中达开关电源培训
- 格式:ppt
- 大小:5.41 MB
- 文档页数:59
中达开关电源系统调试操作书请各县市代维人员按照<<中达调试操作书>>上的步骤调试好新旧中达开关电源的参数:中达开关电源一次下电应设为44V、二次下电应设为46.8V;新型中达开关电源(带OBO防雷模块、带低压隔离侦测板)必须在侦测板上(用万用表直流电压档表笔接入第二个孔:低压隔离跳脱调节和第四孔:地线孔)把电压调至4.68V;侦测板上不能有红灯亮,亮红灯表示侦测板处于手动状态,按一下第五个按钮红灯灭,表示处于自动状态。
《中达开关电源系统调试操作书》中达电通电源系统操作及参数设定:说明系统运作资料的显示和告警画面的说明, 以及系统如何进行参数设定, 已由用户针对某些特定的参数重新设定, 其余则由出厂时设定完成。
系统显示1. 首页画面:监控单元(CSU )的资料显示,是液晶显示器(LCD)和三个发光二极管来执行。
红色为主要告警指示,黄色为次要告警指示,黄色为均充充电指示(见上的CSU 显示屏幕图示)。
液晶显示器首页显示画面的内容为:直流输出电压、直流输出电流、交流输入电压、系统状态。
在正常状况下系统异常告警资料并不显示,只有在供电系统发生异常时,才会有系统告警内容显示出来。
开机时首页画面显示:直流电压--直流供电系统直流输出电压 负载电流--供电系统输出总负载电流交流电压—系统交流电压(取第二相) 状 态--显示系统的状态(浮充,均充)在首页下,按下列按键分别显示下列内容:增 —显示资料内容.(只能查看,不能设置或更改)减 —显示参数设定内容.(下面详细讲解)回车 —显示历史纪录内容和时间.直流电压 54.3 V 负载电流 0 A 交流电压 220 V 状态 浮充 主要告警指示灯次要告警指示灯均充指示灯(只能查看,不能设置或更改)返回—显示告警内容.(只能查看,不能设置或更改)2. 系统操作参数设定画面在系统操作前,必须现进行模块ID重置,操作步骤见,否则会导致系统模块均充灯闪烁不停。
开关电源培训讲义漆逢吉第一章不间断直流电源供电系统概述DC图1—1 不间断直流电源供电系统框图(一)系统框图开关电源设备中包含交流配电部分、整流器、直流配电部分和控制器,它连同蓄电池组和接地装置,构成不间断直流电源供电系统,如图1—1所示。
交流配电:防雷,并对交流电源进行分配、控制、检测和保护等,主电路原理图参看设备使用说明书。
输入交流应采用三相五线制。
在这种制式中,工作地线(零线)与保护地线必须严格分开。
交流导线的截面积,一般按发热条件来选择。
铜芯绝缘导线的线芯截面积,可按4A/mm2来选取。
绝缘导线的线芯标称截面积(mm2)系列为:1、1.5、2.5、4、6、10、16、25、35、50、70、95、120、150、185、240等。
机房内的交流导线应采用阻燃型电缆。
保护接地的接地线应采用多股铜芯绝缘导线。
其线芯截面积的选取原则是:相线截面积S≤35mm2时,采用16mm2;相线截面积S>35mm2时,选用≥S/2。
整流器:把交流电变成所需直流电。
现在一般都采用高频开关整流器。
高频开关整流器采用无工频变压器整流、功率因数校正电路和脉宽调制高频开关电源技术,具有小型、轻量、高效率、高功率因数、高可靠性以及智能化程度高、可以远程监控、无人值守或少人值守等优点,因此得到了广泛应用。
通信用高频开关整流器为模块化结构。
在一个高频开关电源系统中,通常是若干高频开关整流器模块并联输出,输出电压自动稳定,各整流模块的输出电流通过均流电路实现自动均衡。
直流配电:连接整流器的输出端、蓄电池组和负载,构成浮充供电的不间断直流电源系统。
它对输出直流进行分配、控制、检测和保护等。
其主电路原理图如后面的图2—1所示。
直流馈电线的截面积,按允许电压降来选择。
根据欧姆定律,可按下式计算ILS≥(1—1)ΔUν式中S—导体截面积(mm2);I—流过导线的电流(A);L—导线长度(m);ΔU—导线上的允许压降(V);ν—导体的电导率(m/Ω·mm2),铜为57,铝为34,是电阻率的倒数。
