2016-2017年七年级数学第一次月考卷及答案
- 格式:doc
- 大小:1.37 MB
- 文档页数:5
七年级上册数学第一次月考测试卷一、单选题1.给出下列各数:﹣1,0,﹣3.05,﹣π,+2,﹣12,4,其中负数有()A.1个B.2个C.3个D.4个2.如果零上7℃记作+7℃,则零下7℃记作()A.﹣7° B.﹣7℃ C.+7° D.+7℃3.下列表示“相反意义的量”的一组是()A.向东走和向西走B.盈利100元和支出100元C.水位上升2米和水位下降2米D.黑色与白色4.下列各数中,既是分数又是正数的是()A.1 B.﹣313C.0 D.2.255.下面是小强、小方、小丽和小燕4位同学所画的数轴,其中正确的是()A.B.C.D.6.下列说法正确的是()A.0不可以是负数但可以是正数B.﹣3和0都是整数C.不是正数的数一定是负数,不是负数的数一定是正数D.0℃表示没有温度7.数轴上与﹣3距离3个单位的数是()A.﹣6 B.0 C.﹣6和0 D.6和98.下列各组数中,互为相反数的一组是()A.﹣1与﹣|﹣1| B.2与﹣1 2C.﹣(﹣1)与﹣|﹣1| D.(﹣2)3与﹣239.绝对值小于100的所有有理数的和与它的积的差是()A.10000 B.5050C.0 D.数据过大,无法计算10.下列说法中,正确的是()A.若|a|<|b|,则a<b B.若a<b,则|a|<|b|C.若a>0,b>0,则|a|>|b| D.a<b<0,则|a|>|b|11.如图,M、P、N分别是数轴上的三点,点M和点N表示的有理数之和为零.其中点P满足|(﹣3)+★|=3,“★”代表P,那么P点表示的数应该是()A.6 B.3 C.0 D.0和6二、填空题12.如果盈利500元记作+500元,则﹣500元表示_____元.13.﹣434的相反数是_____,它的倒数是_____,它的绝对值是_____.14.若a,b互为相反数,m,n互为倒数,则(a+b)×mn﹣2mn+2=_____.15.2018年,遵义市全市普通高中招生计划数为48380人,保留两个有效数字,用科学记数法表示为_____.16.若(a+2018)2+|2017﹣b|=0,则(a+b)2019=_____;三、解答题17.把下列各数填在相应集合的括号内:+15,﹣3,﹣12,﹣0.9,0.81,227,﹣113,101,0.整数集合:{ …}负数集合:{ …}分数集合:{ …}非负数集合:{ …}18.计算题(1)64+(﹣36)+(﹣64)﹣4×(﹣9)(2)(23﹣34+512﹣16)×(﹣12)19.把下列各数在数轴上(直线已画出)表示,并按从小到大的顺序用“<”连接起来.﹣12,0,34,﹣22,π,﹣|﹣3.14|,﹣(﹣2.5)20.如图,数轴上三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|b﹣c|+|a+c|.21.(1)已知a是绝对值最小的有理数,b和c的倒数都是它本身,b<c.求a+b+c﹣ab﹣bc﹣ac的值.(2)a,b互为倒数,c和d互为相反数.求ab﹣dc﹣2c﹣2d的值.22.“白水如绵,不用弓弹花自散;红雪如锦,何须梭织天生成.”我爱多彩贵州.今年“五一”期间,黄果树瀑布及周边景区,又一次迎来旅游高峰,据统计4月28日游客总人数达70万人.现将4月29日到5月5日游客人数统计如表.(“+”为当日增加人数,“﹣”为当日减少人数,单位:万人).(1)补全表中数据.(2)计算4月29日至5月5日,7日间景区共接待游客多少人?(3)请你估算一下,今年“五一”期间,黄果树瀑布及周边景区旅游总收入.通过大数据,谈谈你的感想(计算数据基本合理,其他言之有理即可).23.“中欧班列”是指按照固定车次线路条件开行,往来于中国与欧洲及“一带一路”沿线各国的集装箱国际铁路联运班列.其中从我国义乌到亚欧国家的一趟班列近似直线(东西方向),若某班列从我国某城市出发(规定向东为正,向西为负),下面记录数据分别为每一天的行程(单位:km):﹣1008,1100,﹣976,1010,﹣872,946.问6天后,此班列在该城市什么方向?距离多远?共计行程多少千米?24.如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;②小猫逮住老鼠时的“位置”恰好在,求时间t.25.阅读材料(1)绝对值的几何意义是表示数轴上的点到原点的距离,如|﹣2|=2,|x|=2,x=+2或﹣2,特别地|x﹣1|=2表示“x”到“1”的距离是2,就是x﹣1=2或x﹣1=﹣2,所以x=3或﹣1;同理,当|x+1|=2,表示“x”到“﹣1”的距离是2,就是x+1=2或x+1=﹣2,所以x=﹣3或+1;根据以上说明,求下列各式中x的值.①|x|=1 ②|x﹣2|=2 ③|x+1|=3(2)由(1)可知,|a|=a或﹣a,|b|=b或﹣b,|c|=c或﹣c,若abc≠0,求a b ca b c++的值.(3)若abcd≠0,直接写出a b c da b c d+++的值.参考答案1.D【解析】【分析】根据负数是小于0的数找出即可.【详解】负数有:﹣1,﹣3.05,﹣π,﹣12,故选:D.【点睛】本题考查了负数的定义,是基础题,熟记概念是解题的关键.2.B【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,若增加表示为正,则减少表示为负.【详解】如果零上7℃记作+7℃,那么零下7℃记作﹣7℃,故选:B.【点睛】本题主要考查正数和负数的知识点,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.C【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】A、“向东走和向西走是方向相反,不是相反意义的量,故本选项错误;B、“盈利100元”与“支出100元”是不是表示相反意义的量,故本选项错误;C、水位上升 2 米和水位下降 2 米是表示相反意义的量,故本选项正确;D、黑色与白色是颜色相反,是不具有相反或相同的意义的量,故本选项错误.故选:C.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.4.D【解析】【分析】根据大于零的分数是正分数,可得答案.【详解】A、是正整数,故A错误;B、是负分数,故B错误;C、既不是正数也不是负数,故C错误;D、是正分数,故D正确;故选:D.【点睛】本题考查了有理数,大于零的分数是正分数,注意0既不是正数也不是负数,0是整数.5.B【解析】【分析】根据数轴的特点,从左到右越来越大,单位长度是确定的,可以判断哪个选项是正确的.【详解】∵数轴从左到右越来越大,∴选项A和选项C错误,选项B正确,∵数轴的单位长度是确定的,∴选项D错误,故选:B.【点睛】本题考查数轴,解答本题的关键是明确数轴的特点,利用数轴的知识解答.6.B【解析】【分析】利用有理数的性质判断即可.【详解】A、0不可以是负数也不可以是正数,不符合题意;B、﹣3和0都是整数,符合题意;C、不是正数的数不一定是负数,不是负数的数不一定是正数,不符合题意;D、0℃表示温度为0,不符合题意,故选:B.【点睛】此题考查了有理数的分类及性质,弄清有理数的性质是解本题的关键.7.C【解析】【分析】根据题意和数轴的特点,可以求得数轴上与﹣3距离3个单位的数,分该点在-3的右边和左边两种情况求解即可.【详解】数轴上与﹣3距离3个单位的数是:﹣3+3=0或﹣3﹣3=﹣6,故选:C.【点睛】本题考查数轴两点间的距离及分类讨论的数学思想,解答本题的关键是明确数轴的特点,求出相应的数据.8.C【解析】【分析】利用相反数,绝对值,倒数的定义以及乘方的意义判断即可.【详解】A、﹣1=﹣|﹣1|=﹣1,相等,不符合题意;B、2与﹣12互为负倒数,不符合题意;C、﹣(﹣1)=1与﹣|﹣1|=﹣1,互为相反数,符合题意;D、(﹣2)3=﹣23=﹣8,相等,不符合题意,故选:C.【点睛】此题考查了有理数的乘方,相反数,倒数以及绝对值,熟练掌握各自的性质是解本题的关键.9.C【解析】【分析】根据0与任何数相乘的积为0,互为相反数的两数的和为0,得绝对值小于100的所有有理数的和与它的积,相减得结论.【详解】∵0的绝对值小于100,所以绝对值小于100的有理数的积为0;∵互为相反数的两数的绝对值相等,互为相反数的两数的和为0,所以小于100的所有有理数除0外都成互为相反数的对出现,所以它们的和为0;绝对值小于100的所有有理数的和与它的积的差是:0﹣0=0.故选:C.【点睛】本题考查了绝对值的意义与0与有理数相乘的积.解决本题的关键是知道:0与任何实数相乘的积为0,互为相反数的两数的绝对值相等,互为相反数的两数的和为0.10.D【解析】【分析】根据绝对值的定义即可求出答案.【详解】A.若a=0,b=﹣7,则|a|<|b|,但a>b,故A错误;B.若a=﹣3,b=2,则a<b,但|a|>|b|,故B错误;C.若a=1,b=﹣2,则a>0,b>0,但|a|>|b|,故C错误;D. 若a<b<0,则|a|>|b|,故D正确.故选:D.【点睛】本题考查绝对值的定义,解题的关键是熟练运用绝对值的定义,本题属于基础题型.11.D【解析】根据绝对值的意义即可得到结论.【详解】∵|(﹣3)+★|=3,∴(﹣3)+★=±3,∴★=0或6,故选:D.【点睛】本题考查了数轴,绝对值,熟记绝对值的意义是解题的关键.12.亏损500.【解析】【分析】根据正负数的意义即可求出答案.【详解】由题意可知:﹣500元表示亏损500元,故答案为:亏损500.【点睛】本题考查了相反意义的量,解题的关键是正确理解正负数的意义,为了区分相反意义的量,我们把其中一种意义的量规定为正的,那么与它相反意义的量规定为负的.本题属于基础题型.13.434﹣419434.【解析】根据相反数、倒数及绝对值的定义解答即可. 【详解】﹣434的相反数是:434,它的倒数是:﹣419,它的绝对值是:434,故答案为434,﹣419,434.【点睛】本题考查了相反数、倒数及绝对值的定义,熟知相反数、倒数及绝对值的定义是和解决问题的关键.14.0【解析】【分析】根据a,b互为相反数,m,n互为倒数,可以求得所求式子的值,本题得以解决.【详解】∵a,b互为相反数,m,n互为倒数,∴a+b=0,mn=1,∴(a+b)×mn﹣2mn+2=0×mn﹣2×1+2=0﹣2+2=0,故答案为:0.【点睛】本题考查了相反数、倒数的意义,有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.15.:4.8×104.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于48 380的整数位有5位,所以可以确定n=5﹣1=4,有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【详解】48 380人,保留两个有效数字,用科学记数法表示为4.8×104.故答案为:4.8×104.【点睛】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.16.-1【解析】【分析】根据非负数的性质即可得到结论.【详解】∵(a+2018)2+|2017﹣b|=0,∴a+2018=0,2017﹣b=0,∴a=﹣2018,b=2017,∴(a+b)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质,熟练掌握非负数的性质是解题的关键.17.详见解析【解析】【分析】根据有理数的分类即可求出答案.【详解】解:整数集合:+15,﹣3,101,0负数集合:﹣3,﹣,﹣0.9,﹣1分数集合:﹣,﹣0.9,0.81,,﹣1非负数集合:+15,0.81,,101,0【点睛】本题考查有理数的分类,解题的关键是正确理解有理数的分类,本题属于基础题型.18.(1)0;(2)-2【解析】【分析】1)原式先计算乘法运算,再计算加减运算即可求出值;(2)原式利用乘法分配律计算即可求出值.【详解】解:(1)原式=64﹣64﹣36+36=0;(2)原式=﹣8+9﹣5+2=﹣2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.