x y y y x y x dx y x P dy y x Q dy y x Q dx y x P 。
2014考研数学备考重点解析一一第二类曲线积分的计算1•计算方法1)直接法;fc Q 田)2)格林公式疔dx+Qdy=JJ ——-—^».D i法€y丿3)补线用格林公式4)利用线积分与路径无关:Q.x(2)计算:a)改换路径;b)利用原函数f Pdx+Qdy = F(x2,y2)-卩(为,%),其中(x1 y)Pdx Qd^dF(x, y),求原函数方法:①偏海文钻石卡视频积分:②凑微分.2•两类线积分的联系::Pdx • Qdy 二「(Pcos= " Qcos :)ds.C Cf—2 2 2 2【例1】计算I =[ ye y dx (xe y2xy e y )dy.其中C为y=3_x从0(0,0)到A(1,1)的曲线段.Cde 2 2 22 2【解析】由于一(ye y) =—(xe y- 2xy2e y) = e y2y2e y,则本题中的线积分与路径无关.d ye x解法1改换路径,B点为(1,0)点。
2 2 2 2 2 2原式= OB ye y dx (xe y2xy2e y)dy .臥ye y dx (xe y2xy2e y)dy1 2 2=0 0(e y2y2e y )dy= 0 - ;2y2e y2dy 012y2e『dy =3.也可将路径改换为另一折线0C、CA,其中C点为(0,1)点,则原式22 222 2I= 0Cye y dx (xe y2xy 2e y)dyCAye y dx (xe y2xy 2e y)dy = 0°edx=e .解法2利用原函数,由于y 2y 22 y 2y 2y 2y 2ye dx (xe 2xy e )dy 二(ye )dx xd(ye ) = d(xye )2则 F(x,y) =xye •2,则-(e y )dx - (x y 2)dy =C【解析】由格林公式得2 2 2%e ydx +(x + y 2)dy = "(1 -2ye y )d<rD=d ; - SD则其面积S =2二.y 22故 ■- L e y dx (x y )dy 二 2 . 【例3】计算I(e x siny 「b(x y))dx • (e x cosy -ax)dy ,其中a,b 为正常数,C 为从点A(2a,0)沿曲线Cy = ■. 2ax - x 2 到点 O(0,0)的弧.【解析】补线段OA ,则I(e x sin y _b(x y))dx (e x cosy _ax)dyC OA-OA(e x sin y _b(x y))dx (e x cosy _ ax)dy2a= (e x cosy _a -e x cosy b)d ;「_ o (_bx)dx ,D2故 L ye y dx (xe2 2 2 2xy e y )dy 二 xye y(1,1)e .(0,0)2 2【例2】设C 为椭圆4x y -8x 沿逆时针方向其中D 是由4x 2 • y 2 =8x 围成的椭圆域,S 为其面积,海文钻石卡视频该椭圆方程可改写为2(X -1)2」1,4也可将路径改换为另一折线 0C 、CA ,其中C 点为(0,1)点,则2 21【解析】(1)C:x (y -1N ,由格林公式得1ydx -xdyir .(—i —i)d 二(这里用了格林公式)D i-2-:;2=_2二.注:由本题可看出,对线积分ydx-xdy y Q,P ~ 2 2 ,Qx y x 2 y 2—x— 2,除原点(0,0)夕卜,P,Q 有连续一阶偏导数, x y且― ■-Q,(x, (0,0).此时有以下结论: -X 2aI = (b -a)d 匚 b xdx =D(b - a) 2a 2b【例4】计算I”中2 21(DC 为x y -2八二的正向;⑵C 为4x 2 • y 2「8x 二4的正向.ag-x ■(其中D 为曲线C 所围圆域)2 2x -y x 22-y\((x 2y 2)^(x 2y 2)2 )d ;「-0.