开关电源培训资料开关电源培训资料【第一篇】开关电源是一种常见的电源供应器件,被广泛用于各种电子装置中。
它具有高效率、小体积和轻量化的特点,因此在现代电子设备中得到了广泛的应用。
本篇文章将介绍开关电源的基本工作原理和一些常用的开关电源类型。
1. 基本工作原理开关电源的基本工作原理是利用开关管实现电源输入电压的高效率转换。
通常,开关电源有以下几个基本组成部分:(1) 输入滤波电路:用来对输入电压进行滤波,防止高频噪声对电源的影响。
(2) 整流电路:将交流电源输入转换为直流电压。
(3) 稳压调整电路:对直流电压进行稳压调整,以确保输出电压的稳定性。
(4) 开关转换电路:通过开关和控制电路实现输入电压的高效率转换。
(5) 输出滤波电路:对开关电源输出电压进行滤波处理,提供干净稳定的输出电压。
2. 常用的开关电源类型根据不同的应用需求和输出功率的大小,开关电源可分为多种类型。
以下是一些常见的开关电源类型:(1) 开环开关电源:这种类型的开关电源不具备反馈控制回路,输出电压不稳定且容易受到输入电压变化的影响。
它适用于一些对电源质量要求较低的应用场景。
(2) 闭环开关电源:闭环开关电源通过反馈控制回路对输出电压进行稳定控制,能够有效地抑制输入电压的波动对输出电压的影响。
它适用于对电源质量要求较高的应用场景。
(3) 开关电源的调整方式:开关电源的输出电压可以通过直接改变变压器的变比或通过在控制回路中加入调整电路来实现。
前者适用于输出电压变化范围较大的场景,后者适用于输出电压变化范围较小的场景。
(4) 开关电源的拓扑结构:开关电源的拓扑结构有很多种,如反激式、降压式、升压式、反激降压式等。
不同的拓扑结构适用于不同的输出功率和电源输入条件。
以上只是对开关电源的基本工作原理和一些常用类型的简要介绍,如果想深入了解开关电源的设计和应用,还需进一步学习相关领域的知识。
下一篇将继续介绍开关电源的设计方法和一些要注意的问题。
开关电源设计详细培训开关电源是一种将输入电源以高效率转换为输出电源的电子设备。
由于其高效率、小体积和稳定性强等特点,开关电源在各个领域中得到广泛应用。
下面将详细介绍开关电源的设计培训。
首先,开关电源设计的第一步是明确需求。
根据实际应用场景和要求,确定输出电压、输出电流、输入电压范围等基本参数。
同时,还需考虑一些特殊需求,如过载保护、过压保护和短路保护等。
其次,根据需求参数,选择合适的拓扑结构。
开关电源的拓扑结构有多种,如降压型、升压型、降升压型等。
根据应用需求和电源性能要求,选择合适的拓扑结构,进行后续设计。
第三步是选择合适的开关元件和辅助元件。
在开关电源设计中,开关元件起到关键作用,常用的有MOSFET和IGBT。
选择合适的开关元件需要考虑其导通电阻、开通速度和损耗等因素。
同时,还需选择合适的电感、电容和变压器等辅助元件来完成电流转换和滤波。
第四步是进行稳压控制的设计。
稳压控制是开关电源设计的核心内容,常用的控制方式有脉宽调制(PWM)和电流模式控制(CM)。
在设计中,需要考虑稳定性、响应速度和负载适应性等因素,选择合适的控制方式,并进行参数调整。
第五步是进行过载保护和过压保护的设计。
在实际应用中,开关电源常常会面临过载和过压的情况,设计过载保护和过压保护电路是必要的。
过载保护常用的方式有电流限制和电流折半等,过压保护常用的方式有过压关断和过压旁路等。
第六步是消除电磁干扰。
开关电源在工作过程中会产生大量的电磁干扰,对其他电子设备造成干扰。
为了消除电磁干扰,需要采取电磁屏蔽措施,如合理布局线路、加装滤波电路和设置屏蔽罩等。
最后,进行测试和调整。
在设计完成后,需要进行电路的测试和调整,确保电源的性能满足设计要求。
常用的测试项目有输出电压稳定性、负载调整响应和效率等。
总结起来,开关电源设计需要明确需求、选择合适的拓扑结构、选择合适的开关元件和辅助元件、进行稳压控制的设计、进行过载保护和过压保护的设计、消除电磁干扰以及测试和调整等步骤。