﹣22<﹣|3.14|<﹣12<0<34<﹣(﹣2.5)<π.【解析】【分析】把各个数表示在数轴上,最后根据在数轴上表示的有理数的比较方法,用“<”连接各数.【详解】解:∵﹣22=﹣4,﹣|﹣3.14|=﹣3.14,﹣(﹣2.5)=2.5,∴在数轴上表示为:∴﹣22<﹣|3.14|<﹣<0<<﹣(﹣2.5)<π.【点睛】本题考查了数轴上表示有理数,相反数、绝对值的化简及有理数大小的比较方法.题目相对简单.注意在数轴上表示的数一定是题目给出的数据,不能是经过化简后的数据.20.2b.【解析】【分析】根据数轴,可以判断a、b、c的正负情况,从而可以判断a﹣b、b﹣c、a+c的正负情况,从而可以解答本题.【详解】解:由数轴可得,﹣3<a<0<b<3<c,∴a﹣b<0,b﹣c<0,a+c>0,∴|a﹣b|﹣|b﹣c|+|a+c|=b﹣a﹣(c﹣b)+a+c=b﹣a﹣c+b+a+c=2b.【点睛】本题考查数轴、绝对值,解答本题的关键是明确数轴的特点,利用数形结合的思想解答.21.(1)1;(2)2【解析】【分析】利用相反数,倒数,以及绝对值的代数意义判断即可.【详解】解:(1)根据题意得:a=0,b=﹣1,c=1,则原式=0﹣1+1﹣0+1﹣0=1;(2)根据题意得:ab=1,c+d=0,则原式=1﹣(﹣1)﹣0=2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(1)80,115,135,125,110,100,85.(2)4月29日至5月5日,7日间景区共接待游客750万人;(3)60亿元.感想:旅游是绿色产业,投入少收入巨大.所以当地应该努力改善生态环境,大力发展旅游事业.【解析】【分析】(1)根据每天的人数变化可直接求出每天的旅游人数;(2)分别计算出每天的旅游人数,求和即可;(3)自己预估人均消费,计算当地景点大致收入,然后写出感想即可.【详解】解:(1)4月29日人数为:70+10=80(万人),4月30日人数为:80+35=115(万人),5月1日人数为:115+20=135(万人),5月2日人数为:135﹣10=125(万人),5月3日人数为:125﹣15=110(万人),5月4日人数为:110﹣10=100(万人),5月5日人数为:100﹣15=85(万人);故答案为:80,115,135,125,110,100,85.(2)80+115+135+125+110+100+85=750(万人),答:4月29日至5月5日,7日间景区共接待游客750万人;(3)若每人在黄果树瀑布周边景区平均旅游消费800元,则黄果树瀑布及周边景区旅游收入为:800×7500000=6000000000(元)=60亿元.感想:旅游是绿色产业,投入少收入巨大.所以当地应该努力改善生态环境,大力发展旅游事业.【点睛】本题考查了正负数的意义及有理数的加减运算.题目难度不大.解决(3)需自己预估数据.23.6天后,此班列在该城市东边,距离200km,共计行程5912km.【解析】【分析】根据题意,可以求得题目中数据的和和它们的绝对值的和,从而可以解答本题.【详解】解:(﹣1008)+1100+(﹣976)+1010+(﹣872)+946=200(km),|﹣1008|+1100+|﹣976|+1010+|﹣872|+946=5912(km),答:6天后,此班列在该城市东边,距离200km,共计行程5912km.【点睛】本题考查正数和负数,解答本题的关键是明确正负数在题目中的实际意义.24.(1)4;(2)①12﹣2t;②原点【解析】【分析】(1)根据相反数的意义,求出“原点”到两点的距离,在利用该距离求得“原点”的位置即可;(2)①根据两点的距离直接表示即可;②利用到点的距离相等时,小猫逮到老鼠,列出关于t的方程,求出t的值,再求出该位置即可.【详解】解:(1)根据相反数的意义,可知“原点”到两点的距离分别为:(10+2)÷2=6,∴“原点”表示的数为:﹣2+6=4,故答案为:4;(2)①老鼠在移动过程中与点A之间的距离为:7﹣t,小猫在移动过程中与点A之间的距离为:12﹣2t;②根据题意,得:7﹣t=12﹣2t,解得:t=5,此时小猫逮到老鼠的位置是:5﹣5=0,即在原点,故答案为:原点.【点睛】本题主要考查相反数与数轴的综合应用,解决第(2)小题的②时,能利用小猫逮到老鼠时,它们的位置距离点A相等列出方程式关键.25.(1)①,x=±1;②x=4或0,③x=2或﹣2;(2)±1,或±3.(3)±2,±4,0.【解析】【分析】(1)根据绝对值的意义进行计算即可;(2)(2)对a、b、c进行讨论,即a、b、c同正、同负、两正一负、两负一正,然后计算a b ca b c++得结果;(3)根据abcd≠0,得出共有5种情况,然后分别进行化简即可.【详解】解:(1)①|x|=1,x=±1;②|x﹣2|=2,x﹣2=2或x﹣2=﹣2,所以x=4或0,③|x+1|=3,x+1=3或x﹣1=﹣3,所以x=2或﹣2,(2)当abc≠0时,①a,b,c三个都是负数时,a b ca b c++=﹣1﹣1﹣1=﹣3;②a,b,c三个都是正数时,a b ca b c++=1+1+1=3;③a,b,c两负一正,a b ca b c++=﹣1﹣1+1=﹣1;④a,b,c两正一负,a b ca b c++=﹣1+1+1=1.故a b ca b c++的值为±1,或±3.(3)①若a,b,c,d有一个负数,三个正数,则a b c da b c d+++=﹣1+3=2;②若a,b,c,d有二个负数,二个正数,则a b c da b c d+++=﹣2+2=0;③若a,b,c,d有三个负数,一个正数,则a b c da b c d+++═﹣3+1=﹣2;④若a,b,c,d有四个负数,则a b c da b c d+++═﹣4;⑤若a,b,c,d有四个正数,则a b c da b c d+++═4;故a b c da b c d+++的值为:±2,±4,0.【点睛】本题考查了有理数的加法、绝对值的化简,解决本题的关键是对a、b、c、d的分类讨论.注意xx=±1(x>0,结果为1,x<0,结果为﹣1).七年级上册数学第一次月考测试卷一、单选题1.给出下列各数:﹣1,0,﹣3.05,﹣π,+2,﹣12,4,其中负数有()A.1个B.2个C.3个D.4个2.如果零上7℃记作+7℃,则零下7℃记作()A.﹣7° B.﹣7℃ C.+7° D.+7℃3.下列表示“相反意义的量”的一组是()A.向东走和向西走B.盈利100元和支出100元C.水位上升2米和水位下降2米D.黑色与白色4.下列各数中,既是分数又是正数的是()A.1 B.﹣313C.0 D.2.255.下面是小强、小方、小丽和小燕4位同学所画的数轴,其中正确的是()A.B.C.D.6.下列说法正确的是()A.0不可以是负数但可以是正数B.﹣3和0都是整数C.不是正数的数一定是负数,不是负数的数一定是正数D.0℃表示没有温度7.数轴上与﹣3距离3个单位的数是()A.﹣6 B.0 C.﹣6和0 D.6和98.下列各组数中,互为相反数的一组是()A.﹣1与﹣|﹣1| B.2与﹣1 2C.﹣(﹣1)与﹣|﹣1| D.(﹣2)3与﹣239.绝对值小于100的所有有理数的和与它的积的差是()A.10000 B.5050C.0 D.数据过大,无法计算10.下列说法中,正确的是()A.若|a|<|b|,则a<b B.若a<b,则|a|<|b|C.若a>0,b>0,则|a|>|b| D.a<b<0,则|a|>|b|11.如图,M、P、N分别是数轴上的三点,点M和点N表示的有理数之和为零.其中点P满足|(﹣3)+★|=3,“★”代表P,那么P点表示的数应该是()A.6 B.3 C.0 D.0和6二、填空题12.如果盈利500元记作+500元,则﹣500元表示_____元.13.﹣434的相反数是_____,它的倒数是_____,它的绝对值是_____.14.若a,b互为相反数,m,n互为倒数,则(a+b)×mn﹣2mn+2=_____.15.2018年,遵义市全市普通高中招生计划数为48380人,保留两个有效数字,用科学记数法表示为_____.16.若(a+2018)2+|2017﹣b|=0,则(a+b)2019=_____;三、解答题17.把下列各数填在相应集合的括号内:+15,﹣3,﹣12,﹣0.9,0.81,227,﹣113,101,0.整数集合:{ …}负数集合:{ …}分数集合:{ …}非负数集合:{ …}18.计算题(1)64+(﹣36)+(﹣64)﹣4×(﹣9)(2)(23﹣34+512﹣16)×(﹣12)19.把下列各数在数轴上(直线已画出)表示,并按从小到大的顺序用“<”连接起来. ﹣12,0,34,﹣22,π,﹣|﹣3.14|,﹣(﹣2.5)20.如图,数轴上三点A ,B ,C 分别表示有理数a ,b ,c ,化简|a ﹣b |﹣|b ﹣c |+|a +c |.21.(1)已知a 是绝对值最小的有理数,b 和c 的倒数都是它本身,b <c .求a +b +c ﹣ab ﹣bc ﹣ac 的值.(2)a ,b 互为倒数,c 和d 互为相反数.求ab ﹣d c﹣2c ﹣2d 的值.22.“白水如绵,不用弓弹花自散;红雪如锦,何须梭织天生成.”我爱多彩贵州.今年“五一”期间,黄果树瀑布及周边景区,又一次迎来旅游高峰,据统计4月28日游客总人数达70万人.现将4月29日到5月5日游客人数统计如表.(“+”为当日增加人数,“﹣”为当日减少人数,单位:万人).(1)补全表中数据.(2)计算4月29日至5月5日,7日间景区共接待游客多少人?(3)请你估算一下,今年“五一”期间,黄果树瀑布及周边景区旅游总收入.通过大数据,谈谈你的感想(计算数据基本合理,其他言之有理即可).23.“中欧班列”是指按照固定车次线路条件开行,往来于中国与欧洲及“一带一路”沿线各国的集装箱国际铁路联运班列.其中从我国义乌到亚欧国家的一趟班列近似直线(东西方向),若某班列从我国某城市出发(规定向东为正,向西为负),下面记录数据分别为每一天的行程(单位:km):﹣1008,1100,﹣976,1010,﹣872,946.问6天后,此班列在该城市什么方向?距离多远?共计行程多少千米?24.如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;②小猫逮住老鼠时的“位置”恰好在,求时间t.25.阅读材料(1)绝对值的几何意义是表示数轴上的点到原点的距离,如|﹣2|=2,|x|=2,x=+2或﹣2,特别地|x﹣1|=2表示“x”到“1”的距离是2,就是x﹣1=2或x﹣1=﹣2,所以x=3或﹣1;同理,当|x+1|=2,表示“x”到“﹣1”的距离是2,就是x+1=2或x+1=﹣2,所以x=﹣3或+1;根据以上说明,求下列各式中x的值.①|x|=1 ②|x﹣2|=2 ③|x+1|=3(2)由(1)可知,|a|=a或﹣a,|b|=b或﹣b,|c|=c或﹣c,若abc≠0,求a b ca b c++的值.(3)若abcd≠0,直接写出a b c da b c d+++的值.成为学生喜欢的教师你可以问问身边的教师,他们上学的时候是否曾经受到过积极教师的影响,很可能所有人都有过这样的经历。