(2)C :42yi ,此时不能直接用格林公式,因为在 (0,0)点条件不满足.因此,作以(0,0)为中心的圆8L: x 2y 2;2 ( ;0)且取顺时针方向,在 L 和C 大学考研围成的环形域上用格林公式得2 2x -y ydx - xdy _(_ 訂(/ 2 2、2D(x y )2 2x -y (x 2 y 2)2)d一0,xdx —xdy ■L x 2 y 2 :^^=0. x 2 y 2 [“ ydx-xdyydx -xdy C x 2y 2x 2 y 2其中D 为y =-』2ax -x 2与0A 围成的半圆域,则D1)沿任何一条不包含原点在内的分段光滑闭曲线的积分为零 2 )沿任何一条包含原点在内的分段光滑闭曲线的积分均相等 事实上,线积分这个类型.c【例 5 】计算 I = [「(y )cosx -二y ]dx [「(y )si nx -二]dy ,其中 AMB 弧为连结 A (二,2)与点 B (3二,4)的线段AMB【解析】= 2-(1 3二)2=2專 _2二(1 3二)=「6二AMB 『血3 3一飯『血dy兀x1一dxdy—3二(二1)dx二dx"二(x - y)dx+(x+y)dy (x + y)dx _(x _ y)dy xdy_ydxL x^ ,L ,_ I 2 2x_ y4x y x y AB 的下方的任意分段光滑简单曲线,且该曲线与大学考研线段 AB 所围图形面积为2,解法1补线段BA ,则AMB AMB'BA - BAAMBA-BA'AMBA Pdx Qdy「(3)d —ex cy!!^ - 2■:x直线BA 的方程为:y1,则 JIBAFCOSX -二 xx1(1)]dx [ (1) si nx-二]dxJIJI解法其中L 申(y)co xdx + 申(y)si nxdy =®(y)si nxAM B(3 二4)(二,2) =°顺时针方向。
数学与应用数学毕业论文-第二类曲线积分的计算第二类曲线积分的计算作者:指导老师:摘要:本文结合第二类曲线积分的背景和平面和空间图形第二类曲线积分的定义介绍第二类曲线积分的,重点是利用对称性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。
关键词:第二类曲线积分第一类曲线积分二重积分参数方程对称性原理斯托克斯公式1 引言本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。
1.1 第二类曲线积分的概念介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。
1.2第二类曲线积分的计算方法介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。
2第二类曲线积分的定义2.1第二类曲线积分的物理学背景力场沿平面曲线从点A到点B所作的功一质点受变力的作用沿平面曲线运动,当质点从之一端点移动到另一端时,求力所做功。
大家知道,如果质点受常力的作用从沿直线运动到,那末这个常力所做功为 . 现在的问题是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢?为此,我们对有向曲线作分割,即在内插入个分点与一起把曲线分成个有向小曲线段 ,记小曲线段的弧长为.则分割的细度为.设力在轴和轴方向上的投影分别为与,那么由于则有向小曲线段在轴和轴方向上的投影分别为.记从而力在小曲线段上所作的功 +其中为小曲线段上任一点,于是力沿所作的功可近似等于当时,右端积分和式的极限就是所求的功.这种类型的和式极限就是下面所要讨论的第二型曲线积分。
2.2 第二型曲线积分的定义设,为定义在光滑或分段光滑平面有向曲线上的函数,对任一分割,它把分成个小弧段;其中 .记各个小弧段弧长为,分割的细度为,又设的分点的坐标为,并记 , . 在每个小弧段上任取一点,若极限。
存在且与分割与点的取法无关,则称此极限为函数,在有向线段上的第二类曲线积分,记为或也可记作或注: 1 若记 ,则上述记号可写成向量形式。
