第九章 压杆稳定
- 格式:ppt
- 大小:2.98 MB
- 文档页数:36
第九章压杆稳定§9.1 压杆稳定的概念§9.2 两端铰支细长压杆的临界压力§9.3 其它支座条件下细长压杆的临界压力§9.4 欧拉公式的适用范围,经验公式§9.5 压杆的稳定校核§9.6 提高压杆稳定性的措施1. 引言强度——构件抵抗破坏(塑性变形或断裂)之能力2.实例crcr①受均匀外压作用的圆筒形薄壳——由圆形平衡变成椭圆形平衡。
②受均匀压力作用的拱形薄板——由拱形平衡变成翘曲平衡。
③窄高梁或薄腹梁的侧向弯曲——由平面弯曲变成侧向弯曲。
④圆筒形薄壳在轴向压力或扭转作用下引起局部皱折。
⑤细长压杆由直线平衡变成曲线平衡。
3.稳定研究发展简史早在18世纪中叶,欧拉就提出《关于稳定的理论》但是这一理论当时没有受到人们的重视,没有在工程中得到应用。
原因是当时常用的工程材料是铸铁、砖石等脆性材料。
这些材料不易制细细长压杆,金属薄板、薄壳。
随着冶金工业和钢铁工业的发展,压延的细长杆和薄板开始得到应用。
19世纪末20世纪初,欧美各国相继兴建一些大型工程,由于工程师们在设计时,忽略杆件体系或杆件本身的稳定问题向造许多严重的工程事故。
例如:19世纪末,瑞士的《孟希太因》大桥的桁架结构,由于双机车牵引列车超载导致受压弦杆失稳使桥梁破坏,造成200人受难。
弦杆失稳往往使整个工程或结构突然坍蹋,危害严重,由于工程事故不断发生,才使工程师们回想起欧拉在一百多年前所提出的稳定理论。
从此稳定问题才在工程中得到高度重视。
§9.1 压杆稳定的概念 1.工程实例(1当推动摇臂打开气阀时就受压力作用。
(2)磨床液压装置的活塞杆,当驱动工作台移动时受到压力作用。
(3)空气压缩机,蒸汽机的连杆。
(4)桁架结构的某些杆件。
(5)建筑物中的柱。
2.压杆分类⎪⎩⎪⎨⎧⎭⎬⎫--.,,.3.2.1曲线平衡而发生失稳杆件会由直线平衡变成比例极限甚至低于或者强度极限当应力低于屈服极限稳定问题细长杆中长杆强度问题短杆b b s σσσ 3.压杆失稳:压杆由直线形状的稳定平衡而过渡到曲线平衡称为失稳或者屈曲。