人教版七年级上册数学第一次月考试卷(带答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若a ≠0,b ≠0,则代数式||||||a b ab a b ab ++的取值共有( ) A .2个 B .3个 C .4个 D .5个2.实数a 在数轴上的位置如图所示,则化简22(4)(11)-+-a a 结果为( )A .7B .-7C .215a -D .无法确定3.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .645.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x -=---有正整数解,则满足条件的整数a 的值之积为( ) A .28B .﹣4C .4D .﹣26.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合( )A .0B .1C .2D .37.下列各组数中,能作为一个三角形三边边长的是( ) A .1,1,2B .1,2,4C .2,3,4D .2,3,58.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( ) A .3 B .7 C .3或7 D .1或79.已知23a b=(a ≠0,b ≠0),下列变形错误的是( )A .23a b = B .2a=3b C .32b a = D .3a=2b10.已知a m =3,a n =4,则a m+n 的值为( ) A .7B .12C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.正五边形的内角和等于______度.4.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为______cm.5.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF = CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.一个正多边形的一个外角为30°,则它的内角和为________.三、解答题(本大题共6小题,共72分)1.解方程组:23 328 x yx y-=⎧⎨+=⎩2.已知关于x的不等式xa<7的解也是不等式2752x a a->-1的解,求a的取值范围.3.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD,若∠EFG=90°,∠E=35°,求∠EFB的度数.4.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5.某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图扇形D的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?6.小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物 6 5 1140 第二次购物 3 7 1110 第三次购物9 8 1062(1)小林以折扣价购买商品A、B是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、D5、B6、B7、C8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、150°3、5404、225、AC=DF(答案不唯一)6、1800°三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=⎩2、-109≤a<03、20°4、(1)详略;(2)70°.5、(1)补图见解析;(2)27°;(3)1800名6、(1)三;(2)商品A的标价为90元,商品B的标价为120元;(3)6折.。
七年级上册数学第一次月考试卷一、 选择题(每题3 分,共 30 分)1、假如用 +0.02 克表示一只乒乓球质量高出标准质量 0.02 克,那么一只乒乓球 质量低于标准质量 0.02 克应记作 ( ) A 、+0.02 克 B 、- 0.02 克 C 、0 克 D 、 +0.04 克2、在- 4,2,-1,0,-3 中最小的一个数为 ( ) A 、2 B 、- 1 C 、- 3 D 、- 43、以下算式正确的选项是( ) A 、- 14-5=-9 B、- 3-3=0 C、 —31 —2 D、(— 1) 2 = 1223 94、在(- 1) 2 ,(- 1) 3,-(- 1) 5,- 1 4,|- 1| ,-(- 1),- 1的结果中是 1 的有(— 1 )个 A 、7 B 、6 C 、 5 D 、45、|x+1|+|y -4|=0 ,则 x y =()A 、1B 、— 1C 、 4D 、— 4 6、据统计, 2016 年我国高新技术产品出口总数达 40570 亿元,将 40570 亿用科 学计数法表示为( ) A 、4.0570 × 109 B 、0.40570 ×10 10C 、40.570 × 1011D 、4.0570 ×10 127、冬天某天我国三个城市的最高气温分分别是-10℃, 1℃,- 7℃,它们随意两城市中最大的温差是A 、17℃B 、 11℃C、8℃D 、3℃( )8、新定义一种运算a △ b=(a+1)÷b ,则2△(- 3 △ 4) =()2 A 、6 B 9、以下各式建立的是 、0 C 、- 6 D、- 1( )A 、若 |a|=|b|,则a=bB、若 a 2=b 2 ,则a=bC 、若a+b ﹤0、ab ﹥ 0,则a ﹤0、b ﹤0D 、若 a ﹥ 0,则a ﹥0、b ﹥0b10、以下图形都是由几个黑色和白色的正方形按必定规律构成, 图①中有 2 个黑色正方形,图②中有 5 个黑色正方形,图③中有 8 个黑色正方形,图④中有 11个黑色正方形, ,挨次规律,图⑩中黑色正方形的个数是( )A. 32B. 29C. 28D. 26二、填空题(每题 3 分,合计 15 分)11、-1的相反数为,倒数为,绝对值为。
七年级(下)第一次月考数学试卷一、选择题(每小题4分共32分)1.(4分)下列语句写成数学式子正确的是()A.9是81的算术平方根:B.5是(﹣5)2的算术平方根:C.±6是36的平方根:D.﹣2是4的负的平方根:2.(4分)如图,∠1=∠B,∠2=20°,则∠D=()A.20°B.22°C.30°D.45°3.(4分)下列计算正确的是()A.=±2 B.=﹣3 C.=﹣4 D.=34.(4分)如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γB.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°5.(4分)如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.B.﹣1+ C.﹣1D.16.(4分)下列实数中,﹣、、、﹣3.14,、0、、0.3232232223…(相邻两个3之间依次增加一个2),有理数的个数是()A.2个B.3个C.4个D.5个7.(4分)如图,已知∠1=∠2,则下列结论一定正确的是()A.∠3=∠4 B.AB∥CD C.AD∥BC D.∠B=∠D8.(4分)∠1与∠2是两条直线被第三条直线所截的同位角,若∠1=50°,则∠2为()A.50°B.130°C.50°或130°D.不能确定二、填空题(每小题3分共18分)9.(3分)“等角的补角相等”的条件是,结论是.10.(3分)|3.14﹣π|=,﹣8的立方根为.11.(3分)﹣1的相反数是,的平方根是.12.(3分)已知实数a在数轴上的位置如图,则化简|1﹣a|+的结果为.13.(3分)如图,将直角三角形ABC沿AB方向平移AD长的距离得到直角三角形DEF,已知BE=5,EF=8,CG=3.则图中阴影部分面积.14.(3分)如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2等于度.三、解答题(共70分15题:7分,16、17题:8分,18、19、21题9分20、22题:10分)15.(7分)根据下列证明过程填空:已知:如图,AD⊥BC于点D,EF⊥BC于点F,交AB于点G,交CA的延长线于点E,∠1=∠2.求证:AD平分∠BAC,填写证明中的空白.证明:∵AD⊥BC,EF⊥BC (已知),∴EF∥AD (),∴=(两直线平行,内错角相等),=∠CAD ().∵(已知),∴,即AD平分∠BAC ().16.(8分)求出下列x的值.(1)4x2﹣49=0;(2)27(x+1)3=﹣64.17.(8分)已知:2a﹣7和a+4是某正数的平方根,b﹣7的立方根为﹣2.(1)求:a、b的值;(2)求a+b的算术平方根.18.(8分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.19.(9分)如图:BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H.∠GFH+∠BHC=180°,求证:∠1=∠2.20.(10分)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE⊥EF,∠DEA=30°.(1)求证:DC∥AB.(2)求∠AFE的大小.21.(10分)已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠DOE=4:1.求∠AOF的度数.22.(10分)在网格上,平移△ABC,并将△ABC的一个顶点A平移到点D处,(1)请你作出平移后的图形△DEF;(2)请求出△DEF的面积.2016-2017学年云南省曲靖市宣威市七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题4分共32分)1.(4分)下列语句写成数学式子正确的是()A.9是81的算术平方根:B.5是(﹣5)2的算术平方根:C.±6是36的平方根:D.﹣2是4的负的平方根:【解答】解:A、9是81的算术平方根,即=9,错误;B、5是(﹣5)2的算术平方根,即=5,正确;C、±6是36的平方根,即±=±6,错误;D、﹣2是4的负平方根,即﹣=﹣2,错误,故选:B.2.(4分)如图,∠1=∠B,∠2=20°,则∠D=()A.20°B.22°C.30°D.45°【解答】解:∵∠1=∠B,∴AD∥BC,∴∠D=∠2=20°.故选:A.3.(4分)下列计算正确的是()A.=±2 B.=﹣3 C.=﹣4 D.=3【解答】解:A、原式=2,错误;B、原式=﹣3,正确;C、原式=|﹣4|=4,错误;D、原式为最简结果,错误,故选:B.4.(4分)如图,AB∥EF,∠C=90°,则α、β、γ的关系为()A.β=α+γB.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°【解答】解:延长DC交AB与G,延长CD交EF于H.直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,因为AB∥EF,所以∠1=∠2,于是90°﹣α=β﹣γ,故α+β﹣γ=90°.故选:D.5.(4分)如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.B.﹣1+ C.﹣1D.1【解答】解:数轴上正方形的对角线长为:=,由图中可知1和A之间的距离为.∴点A表示的数是1﹣.故选:D.6.(4分)下列实数中,﹣、、、﹣3.14,、0、、0.3232232223…(相邻两个3之间依次增加一个2),有理数的个数是()A.2个B.3个C.4个D.5个【解答】解:有理数有:﹣、﹣3.14,、0、,共5个,故选:D.7.(4分)如图,已知∠1=∠2,则下列结论一定正确的是()A.∠3=∠4 B.AB∥CD C.AD∥BC D.∠B=∠D【解答】解:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)故选:B.8.(4分)∠1与∠2是两条直线被第三条直线所截的同位角,若∠1=50°,则∠2为()A.50°B.130°C.50°或130°D.不能确定【解答】解:∵∠1与∠2是两条直线被第三条直线所截的同位角,两条直线不一定平行,∴∠2不能确定.故选:D.二、填空题(每小题3分共18分)9.(3分)“等角的补角相等”的条件是如果两个角都是某一个角的补角,结论是那么这两个角相等.【解答】解:等角的补角相等的条件是如果两个角都是某一个角的补角,结论是那么这两个角相等.故答案为如果两个角都是某一个角的补角,那么这两个角相等.10.(3分)|3.14﹣π|= π﹣3.14 ,﹣8的立方根为 ﹣2 . 【解答】解:|3.14﹣π|=π﹣3.14,﹣8的立方根为﹣2, 故答案为:π﹣3.14,﹣2.11.(3分)﹣1的相反数是 1﹣ ,的平方根是 ±2 . 【解答】解:﹣1的相反数是 1﹣,的平方根是±2,故答案为:1﹣,±2.12.(3分)已知实数a 在数轴上的位置如图,则化简|1﹣a |+的结果为 1﹣2a .【解答】解:由数轴可得出:﹣1<a <0, ∴|1﹣a |+=1﹣a ﹣a=1﹣2a .