二类曲线积分1. 什么是二类曲线积分?二类曲线积分是向量场沿着曲线的积分,也叫做线积分。
它可以用来计算向量场沿着曲线的工作量、环流量等物理量。
2. 二类曲线积分的计算方法二类曲线积分的计算方法有两种:参数化和格林公式。
(1)参数化将曲线用参数方程表示,然后将向量场沿着曲线的积分转化为对参数的积分,即:∫C F·ds = ∫a^b F(x(t),y(t))·(dx/dt,dy/dt)dt其中,C为曲线,F为向量场,s为弧长,t为参数。
(2)格林公式如果向量场F是梯度场,即F = ∇f,那么根据格林公式,二类曲线积分可以转化为对曲线所围区域的面积积分,即:∫C F·ds = ∫D (∂Q/∂x - ∂P/∂y)dxdy其中,C为曲线,F为向量场,s为弧长,D为曲线所围区域,P和Q为F的分量函数。
3. 二类曲线积分的应用二类曲线积分广泛应用于物理学、工程学、计算机图形学等领域。
例如,在电磁学中,电场强度沿着电路的积分就是一个二类曲线积分;在流体力学中,速度场沿着流线的积分就是一个二类曲线积分。
4. 二类曲线积分的性质二类曲线积分具有线性性、路径无关性和取反性等性质。
具体来说,线性性指积分可以拆分成多个积分的和;路径无关性指积分结果与路径无关,只与起点和终点有关;取反性指曲线取反后积分结果取相反数。
5. 二类曲线积分的计算技巧在计算二类曲线积分时,可以采用以下技巧:(1)选择合适的参数化方式,使得计算变得简单。
(2)利用路径无关性,选择路径长度相等或者对称的路径,使得计算更加方便。
(3)利用取反性,将曲线取反后计算积分,从而减少计算量。
6. 总结二类曲线积分是向量场沿着曲线的积分,可以用来计算向量场沿着曲线的工作量、环流量等物理量。
它的计算方法有参数化和格林公式两种,应用广泛。
二类曲线积分具有线性性、路径无关性和取反性等性质,计算时可以采用选择合适的参数化方式、利用路径无关性和取反性等技巧。
第二类曲线积分计算公式曲线积分是数学中的一种重要工具,它在物理学、工程学、计算机科学等领域中有着广泛的应用。
曲线积分分为第一类曲线积分和第二类曲线积分两种类型,其中第二类曲线积分是较为复杂的一种。
本文将介绍第二类曲线积分的计算公式及其应用。
一、第二类曲线积分的定义第二类曲线积分是指沿着给定曲线进行积分,积分函数为一个向量场。
具体来说,设曲线C为一条光滑曲线,向量场F为一个连续可微函数,那么曲线C上的第二类曲线积分可以表示为:∫CF·ds其中,ds表示曲线C上的线元,F·ds表示向量F与ds的点积。
二、第二类曲线积分的计算公式计算第二类曲线积分的方法有很多种,其中最常用的方法是格林公式。
格林公式是一种将曲线积分转化为面积积分的方法,其公式为:∫CF·ds = D(Q/x - P/y)dA其中,D表示曲线C所包围的区域,P和Q为向量场F的两个分量。
格林公式的应用需要满足一定的条件,即向量场F在D内是连续可微的。
如果F在D内不满足这个条件,那么可以通过对D进行分割,将其分成若干个小区域,在每个小区域内应用格林公式,最后将结果相加得到整个区域D上的曲线积分。
三、第二类曲线积分的应用第二类曲线积分在物理学、工程学、计算机科学等领域中有着广泛的应用。
例如,在电磁学中,电场的环量可以用第二类曲线积分来表示。
在机械工程中,曲线积分可以用来计算沿着曲线的力的功,以及液体沿着管道流动的工作量。
在计算机科学中,曲线积分可以用来计算图像的边缘。
四、结语第二类曲线积分是数学中的一个重要工具,它在物理学、工程学、计算机科学等领域中有着广泛的应用。
本文介绍了第二类曲线积分的定义、计算公式及其应用。
在实际应用中,需要根据具体问题选择合适的计算方法,以获得准确的结果。
曲线积分与格林公式学习总结王德才201121102340电子商务1133班一、 曲线积分1定义:设L 为xOy 平面上的一条光滑的简单曲线弧,f(x,y)在L 上有界,在L 上任意插入一点列M1,M2,M3…,Mn 把L 分成 n 个小弧段ΔLi 的长度为ds ,又Mi(x,y)是L 上的任一点,作乘积f(x,y)i*ds,并求和即Σ f(x,y)i*ds ,记λ=max(ds) ,若Σ f(x,y)i*ds 的极限在当λ→0的时候存在,且极限值与L 的分法及Mi 在L 的取法无关,则称极限值为f(x,y)在L 上对弧长的曲线积分,记为:∫f(x,y)*ds ;其中f(x,y)叫做被积函数,L 叫做积分曲线,对弧长的曲线积分也叫第一类曲线积分。
2、对弧长的曲线积分:s z y x f d ),,(⎰Γ为第一类曲线积分,其中Γ为曲线,被积函数),,(z y x f 中的点),,(z y x 位于曲线Γ上,即),,(z y x 必须满足Γ对应的方程,222dz dy dx ds ++=是弧微分、弧长元素。
若Γ是封闭曲线,则第一类曲线积分记为s z y x f d ),,(⎰Γ(1)第一类曲线积分的应用: 1)、曲线Γ的长s=s d ⎰Γ2)、若空间曲线形物体的线密度为),,(z y x f ,Γ∈),,(z y x ,则其质量M ds z y x f ),,(⎰Γ=;质心坐标为),,(z y x ,其中Mds z y x zf z Mds z y x yf y Mds z y x xf x ),,(,),,(,),,(⎰⎰⎰ΓΓΓ===;对x 轴的转动惯量ds z y x f z y Ix ),,()(22+=⎰Γ(2)第一类曲线积分的计算方法:若空间曲线Γ参数方程为:⎪⎩⎪⎨⎧===)()()(t z z t y y t x x ,βα≤≤t ,则dt t z t y t x ds 222)]('[)]('[)]('[++=,s z y x f d ),,(⎰Γ=⎰βα))(),(),((t z t y t x f t t z t y t x d )]('[)]('[)]('[222++。
第十章 曲线积分与曲面积分1-1 第一型曲线积分基础题1.光滑曲线(),()()x t t y t =ϕ⎧α≤≤β⎨=ψ⎩的弧微分d s = 。
由此,圆周cos ,(02)sin x R y R =θ⎧≤θ<π⎨=θ⎩的弧微分d s = 。
2.算下列对弧长的曲线积分:(1)⎰+Lds y x )(,其中L 为连接(1,0)及(0,1)两点的直线段;(2)⎰+L y x ds e22,其中L 为圆周222x y R +=,直线x y =及x 轴在第一象限内所围成的扇形的整个边界;3)⎰Γ++ 2221ds zy x ,其中Γ为曲线t t t e z t e y t e x ===,sin ,cos 上相应于t 从0变到2的这段弧;4)⎰+Lds y x )(22,其中L 为曲线)cos (sin ),sin (cos t t t a y t t t a x -=+= )20(π≤≤t 。
提高题1.计算2L x ds ⎰,其中L 为球面2222x y z a ++=被平面0x y z ++=所截得的圆周。
1-2 第二型曲线积分基础题1.力(,)((,),(,))F x y P x y Q x y =沿光滑曲线弧L 所做功的微元d W = ,其中(,),(,)P x y Q x y 在L 上连续。
2.计算第二型曲线积分 1)⎰L xydx ,其中L为圆周222()(0)x R y R R -+=>及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行)。
2)⎰Γ-+++dz y x ydy xdx )1(,其中Γ是从点)1,1,1(到点)4,3,2(的一段直线。
(3) 22L xdx ydy x y -++⎰,其中L 是圆周222x y a +=以逆时针方向。
提高题1. 计算⎰-++L dyx y dx y x )()(,其中L 是: (1)先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (2)曲线1 1222+=++=t y t t x , 上从点(1,1)到点(4,2)的一段弧。