故答案为:1﹣2a .13.(3分)如图,将直角三角形ABC 沿AB 方向平移AD 长的距离得到直角三角形DEF ,已知BE=5,EF=8,CG=3.则图中阴影部分面积.【解答】解:∵RT △ABC 沿AB 的方向平移AD 距离得△DEF , ∴△DEF ≌△ABC , ∴EF=BC=8,S △DEF =S △ABC , ∴S △ABC ﹣S △DBG =S △DEF ﹣S △DBG , ∴S 四边形ACGD =S 梯形BEFG , ∵CG=3,∴BG=BC﹣CG=8﹣3=5,=(BG+EF)•BE=(5+8)×5=.∴S梯形BEFG故答案为:.14.(3分)如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2等于130度.【解答】解:∵m∥n,∠1=40°,∴∠3=∠1=40°.∵∠ACB=90°,∴∠4=∠ACB﹣∠3=90°﹣40°=50°,∴∠2=180°﹣∠4=180°﹣50°=130°.故答案为:130.三、解答题(共70分15题:7分,16、17题:8分,18、19、21题9分20、22题:10分)15.(7分)根据下列证明过程填空:已知:如图,AD⊥BC于点D,EF⊥BC于点F,交AB于点G,交CA的延长线于点E,∠1=∠2.求证:AD平分∠BAC,填写证明中的空白.证明:∵AD⊥BC,EF⊥BC (已知),∴EF∥AD (平面内,垂直于同一条直线的两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),∠E=∠CAD (两直线平行,同位角相等).∵∠1=∠2(已知),∴∠BAD=∠CAD,即AD平分∠BAC (角平分线定义).【解答】证明:∵AD⊥B C,EF⊥BC,∴∠ADC=∠EFC=90°,∴AD∥EF,(平面内,垂直于同一条直线的两直线平行)∴∠AGE=∠DAB,∠E=∠DAC,∵AE=AG,∴∠E=∠AGE,∴∠DAB=∠DAC,即AD平分∠BAC.故答案为:平面内,垂直于同一条直线的两直线平行,∠1,∠BAD,∠2,两直线平行,同位角相等,∠1=∠2,∠BAD=∠CAD,角平分线定义.16.(8分)求出下列x的值.(1)4x2﹣49=0;(2)27(x+1)3=﹣64.【解答】解:(1)4x2﹣49=0x2=,解得:x=±;(2)27(x+1)3=﹣64(x+1)3=﹣,x+1=﹣,解得:x=﹣17.(8分)已知:2a﹣7和a+4是某正数的平方根,b﹣7的立方根为﹣2.(1)求:a、b的值;(2)求a+b的算术平方根.【解答】解:(1)由题意得,2a﹣7+a+4=0,解得:a=1,b﹣7=﹣8,解得:b=﹣1;(2)a+b=0,0的算术平方根为0.18.(8分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.【解答】证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.19.(9分)如图:BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H.∠GFH+∠BHC=180°,求证:∠1=∠2.【解答】证明:∵∠BHC=∠FHD,∠GFH+∠BHC=180°,∴∠GFH+∠FHD=180°,∴FG∥BD,∴∠1=∠ABD,∵BD平分∠ABC,∴∠2=∠ABD,∴∠1=∠2.20.(10分)已知如图:AD∥BC,E、F分别在DC、AB延长线上.∠DCB=∠DAB,AE⊥EF,∠DEA=30°.(1)求证:DC∥AB.(2)求∠AFE的大小.【解答】证明:(1)∵AD∥BC,∴∠ABC+∠DAB=180°,∵∠DCB=∠DAB,∴∠ABC+∠DCB=180°,∴DC∥AB;(2)解:∵DC∥AB,∠DEA=30°,∴∠EAF=∠DEA=30°,∵AE⊥EF,∴∠AEF=90°,∴∠AFE=180°﹣∠AEF﹣∠EAF=60°.21.(10分)已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD:∠DOE=4:1.求∠AOF的度数.【解答】解:∵OE平分∠BOD,∴∠DOE=∠EOB,又∵∠AOD:∠DOE=4:1,∴∠DOE=30°,∴∠COB=120°,又∵OF平分∠COB,∴∠COF=60°,又∵∠AOC=∠DOE+∠EOB=60°,∴∠AOF=∠COF+∠AOC,=60°+60°,=120°.22.(10分)在网格上,平移△ABC,并将△ABC的一个顶点A平移到点D处,(1)请你作出平移后的图形△DEF;(2)请求出△DEF的面积.【解答】解:(1)如图所示;=3×4﹣×2×4﹣×2×3﹣×2×1(2)由图可知,S△DEF=12﹣4﹣3﹣1=4.。
2016-2017学年重庆市巫溪中学七年级(上)第一次月考数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.在﹣4,﹣2,0,3这四个数中,最小的数是()A.0 B.﹣4 C.﹣2 D.32.﹣3的相反数是()A.3 B.﹣3 C.D.3.把8﹣(+4)+(﹣6)﹣(﹣5)写成省略加号的和的形式是()A.8﹣4﹣6+5 B.8﹣4﹣6﹣5 C.8+(﹣4)+(﹣6)+5 D.8+4﹣6﹣54.巫溪县某天的最高气温为10℃,最低气温为﹣3℃,则这一天的最高气温比最低气温高()A.7℃B.﹣7℃C.13℃ D.﹣13℃5.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到千分位)C.0.05(精确到百分位)D.0.0502(精确到0.0001)6.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×10107.某饮料公司生产的一种瓶装饮料,外包装上印有“mL”的字样,下列产品不合格的是()A.610 mL B.599 mL C.585 mL D.600 mL8.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的是()A.5 B.﹣1C.5或﹣1 D.以上答案都不对9.有下列五个算式:①﹣+=﹣(+)=﹣1;②﹣7﹣2×5=﹣9×5=﹣45;③﹣5÷+7=﹣10+7=﹣3;④﹣62﹣(3﹣7)2﹣2×(﹣1)3﹣|﹣2|=20 ⑤3÷×=3÷1=3.其中,正确的有()A.0 个 B.1 个 C.2个D.3个10.|x|=2,y2=16,xy<0,则x﹣y的值为()A.6 B.﹣6 C.6或﹣6 D.2或﹣211.1m长的木棒,第1次截去一半,第2次截去剩下的一半,如此下去,第6次截后剩下的木棒长为()A.B.C.D.12.对于有理数a、b,如果ab<0,a+b<0.则下列各式成立的是()A.a<0,b<0 B.a>0,b<0且|b|<a C.a<0,b>0且|a|<b D.a>0,b<0且|b|>a二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上)13.﹣2016的绝对值是.14.的倒数是.15.已知|a﹣3|与|b+4|互为相反数,则ba=.16.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则+=(直接写出答案).17.观察下面的图形,它们是按照一定的规律排列的,按照此规律,第个图形共有120个五角星.18.有理数a,b在数轴上的位置如图所示:在下列结论中:①ab<0;②a+b>0;③a3>b2;④(a﹣b)3<0;⑤a<﹣b<b<﹣a;⑥|b﹣a|﹣|a|=b;正确的结论有(只填序号).三、解答题(本大题共8小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算下列各题(1)23+(+76)+(﹣36)+(﹣23)(2)﹣|﹣|﹣(﹣2)+(﹣)(3)(﹣3)×(﹣5)+4﹣8÷(﹣2)(4)﹣10+8÷(﹣2)3﹣(﹣1)2×(﹣3)20.计算题(1)(﹣0.125)20×821+(﹣+)×(﹣24)(2)[﹣14﹣(1﹣0.5)××[﹣(﹣2)2].21.把下列各数填在相应的表示集合的大括号里:618,﹣3.14,﹣4,﹣,|﹣|,6%,0,+32(1)正数:{ }(2)非正整数:{ }(3)负分数:{ }.22.x与y互为相反数,m与n互为倒数,|a|=1,求a2﹣(x+y)2019+(﹣mn)2016的值.23.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A地出发到收工时,一天行驶记录如下(单位:千米):+14,﹣2,+6,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6(1)收工时,检修小组在A地的哪一边,距A地多远?(2)距A地最远的是哪一次?(3)若汽车每千米耗油0.1升,求出发到收工时共耗油多少升?24.一天小明和冬冬利用温差来测量山峰的高度.冬冬在山脚测得的温度10℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?25.读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为n,这里“”是求和符号,例如“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为又如“13+23+33+43+53+63+73+83+93+103”可表示为,同学们,通过以上材料的阅读,请解答下列问题:(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为;(2)求n的值(3)求的值.26.已知数轴上两点A、B对应的数分别为﹣2,4,点P为数轴上一动点,其对应的数为x (1)若点P到点A、点B的距离相等,求点P对应的数(2)数轴上是否存在点P,使点P到点A、点B的距离之和为7?若存在,请直接写出x 的值.若不存在,请说明理由?(3)若点P以1个单位/s的速度从点O向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.2016-2017学年重庆市巫溪中学七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.在﹣4,﹣2,0,3这四个数中,最小的数是()A.0 B.﹣4 C.﹣2 D.3【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,正数大于负数进行比较即可.【解答】解:根据有理数比较大小的方法,可得﹣4<﹣2<0<3,∴在﹣4,﹣2,0,3这四个数中最小的数是﹣4.故选:B.2.﹣3的相反数是()A.3 B.﹣3 C. D.【考点】相反数.【分析】由相反数的定义容易得出结果.【解答】解:﹣3的相反数是3,故选:A.3.把8﹣(+4)+(﹣6)﹣(﹣5)写成省略加号的和的形式是()A.8﹣4﹣6+5 B.8﹣4﹣6﹣5 C.8+(﹣4)+(﹣6)+5 D.8+4﹣6﹣5【考点】有理数的加减混合运算.【分析】直接利用去括号法则化简进而得出答案.【解答】解:8﹣(+4)+(﹣6)﹣(﹣5)=8﹣4﹣6+5.故选:A.4.巫溪县某天的最高气温为10℃,最低气温为﹣3℃,则这一天的最高气温比最低气温高()A.7℃B.﹣7℃C.13℃ D.﹣13℃【考点】有理数的减法.【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:10﹣(﹣3),=10+3,=13℃.故选C.5.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到千分位)C.0.05(精确到百分位)D.0.0502(精确到0.0001)【考点】近似数和有效数字.【分析】根据近似数的精确度把0.05019精确到0.1得到0.1,精确度千分位得0.050,精确到百分位得0.05,精确到0.0001得0.0502,然后依次进行判断.【解答】解:A、0.05019≈0.1(精确到0.1),所以A选项正确;B、0.05019≈0.050(精确到千分位),所以B选项错误;C、0.05019≈0.05(精确到百分位),所以C选项正确;D、0.05019≈0.0502(精确到0.0001),所以D选项正确.故选:B.6.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于350 000 000有9位,所以可以确定n=9﹣1=8.【解答】解:350 000 000=3.5×108.故选:B.7.某饮料公司生产的一种瓶装饮料,外包装上印有“mL”的字样,下列产品不合格的是()A.610 mL B.599 mL C.585 mL D.600 mL【考点】正数和负数.【分析】根据有理数的加法,可得合格范围,根据合格范围,可得答案.【解答】解:由题意,得合格范围是590~610ml,599,610,600在合格范围内,585不在合格范围内,故选:C.8.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的是()A.5 B.﹣1C.5或﹣1 D.以上答案都不对【考点】数轴.【分析】点A所表示的数为2,到点A的距离等于3个单位长度的点所表示的数有两个,分别位于点A的两侧,分别是﹣1和5.【解答】解:2﹣3=﹣1,2+3=5,则A表示的数是:﹣1或5.故选C.9.有下列五个算式:①﹣+=﹣(+)=﹣1;②﹣7﹣2×5=﹣9×5=﹣45;③﹣5÷+7=﹣10+7=﹣3;④﹣62﹣(3﹣7)2﹣2×(﹣1)3﹣|﹣2|=20 ⑤3÷×=3÷1=3.其中,正确的有()A.0 个 B.1 个 C.2个D.3个【考点】有理数的混合运算.【分析】根据有理数的混合运算可以计算出题目中各个式子是否正确,从而可以解答本题.【解答】解:∵﹣+=﹣(﹣)=﹣,故①错误;∵﹣7﹣2×5=﹣7﹣10=﹣17,故②错误;∵﹣5÷+7=﹣5×2+7=﹣10+7=﹣3,故③正确;∵﹣62﹣(3﹣7)2﹣2×(﹣1)3﹣|﹣2|=﹣36﹣16﹣2×(﹣1)﹣2=﹣52,故④错误;∵3÷×==,故⑤错误;故选B.10.|x|=2,y2=16,xy<0,则x﹣y的值为()A.6 B.﹣6 C.6或﹣6 D.2或﹣2【考点】有理数的乘方;绝对值;有理数的减法;有理数的乘法.【分析】根据绝对值的性质、乘方法则求出x、y的值,根据题意计算即可.【解答】解:∵|x|=2,y2=16,∴x=±2,y=±4,∵xy<0,∴x=2,y=﹣4或x=﹣2,y=4,则x﹣y=6或﹣6,故选:C.11.1m长的木棒,第1次截去一半,第2次截去剩下的一半,如此下去,第6次截后剩下的木棒长为()A.B. C. D.【考点】有理数的乘方.【分析】根据有理数的乘方的定义解答.【解答】解:第1次截去一半,剩下的木棒长m,第2次截去一半,剩下的木棒长×m=m,第3次截去一半,剩下的木棒长×m=m,第4次截去一半,剩下的木棒长×m=m,第5次截去一半,剩下的木棒长×m=m,第6次截去一半,剩下的木棒长×m=m.故选C.12.对于有理数a、b,如果ab<0,a+b<0.则下列各式成立的是()A.a<0,b<0 B.a>0,b<0且|b|<a C.a<0,b>0且|a|<b D.a>0,b<0且|b|>a【考点】有理数的乘法;有理数的加法.【分析】根据有理数的乘法法则,由ab<0,得a,b异号;根据有理数的加法法则,由a+b <0,得a、b同负或异号,且负数的绝对值较大,综合两者,得出结论.【解答】解:∵ab<0,∴a,b异号.∵a+b<0,∴a、b同负或异号,且负数的绝对值较大.综上所述,知a、b异号,且负数的绝对值较大.故选D.二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上)13.﹣2016的绝对值是2016.【考点】绝对值.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:解:﹣2016的绝对值是|﹣2016|=2016,故答案为:2016.14.的倒数是﹣.【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:的倒数是﹣,故答案为:﹣.15.已知|a﹣3|与|b+4|互为相反数,则ba=﹣12.【考点】非负数的性质:绝对值.【分析】根据相反数的概念列出算式,根据非负数的性质求出a、b的值,计算即可.【解答】解:由题意得,|a﹣3|+|b+4|=0,则a﹣3=0,b+4=0,解得,a=3,b=﹣4,则ba=﹣12,故答案为:﹣12.16.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则+=0(直接写出答案).【考点】有理数的加减混合运算.【分析】根据题中的新定义化简,计算即可得到结果.【解答】解:根据题意得:1﹣2+3+4+6﹣5﹣7=0.故答案为:0.17.观察下面的图形,它们是按照一定的规律排列的,按照此规律,第15个图形共有120个五角星.【考点】规律型:图形的变化类.【分析】观察图形特点,从中找出规律,它们的★数分别是,1,3,6,10,15,…,总结出其规律,根据规律求解.【解答】解:通过观察,得到星的个数分别是,1,3,6,10,15,…,第一个图形为:1×(1+1)÷2=1,第二个图形为:2×(2+1)÷2=3,第三个图形为:3×(3+1)÷2=6,第四个图形为:4×(4+1)÷2=10,…,所以第n个图形为:n(n+1)÷2个星,当n(n+1)÷2=120时,解得n=15.故答案为:15.18.有理数a,b在数轴上的位置如图所示:在下列结论中:①ab<0;②a+b>0;③a3>b2;④(a﹣b)3<0;⑤a<﹣b<b<﹣a;⑥|b﹣a|﹣|a|=b;正确的结论有①④⑤⑥(只填序号).【考点】数轴;有理数的混合运算.【分析】根据a,b在数轴上的位置判断出a<0,b>0,|a|>|b|,再根据有理数的运算法则、绝对值分别对每一项进行判断,即可得出答案.【解答】解:根据数轴可得:a<0,b>0,|a|>|b|,则①ab<0正确;②a+b<0,故本选项错误;③a3<0,b2>0,则a3<b2,故本选项错误;④∵a﹣b<0,∴(a﹣b)3<0,故本选项正确;⑤a<﹣b<b<﹣a,故本选项正确;⑥∵b﹣a>0,a<0,∴|b﹣a|﹣|a|=b﹣a+a=b,故本选项正确;正确的结论有①④⑤⑥;故答案为:①④⑤⑥.三、解答题(本大题共8小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算下列各题(1)23+(+76)+(﹣36)+(﹣23)(2)﹣|﹣|﹣(﹣2)+(﹣)(3)(﹣3)×(﹣5)+4﹣8÷(﹣2)(4)﹣10+8÷(﹣2)3﹣(﹣1)2×(﹣3)【考点】有理数的混合运算;绝对值;有理数的乘方.【分析】(1)去掉括号,再根据有理数的加、减运算求值即可;(2)取消绝对值符号及小括号,再根据有理数的加、减运算求值即可;(3)根据有理数混合运算的运算顺序,先算出乘、除的值,再相加即可得出结论;(4)先算出乘方的值,再有理数混合运算的运算顺序求值即可得出结论.【解答】解:(1)23+(+76)+(﹣36)+(﹣23),=23+76﹣36﹣23,=40;(2)﹣|﹣|﹣(﹣2)+(﹣),=﹣+2﹣,=2;(3)(﹣3)×(﹣5)+4﹣8÷(﹣2),=15+4+4,=23;(4)﹣10+8÷(﹣2)3﹣(﹣1)2×(﹣3),=﹣10+8÷(﹣8)﹣1×(﹣3),=﹣10﹣1+3,=﹣8.20.计算题(1)(﹣0.125)20×821+(﹣+)×(﹣24)(2)[﹣14﹣(1﹣0.5)××[﹣(﹣2)2].【考点】有理数的混合运算.【分析】(1)应用乘法分配律,求出算式的值是多少即可.(2)根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:(1)(﹣0.125)20×821+(﹣+)×(﹣24)=(﹣0.125×8)20×8+×(﹣24)﹣×(﹣24)+×(﹣24)=8﹣18+4﹣9=﹣15(2)[﹣14﹣(1﹣0.5)×]×[﹣(﹣2)2]=[﹣1﹣×]×[﹣4]=[﹣]×[﹣4]=421.把下列各数填在相应的表示集合的大括号里:618,﹣3.14,﹣4,﹣,|﹣|,6%,0,+32(1)正数:{ 618,|﹣|,6%,+32}(2)非正整数:{ ﹣4,0}(3)负分数:{ ﹣3.14,﹣}.【考点】有理数;绝对值.【分析】(1)根据正数的定义可知;(2)非正整数即负整数或0,据此可得;(3)根据负分数的定义知可得.【解答】解:(1)正数:{618,|﹣|,6%,+32}故答案为:618,|﹣|,6%,+32;(2)非正整数:{﹣4,0},故答案为:﹣4,﹣0;(3)负分数:{﹣3.14,﹣},故答案为:﹣3.14,﹣.22.x与y互为相反数,m与n互为倒数,|a|=1,求a2﹣(x+y)2019+(﹣mn)2016的值.【考点】代数式求值.【分析】由题可知:x+y=0,mn=1,a=±1,然后分别代入原式即可求出答案.【解答】解:由题可知:x+y=0,mn=1,a=±1,∴原式=(±1)2﹣0+(﹣1)2016=1﹣0+1=2;23.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A地出发到收工时,一天行驶记录如下(单位:千米):+14,﹣2,+6,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6(1)收工时,检修小组在A地的哪一边,距A地多远?(2)距A地最远的是哪一次?(3)若汽车每千米耗油0.1升,求出发到收工时共耗油多少升?【考点】正数和负数.【分析】(1)根据题目中的数据可以解答本题;(2)根据题目中的数据可以求得每次所在的位置,从而可以解答本题;(3)根据题意可以求得行驶的总路程,从而可以解答本题.【解答】解:(1)14+(﹣2)+6+(﹣1)+10+(﹣3)+(﹣2)+12+4+(﹣5)+6=39,即收工时,检修小组在A地东边,距A地39千米;(2)刚开始为14千米,第二次是14﹣2=12千米,第三次是12+6=18千米,第四次为18﹣1=17千米,第五次为17+10=27千米,第六次为27﹣3=24千米,第七次为24﹣2=22千米,第八次为22+12=34千米,第九次为34+4=38千米,第十次为38﹣5=33千米,第十一次为33+6=39千米,即距A地最远的是第十一次;(3)0.1×(14+2+6+1+10+3+2+12+4+5+6)=0.1×65=6.5(升)即若汽车每千米耗油0.1升,出发到收工时共耗油6.5升.24.一天小明和冬冬利用温差来测量山峰的高度.冬冬在山脚测得的温度10℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?【考点】有理数的混合运算.【分析】根据山脚与山顶的温差结合每升高100米气温下降0.8℃,即可列出算式(10﹣2)÷0.8×100,再根据有理数的混合运算算出结果,此题得解.【解答】解:根据题意可知:(10﹣2)÷0.8×100,=8÷0.8×100,=1000(米).答:这个山峰高1000米.25.读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+…+100”表示为n,这里“”是求和符号,例如“1+3+5+7+9+…+99”(即从1开始的100以内的连续奇数的和)可表示为又如“13+23+33+43+53+63+73+83+93+103”可表示为,同学们,通过以上材料的阅读,请解答下列问题:(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为;(2)求n的值(3)求的值.【考点】规律型:数字的变化类;有理数的混合运算.【分析】(1)2+4+6+8+10+…+100表示从2开始的100以内50个的连续偶数的和,由通项公式为2n,n从1到50的连续偶数的和,根据题中的新定义用求和符号表示即可.(2)(3)根据题中的新定义将原式变形,利用拆项法整理即可得到结果.【解答】解:(1)2+4+6+8+10+…+100=;(2)n=1+2+3+…+10=55;(3)=,故答案为:26.已知数轴上两点A、B对应的数分别为﹣2,4,点P为数轴上一动点,其对应的数为x (1)若点P到点A、点B的距离相等,求点P对应的数(2)数轴上是否存在点P,使点P到点A、点B的距离之和为7?若存在,请直接写出x 的值.若不存在,请说明理由?(3)若点P以1个单位/s的速度从点O向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:的值是否发生变化?请说明理由.【考点】一元一次方程的应用;数轴.【分析】(1)根据点P到两点的距离相等,求出x的值即可;(2)根据点P到点A、点B的距离之和为7,求出x的值即可;(3)根据题意用t表示出AB,OP,MN的长,进而求出答案.【解答】解:(1)若点P到点A,点B的距离相等,则x==1;(2)若点P到点A、点B的距离之和为7,则有|x+2|+|x﹣4|=7,解得:x=4.5或﹣2.5;(3)的值不发生变化.理由:设运动时间为t分钟.则OP=t,OA=5t+2,OB=20t+4,AB=OA+OB=25t+6,AP=OA+OP=6t+2,AM=AP=1+3t,OM=OA﹣AM=5t+2﹣(1+3t)=2t+1,ON=OB=10t+2,∴MN=OM+ON=12t+3,∴==2,∴在运动过程中,M、N分别是AP、OB的中点,的值不发生变化.2017年1月5日。
人教版七年级上册数学《第一次月考》考试(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知(x-2015)2+(x-2017)2=34,则(x-2016)2的值是()A.4 B.8 C.12 D.162.下列各曲线中表示y是x的函数的是()A.B.C.D.3.如图,下列条件中,能判断AB∥CD的是()A.∠FEC=∠EFB B.∠BFC+∠C=180°C.∠BEF=∠EFC D.∠C=∠BFD4.94的值等于()A.32B.32-C.32±D.81165.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣16.有理数m ,n 在数轴上分别对应的点为M ,N ,则下列式子结果为负数的个数是( )①m n +;②m n -;③m n -;④22m n -;⑤33m n .A .2个B .3个C .4个D .5个7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.64的立方根是( )A .4B .±4C .8D .±8 9.若关于x 的不等式mx - n >0的解集是15x <,则关于x 的不等式()m n x n m >-+的解集是( )A .23x >-B .23x <-C .23x <D .23x > 10.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.已知关于x ,y 的二元一次方程组2321x y k x y +=⎧⎨+=-⎩的解互为相反数,则k 的值是_________.3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.若x 2+kx+25是一个完全平方式,则k 的值是__________.5.如果一个角的补角是150°,那么这个角的余角的度数是________度.6.关于x 的分式方程721511x m x x -+=--有增根,则m 的值为__________. 三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)75331x y x y +=⎧⎨+=⎩ (2)()346126x y y x y y ⎧+-=⎪⎨+-=⎪⎩2.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=123.如图,AD 平分∠BAC 交BC 于点D ,点F 在BA 的延长线上,点E 在线段CD 上,EF 与AC 相交于点G ,∠BDA+∠CEG=180°.(1)AD 与EF 平行吗?请说明理由;(2)若点H 在FE 的延长线上,且∠EDH=∠C ,则∠F 与∠H 相等吗,请说明理由.4.已知:如图,直线AB 、CD 相交于点O ,EO ⊥CD 于O .(1)若∠AOC=36°,求∠BOE 的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F (点F与O不重合),然后直接写出∠EOF的度数.5.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1 152 a3 b4 5(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?6.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、C4、A5、D6、B7、B8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±32、-13、0.4、±10.5、606、4.三、解答题(本大题共6小题,共72分)1、(1)52xy=⎧⎨=⎩;(2)2xy=⎧⎨=⎩2、4ab,﹣4.3、略4、(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.5、(1)m的值是50,a的值是10,b的值是20;(2)1150本.6、(1)9万元(2)共有5种进货方案(3)购买A款汽车6辆,B款汽车9辆时对公司更有利。
七年级上学期第一次月考(数学)(考试总分:150 分)一、 单选题 (本题共计13小题,总分58分)1.(4分)点 P (0,3)在( ).A .x 轴的正半轴上B .x 的负半轴上C .y 轴的正半轴上D .y 轴的负半轴上2.(4分)9的算术平方根是 ( )A .±3B .3C .3±D . 3.(4分)2的立方根是( )A .2B .2±C .32D .32± 4.(4分)下列各式中,错误的是A .416±=B .164±=±C .2(4)4-=D .3273-=-5.(4分)己知正方体表面积为24dm 2,则这个正方体的棱长为( )A . 2dmB .6dmC . 2 dmD . 4 dm6.(4分)已知12n -是正整数,则整数n 的最大值为( )A .12B .11C .8D .37.(4分)如图,直线AB 与CD 相交于点O ,∠COE =2∠BOE . 若∠AOC =120°,则∠BOE 等于( )A .15°B .20°C .25°D .30°8.(4分)点 P 的坐标为(3a-2,8-2a ),若点 P 到两坐标轴的距离相等,则 a 的值是( ).A、32或4 B 、-2或6 C 、32或-4 D 、2或-6 9.(4分)如图,能判定AD ∥BC 的条件是( )A .∠3=∠2B .∠1=∠2C .∠B =∠DD .∠B =∠110.(4分)下列命题是真命题的是( )A .若x >y ,则x 2>y 2B .若|a|=|b|,则a=bC .若a >|b|,则a 2>b 2D .若a <1,则a >1a11.(4分)将长方形纸片ABCD 折叠,使D 与B 重合,点C 落在C '处,折痕为EF ,若∠AEB =70°,则∠EFC '的度数是 ( )A.125°B.120°C.115°D.110°12.(4分)如图,△ABC 中,AH ⊥BC ,BF 平分∠ABC ,BE ⊥BF ,EF ∥BC ,以下四个结论:①AH ⊥EF ,②∠ABF=∠EFB ,③AC ∥BE ,④∠E=∠ABE .正确的是( )A .①②③④B .①②C .①③④D .①②④C /A B C D E F13.(10分)(10分)如图,∠1+∠2=180°,∠3=108°,求∠4的度数.二、 双空题 (本题共计1小题,总分4分)14.(4分)计算:2(3)-=___; 3278-=____. 三、 填空题 (本题共计5小题,总分20分)15.(4分)与50最接近的整数是 .16.(4分)一个正数的两个平方根分别为a+3和2a+3,则a= .17.(4分)如图,DE ∥BC ,点A 在直线DE 上,则∠BAC= 度.18.(4分)如图,AB ∥CD ,ED ∥BC .∠A=20°,∠C=120°,则∠AED 的度数是 .19.(4分)如果两个角的两条边分别平行,其中一个角比另一个角的4倍少30°,则这两个角的度数分别为 .四、 计算题 (本题共计1小题,总分10分)20.(10分)(10分)(1)计算:22)(-+25+364-;⑵求下式中x 的值: 4(x-1)2-81=0五、 解答题 (本题共计6小题,总分58分)21.(10分)(10分)(1)若a+7的算术平方根是3,2b+2的立方根是﹣2,求a b 的值.(2)已知:x ﹣2的平方根是±2,2x+y+7的立方根是3,求)(22y x +的算术平方根. 22.(10分)(10分)完成下列推理过程:如图,已知∠A =∠EDF ,∠C =∠F ,求证:BC ∥EF证明:∵∠A =∠EDF ( )∴________∥________( )∴∠C =________( )又∵∠C =∠F (已知)∴_______=∠F (等量代换)∴________∥________( )23.(10分)(10分)如图,已知∠A=∠AGE, ∠D=∠DGC.(1)求证:AB//CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C 的度数.24.(10分)(10分)如图所示,已知ABC 的三个顶点的坐标分别为(2,3)A -、(5,0)B -、V (1,0)C -((1)将ABC 向右平移6个单位长度,写出111A B C 各顶点的坐标;((2)求出四边形11ABB A 的面积;((3)在x 轴上是否存在一点P ,连接PA 、PB ,使PAB S ∆=1211A ABB S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.25.(10分)(10分)已知AM ∥CN ,点B为平面内一点,AB BC ⊥于点B .(1)如图1,直接写出∠A 和∠C 之间的数量关系是______________;(2)如图2,过点B 作BD AM ⊥于点D ,求证:ABD C ∠=∠.26.(8分)如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角尺OCD 沿AB 的方向平移至图②的位置,使得顶点O 与点N 重合,CD 与MN 相交于点E ,求∠CEN 的度数;(2)将图①中三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在∠MON 的内部,如图③,且OD 恰好平分∠MON ,CD 与MN 相交于点E ,求∠CEN 的度数;(3)将图①中三角尺OCD 绕点O 按每秒15°的速度沿顺时针方向旋转一周,在旋转过程中,在第秒时,边CD 恰好与边MN 平行;在第秒时,直线CD 恰好与直线MN 垂直.y xC B A O答案一、单选题(本题共计13小题,总分58分)1.(4分) C2.(4分)B3.(4分)C4.(4分)A5.(4分)C6.(4分)B7.(4分) B8.(4分)D9.(4分)D10.(4分)C11.(4分)A12.(4分)D13.(10分)解:∵∠1+∠2=180°,∴a∥b,…………(3分)∴∠3+∠5=180°,…………(6分)∵∠3=108°,∴∠5=180°﹣108°=72°,∴∠4=72°,…………(10分) 二、双空题(本题共计1小题,总分4分)14.(4分)3、2 3三、填空题(本题共计5小题,总分20分)15.(4分)716.(4分)-217.(4分)4618.(4分)80°19.(4分) 10°,10°或42°, 138°四、计算题(本题共计1小题,总分10分)20.(10分)(1)解:原式25(4)=++-………(3分)3=………(5分)(2)解:4(x-1)2-81=04(x-1)2=81 (6分)(x-1)2=481(8分) x-1=29或x-1=-29(9分) X=211或x=-27(10分)五、 解答题 (本题共计6小题,总分58分)21.(10分)(1)解:由题意得:a+7=9,2b+2=﹣8,…………(2分)∴a=2,b=-5,∴b a =(﹣5)2=25. …………(5分)(2)解:∵x ﹣2的平方根是±2,∴x ﹣2=4,∴x=6,∵2x+y+7的立方根是3∴2x+y+7=27 …………(8分)把x 的值代入解得:y=8,∴x 2+y 2=100,100的算术平方根为10. …………(10分)22.(10分)证明:∵∠A =∠EDF (已知)∴___AC _____∥__DF ______( 同位角相等,两直线平行 )∴∠C =__∠CGF ______( 两直线平行,内错角相等 )又∵∠C =∠F (已知)∴∠CGF =∠F (等量代换)∴____CB ____∥___FE _____( 内错角相等,两直线平行 )(有其他合理答案也可)(每空1分,共10分)23.(10分)证明:(1)∵∠A =∠AGE ,∠D =∠DGC又∵∠AGE =∠DGC …………(1分)∴∠A =∠D …………(2分)∴AB ∥CD …………(4分)(2) ∵∠1+∠2 =180°又∵∠CGD +∠2=180°∴∠CGD =∠1∴CE ∥FB …………(5分)∴∠C =∠BFD ,∠CEB +∠B =180°…………(6分)又∵∠BEC =2∠B +30°∴2∠B +30°+∠B =180°∴∠B =50°…………(8分)又∵AB ∥CD∴∠B =∠BFD∴∠C =∠BFD =∠B =50°…………(10分)24.(10分)解:(1)A 1(4,3) B 1(1,0) C 1(5,0)(3分)(2)S 四边形ABB1A1=18(6分) (3) P (-11,0)或(1,0)(10分)25.(10分)(1) ------3分(2)如图2,,090D ∴∠=------4分过点B 作,0180D DBG ∴∠+∠=090DBG ∴∠=即, ------7分又,, ,------8分,, ∴BG ∥CN ------9分,.-----10分 26.(8分)【答案】(1)105°;(2)150°;(3)5或17;11或23.【解析】(1)在CEN ∆中,180CEN DCN MNO ∠=︒-∠-∠1804530=︒-︒-︒105=︒;(2)OD 平分MON ∠,11904522DON MPN ∴∠=∠=⨯︒=︒, 45DON D ∴∠=∠=︒,//CD AB ∴,180********CEN MNO ∴∠=︒-∠=︒-︒=︒;(3)如图1,CD 在AB 上方时,设OM 与CD 相交于F , //CD MN ,60OFD M ∴∠=∠=︒,在ODF ∆中,180MOD D OFD ∠=︒-∠-∠,1804560=︒-︒-︒,75=︒,∴旋转角为75︒,75155t =︒÷︒=秒;CD 在AB 的下方时,设直线OM 与CD 相交于F ,//CD MN ,60DFO M ∴∠=∠=︒,在DOF ∆中,180180456075DOF D DFO ∠=︒-∠-∠=︒-︒-︒=︒, ∴旋转角为75180255︒+︒=︒,2551517t =︒÷︒=秒;综上所述,第5或17秒时,边CD 恰好与边MN 平行; 如图2,CD 在OM 的右边时,设CD 与AB 相交于G , CD MN ⊥,90903060NGC MNO ∴∠=︒-∠=︒-︒=︒,604515CON NGC OCD ∴∠=∠-∠=︒-︒=︒,∴旋转角为180********CON ︒-∠=︒-︒=︒,1651511t =︒÷︒=秒,CD 在OM 的左边时,设CD 与AB 相交于G ,CD MN ⊥,90903060NGD MNO ∴∠=︒-∠=︒-︒=︒,604515AOC NGD C ∴∠=∠-∠=︒-︒=︒,∴旋转角为36036015345AOC ︒-∠=︒-︒=︒,3451523t =︒÷︒=秒,综上所述,第11或23秒时,直线CD 恰好与直线MN 垂直. 故答案为:5或17;11或23.。
2016-2017学年黑龙江省大庆市杜蒙县七年级(上)第一次月考数学试卷一.选择题(此题共10个小题,每题3分,共30分)1.代数式﹣x3+2x+24是()A.多项式B.三次多项式C.三次三项式D.四次三项式2.以下计算结果正确的选项是()A.﹣2x2y3•2xy=﹣2x3y4B.3x2y﹣5xy2=﹣2x2yC.28x4y2÷7x3y=4xy D.(﹣3a﹣2)(3a﹣2)=9a2﹣43.以下算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.C.(3x﹣y)(﹣3x+y)D.(﹣a﹣b)(﹣a+b)4.(p﹣q)4÷(q﹣p)3=()A.p﹣q B.﹣p﹣q C.q﹣p D.p+q5.若是一个角的两边别离平行于另一个角的两边,那么这两个角()A.相等 B.互补C.相等或互补D.以上结论都不对6.如图,若是∠AFE+∠FED=180°,那么()A.AC∥DE B.AB∥FE C.ED⊥AB D.EF⊥AC7.以下说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是()A.①B.②和③C.④D.①和④8.已知3a=5,9b=10,那么3a+2b=()A.﹣50 B.50 C.500 D.以上都不对9.若是(x﹣2)(x+3)=x2+mx+n,那么m,n的值别离是()A.5,6 B.1,﹣6 C.﹣1,6 D.5,﹣610.一个正方形的边长增加3cm,它的面积就增加了39cm2,那个正方形的边长为()A.5cm B.6cm C.8cm D.10cm二.填空题(此题共10个小题,每题3分,共30分)11.单项式的系数是,次数是.12.计算(2+x)(2﹣x)= ,(﹣a﹣b)2= .13.5k﹣3=1,那么k﹣2= .14.若是a2﹣ma+36是一个完全平方式,那么m的值.15.用科学记数法表示:= ,﹣00= .16.如图,假设l1∥l2,∠1=45°,那么∠2= 度.17.若是x+y=6,xy=7,那么x2+y2= .18.如图,DAE是一条直线,DE∥BC,那么∠BAC= 度.19.如图,已知l1∥l2,∠1=40°,∠2=55°,那么∠3= 度,∠4= 度.20.一个角的余角和那个角的补角也互为补角,那么那个角的度数等于.三、解答题:(本大题共9小题,共60分)21.(1)a2bc3•(﹣2a2b2c)2(2)(x+1)2﹣(3+x)(x﹣3)(3)(54x2y﹣108xy2﹣36xy)÷(18xy)(4)a2•a3﹣2a7÷a2(5)(x﹣y)(x+y)(x2﹣y2)(6)(a﹣2b+3c)2﹣(a+2b﹣3c)2.22.化简并求值(2a+3b)(2a﹣3b)+(a﹣3b)2,其中a=﹣5,b=.23.已知m﹣=2,求m2+的值.24.推理填空:已知:如图AB⊥BC于B,CD⊥BC于C,∠1=∠2,求证:BE∥CF.证明:∵AB⊥BC于B,CO⊥BC于C (已知)∴∠1+∠3=90°,∠2+∠4=90°∴∠1与∠3互余,∠2与∠4互余又∵∠1=∠2 (),∴= ()∴BE∥CF ().25.已知x2+2x+y2﹣4y+5=0,求代数式y x的值.26.如图,已知AF平分∠BAC,DE平分∠BDF,且∠1=∠2,能判定DF∥AC吗?请说明理由?27.如图,∠CAB=100°,∠ABF=130°,AC∥MD,BF∥ME,求∠DME的度数.28.如图,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.求证:(1)AB∥CD;(2)∠2+∠3=90°.29.如图1所示,边长为a的大正方形中有一个边长为b的小正方形,如图2是由图1中阴影部份拼成的一个长方形.(1)请你别离表示出这两个图形中阴影部份的面积:,;(2)请问以上结果能够验证哪个乘法公式?;(3)试利用那个公式计算:①(2m+n﹣p)(2m﹣n+p)②③(2+1)(22+1)(24+1)(28+1)+1.2016-2017学年黑龙江省大庆市杜蒙县七年级(上)第一次月考数学试卷(五四学制)参考答案与试题解析一.选择题(此题共10个小题,每题3分,共30分)1.代数式﹣x3+2x+24是()A.多项式B.三次多项式C.三次三项式D.四次三项式【考点】多项式.【分析】多项式中的每一个单项式叫做多项式的项,有几个单项式即是几项式,由此判定﹣x3+2x+24有三项,是三项式;一个多项式里次数最高项的次数,叫做那个多项式的次数,由于﹣x3是最高次项,由此得出﹣x3+2x+24的次数是3.【解答】解:代数式﹣x3+2x+24是﹣x3、2x、24这三项的和,其中﹣x3是最高次项,∴﹣x3+2x+24是三次三项式.应选C.2.以下计算结果正确的选项是()A.﹣2x2y3•2xy=﹣2x3y4B.3x2y﹣5xy2=﹣2x2yC.28x4y2÷7x3y=4xy D.(﹣3a﹣2)(3a﹣2)=9a2﹣4【考点】整式的混合运算.【分析】利用整式的乘法公式和同底数幂的乘方式那么别离计算即可判定.【解答】解:A、﹣2x2y3•2xy=﹣4x3y4,因此A选项错误;B、两个整式不是同类项,不能归并,因此B选项错误;C、28x4y2÷7x3y=4xy,因此C选项正确;D、(﹣3a﹣2)(3a﹣2)=﹣(3a+2)(3a﹣2)=﹣9a2+4,因此,D选项错误;应选C.3.以下算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.C.(3x﹣y)(﹣3x+y)D.(﹣a﹣b)(﹣a+b)【考点】平方差公式.【分析】利用平方差公式的结果特点判定即可取得结果.【解答】解:(﹣a﹣b)(﹣a+b)=(﹣a)2﹣b2=a2﹣b2.应选D.4.(p﹣q)4÷(q﹣p)3=()A.p﹣q B.﹣p﹣q C.q﹣p D.p+q【考点】同底数幂的除法.【分析】先把原式化为同底数幂的除法,然后依照同底数幂的除法,底数不变指数相减来计算.【解答】解:原式=(﹣q+p)4÷(q﹣p)3,=(﹣1)4(q﹣p)4÷(q﹣p)3,=q﹣p.应选C.5.若是一个角的两边别离平行于另一个角的两边,那么这两个角()A.相等 B.互补C.相等或互补D.以上结论都不对【考点】平行线的性质.【分析】此题要正确画出图形,依照平行线的性质,和邻补角的概念进行分析.【解答】解:如下图,∠1和∠2,∠1和∠3两对角符合条件.依照平行线的性质,取得∠1=∠2.结合邻补角的概念,得∠1+∠3=∠2+∠3=180°.应选C.6.如图,若是∠AFE+∠FED=180°,那么()A.AC∥DE B.AB∥FE C.ED⊥AB D.EF⊥AC【考点】平行线的判定.【分析】∠AFE与∠FED是直线AC、直线DE被直线EF所截形成的同旁内角,又∠AFE+∠FED=180°,从而取得AC∥DE.【解答】解:∵∠AFE+∠FED=180°,∴AC∥DE(同旁内角互补,两直线平行),应选A.7.以下说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是()A.①B.②和③C.④D.①和④【考点】平行线的判定与性质.【分析】先分清平行线的性质和判定,再进行判定:结论是平行,为判定;条件是平行,为性质.【解答】解:①两条直线平行,同旁内角互补,条件是平行,为性质.②同位角相等,两直线平行,结论是平行,为判定.③内错角相等,两直线平行,结论是平行,为判定.④垂直于同一直线的两直线平行,结论是平行,为判定.应选A.8.已知3a=5,9b=10,那么3a+2b=()A.﹣50 B.50 C.500 D.以上都不对【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】依照同底数幂的乘法的性质的逆用,先整理成已知条件的形式,然后代入数据计算即可.【解答】解:∵9b=32b,∴3a+2b,=3a•32b,=5×10,=50.应选B9.若是(x﹣2)(x+3)=x2+mx+n,那么m,n的值别离是()A.5,6 B.1,﹣6 C.﹣1,6 D.5,﹣6【考点】多项式乘多项式.【分析】已知等式左侧利用多项式乘以多项式法那么计算,再依照多项式相等的条件即可求出m与n的值.【解答】解:∵(x﹣2)(x+3)=x2+x﹣6=x2+mx+n,∴m=1,n=﹣6.应选B10.一个正方形的边长增加3cm,它的面积就增加了39cm2,那个正方形的边长为()A.5cm B.6cm C.8cm D.10cm【考点】一元二次方程的应用.【分析】设那个正方形原先的边长为x,那么新的正方形的边长是x+3cm,面积是(x+3)2cm2.依照面积之间的相等关系可列方程,解方程即可求解.【解答】解:设那个正方形原先的边长为x,那么x2+39=(x+3)2解得x=5,应选A.二.填空题(此题共10个小题,每题3分,共30分)11.单项式的系数是﹣,次数是9 .【考点】单项式.【分析】对单项式进行化简后即可求出系数和次数.【解答】解:原式=﹣x6y3,系数为:﹣;次数为:9.故答案为:﹣、912.计算(2+x)(2﹣x)= 4﹣x2,(﹣a﹣b)2= a2+2ab+b2.【考点】平方差公式;完全平方公式.【分析】原式利用平方差公式,完全平方公式化简即可取得结果.【解答】解:原式=4﹣x2;原式=a2+2ab+b2,故答案为:4﹣x2;a2+2ab+b213.5k﹣3=1,那么k﹣2= .【考点】零指数幂;负整数指数幂.【分析】由题意知k﹣3=0,通过解方程求得k的值.【解答】解:依照题意知,k﹣3=0,解得,k=3,那么k﹣2=3﹣2=.故答案是:.14.若是a2﹣ma+36是一个完全平方式,那么m的值±12 .【考点】完全平方式.【分析】利用完全平方公式的结构特点判定即可确信出m的值.【解答】解:∵a2﹣ma+36是一个完全平方式,∴m=±12,故答案为:±1215.用科学记数法表示:= ×10﹣6,﹣00= ﹣×109.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也能够利用科学记数法表示,一样形式为a×10﹣n,与较大数的科学记数法不同的是其所利用的是负指数幂,指数由原数左侧起第一个不为零的数字前面的0的个数所决定.【解答】解:=×10﹣6,﹣00=﹣×109.故答案为:×10﹣6,﹣×109.16.如图,假设l1∥l2,∠1=45°,那么∠2= 135 度.【考点】平行线的性质;对顶角、邻补角.【分析】依照平行线的性质,得∠1的同位角是45°,再依照邻补角的概念,得:∠2=180°﹣45°=135°.【解答】解:∵l1∥l2,∠1=45°,∴∠1的同位角是45°,∴∠2=180°﹣45°=135°.17.若是x+y=6,xy=7,那么x2+y2= 22 .【考点】完全平方公式.【分析】将x+y=6两边平方,利用完全平方公式展开,把xy=7代入即可求出所求式子的值.【解答】解:将x+y=6两边平方得:(x+y)2=x2+y2+2xy=36,把xy=7代入得:x2+y2+14=36,那么x2+y2=22.故答案为:2218.如图,DAE是一条直线,DE∥BC,那么∠BAC= 46 度.【考点】平行线的性质.【分析】此题要紧利用“两直线平行,内错角相等”和角的和差进行计算.【解答】解:∵DE∥BC,∴∠DAC=124°,∴∠BAC=∠DAC﹣∠DAB=124°﹣78°=46°.19.如图,已知l1∥l2,∠1=40°,∠2=55°,那么∠3= 95 度,∠4= 85 度.【考点】三角形的外角性质;平行线的性质.【分析】依照对顶角相等、三角形内角和为180度可求出∠3的邻补角∠5度数,又∠5和∠4为同位角,且两直线平行,即可求解.【解答】解:∠1=∠6=40°,∠2=∠7=55°,∴∠5=180°﹣∠6﹣∠7=85°,∴∠3=180°﹣∠5=95°,又∵l1∥l2,∴∠5=∠4=85°.20.一个角的余角和那个角的补角也互为补角,那么那个角的度数等于45°.【考点】余角和补角.【分析】第一依照余角与补角的概念,设那个角为x°,那么它的余角为(90°﹣x),补角为,再依照题中给出的等量关系列方程即可求解.【解答】解:设那个角的度数为x,那么它的余角为(90°﹣x),补角为,依题意,得(90°﹣x)+=180°解得x=45°.故答案为45°.三、解答题:(本大题共9小题,共60分)21.(1)a2bc3•(﹣2a2b2c)2(2)(x+1)2﹣(3+x)(x﹣3)(3)(54x2y﹣108xy2﹣36xy)÷(18xy)(4)a2•a3﹣2a7÷a2(5)(x﹣y)(x+y)(x2﹣y2)(6)(a﹣2b+3c)2﹣(a+2b﹣3c)2.【考点】整式的混合运算.【分析】(1)先计算乘方,再计算单项式相乘;(2)先计算完全平方和平方差,再去括号归并即可;(3)依照多项式除以单项式法那么即可得;(4)先计算单项式的乘法和除法,再归并可得;(5)先计算平方差,再计算完全平方式;(6)依照平方差公式因式分解,再利用乘法分派律展开即可得.【解答】解:(1)原式=a2bc3•4a4b4c2=2a6b5c5;(2)原式=x2+2x+1﹣(x2﹣9)=x2+2x+1﹣x2+9=2x+10;(3)原式=3x﹣6y﹣2;(4)原式=a5﹣2a5=﹣a5;(5)原式=(x2﹣y2)2=x4﹣2x2y2+y4;(6)原式=(a﹣2b+3c+a+2b﹣3c)(a﹣2b+3c﹣a﹣2b+3c)=2a(﹣4b+6c)=﹣8ab+12ac.22.化简并求值(2a+3b)(2a﹣3b)+(a﹣3b)2,其中a=﹣5,b=.【考点】整式的混合运算—化简求值;平方差公式.【分析】按平方差公式、完全平方公式把势子化简,再代入计算.【解答】解:原式=4a2﹣9b2+a2﹣6ab+9b2=5a2﹣6ab,当时,原式=5×(﹣5)2﹣6×(﹣5)×=125+10=135.23.已知m﹣=2,求m2+的值.【考点】分式的混合运算;完全平方公式.【分析】把已知等式两边平方,利用完全平方公式化简,整理即可求出所求式子的值.【解答】解:把m﹣=2,两边平方得:(m﹣)2=m2+﹣2=4,那么m2+=6.24.推理填空:已知:如图AB⊥BC于B,CD⊥BC于C,∠1=∠2,求证:BE∥CF.证明:∵AB⊥BC于B,CO⊥BC于C (已知)∴∠1+∠3=90°,∠2+∠4=90°∴∠1与∠3互余,∠2与∠4互余又∵∠1=∠2 (已知),∴∠3 = ∠4 (等角的余角相等)∴BE∥CF (内错角相等,两直线平行).【考点】平行线的判定;余角和补角.【分析】先依照垂直的概念得出∠1+∠3=90°,∠2+∠4=90°,再由∠1=∠2可得出∠3=∠4,由此可得出结论.【解答】证明:∵AB⊥BC于B,CO⊥BC于C (已知)∴∠1+∠3=90°,∠2+∠4=90°∴∠1与∠3互余,∠2与∠4互余又∵∠1=∠2 (已知),∴∠3=∠4(等角的余角相等),∴BE∥CF (内错角相等,两直线平行).故答案为:已知;∠3=∠4,等角的余角相等;内错角相等,两直线平行.25.已知x2+2x+y2﹣4y+5=0,求代数式y x的值.【考点】配方式的应用;非负数的性质:偶次方.【分析】依照题目中的式子能够求得x、y的值,从而能够解答此题.【解答】解:∵x2+2x+y2﹣4y+5=0,∴(x+1)2+(y﹣2)2=0,∴x+1=0,y﹣2=0,解得,x=﹣1,y=2,∴.26.如图,已知AF平分∠BAC,DE平分∠BDF,且∠1=∠2,能判定DF∥AC吗?请说明理由?【考点】平行线的判定.【分析】利用角平分线的性质、已知条件“∠1=∠2”、等量代换推知同位角∠BDF=∠BAC.【解答】解:DF∥AC.理由:∵DE平分∠BDF,AF平分∠BAC,∴∠BDF=2∠1,∠BAC=2∠2,又∵∠1=∠2,∴∠BDF=∠BAC,∴DF∥AC.27.如图,∠CAB=100°,∠ABF=130°,AC∥MD,BF∥ME,求∠DME的度数.【考点】平行线的性质.【分析】依照平行线的性质求出∠BMD和∠BME,即可求出答案.【解答】解:∵∠CAB=100°,AC∥MD,∴∠BMD=∠CAB=100°,∵BF∥ME,∠ABF=130°,∴∠BME=180°﹣∠ABF=50°,∴∠DME=∠BMD﹣∠BME=100°﹣50°=50°.28.如图,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.求证:(1)AB∥CD;(2)∠2+∠3=90°.【考点】平行线的判定与性质.【分析】(1)第一依照角平分线的概念可得∠ABD=2∠1,∠BDC=2∠2,依照等量代换可得∠ABD+∠BDC=2∠1+2∠2=2(∠1+∠2),进而取得∠ABD+∠BDC=180°,然后依照同旁内角互补两直线平行可得答案;(2)先依照三角形内角和定理得出∠BED=90°,再依照三角形外角的性质得出∠EDF+∠3=90°,由角平分线的概念可知∠2=∠EDF,代入取得∠2+∠3=90°.【解答】证明:(1)∵DE平分∠BDC(已知),∴∠ABD=2∠1(角平分线的性质).∵BE平分∠ABD(已知),∴∠BDC=2∠2(角的平分线的概念).∴∠ABD+∠BDC=2∠1+2∠2=2(∠1+∠2)(等量代换).∵∠1+∠2=90°(已知),∴∠ABD+∠BDC=180°(等式的性质).∴AB∥CD(同旁内角互补两直线平行).(2)∵∠1+∠2=90°,∴∠BED=180°﹣(∠1+∠2)=90°,∴∠BED=∠EDF+∠3=90°,∵∠2=∠EDF,∴∠2+∠3=90°.29.如图1所示,边长为a的大正方形中有一个边长为b的小正方形,如图2是由图1中阴影部份拼成的一个长方形.(1)请你别离表示出这两个图形中阴影部份的面积:a2﹣b2,(a+b)(a﹣b);(2)请问以上结果能够验证哪个乘法公式?a2﹣b2=(a+b)(a﹣b);(3)试利用那个公式计算:①(2m+n﹣p)(2m﹣n+p)②③(2+1)(22+1)(24+1)(28+1)+1.【考点】平方差公式的几何背景.【分析】(1)别离依照面积公式进行计算;(2)依照图1的面积=图2的面积列式;(3)①把后两项看成一个整体,利用平方差公式进行计算;②把分母利用平方差公式分解因式,再计算并约分得5;③添一项2﹣1后,与第一个括号里的数组成平方差公式,依次如此计算可得结果.【解答】解:(1)原阴影面积=a2﹣b2,拼剪后的阴影面积=(a+b)(a﹣b),故答案为:a2﹣b2,(a+b)(a﹣b);(2)验证的公式为:a2﹣b2=(a+b)(a﹣b);故答案为:a2﹣b2=(a+b)(a﹣b);(3)①(2m+n﹣p)(2m﹣n+p),=[2m+(n﹣p)][2m﹣(n﹣p)],=(2m)2﹣(n﹣p)2,=4m2﹣n2+2np﹣p2;②====5;③(2+1)(22+1)(24+1)(28+1)+1,=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1,=(22﹣1)(22+1)(24+1)(28+1)+1,=(24﹣1)(24+1)(28+1)+1,=(28﹣1)(28+1)+1,=+1,=+1,=264﹣1+1,=264.。
七年级上册数学第一次月考试卷(10月)一、选择题:(本大题共8小题,每小题2分,共16分.)1.中秋节来临,千家惠超市出售的三种品牌月饼包装盒上,分别标有质量为(500±5)g ,(500±10)g ,(500±20)g 的字样,从中任意拿出两袋,它们的质量最多..相差( ). A .10 g B .20 g C .30 g D .40 g2.下列说法,正确的有( ).(1)整数和分数统称为有理数;(2)任何有理数都有倒数; (3)一个数的绝对值一定为正数;(4)立方等于本身的数是1和-1. A .1个 B .2个 C .3个 D .4个 3.下列几对数中,互为相反数的是( ).A .5--和﹣5B .31和﹣3C .π和﹣3.14D .43和﹣0.754.下列算式中,运算结果为负数的是( ).A .﹣(﹣3)B .﹣32C .(﹣3)2D . |﹣3|5.把(+3)﹣(+5)﹣(﹣1)+(﹣7)写成省略括号的和的形式是( ). A .﹣3﹣5+1﹣7 B .3﹣5﹣1﹣7 C .3﹣5+1﹣7 D .3+5+1﹣7 6.若|a|=﹣a ,则a 一定是( ). A .非正数B .非负数C .正数D .负数7.下列各组数中,数值相等的是( ).A .23和32B .﹣22和(﹣2)2C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×22 8.如果|x ﹣3|+|y+1|=0,那么x ﹣y 等于( ). A .﹣4 B .4C .2D .﹣2二、填空题:(本大题共10小题,每小题2分,共20分.)9.如果收入800元记作+800元,那么支出500元记作 元. 10.比﹣3大2的数是 ,﹣1.5倒数是 .11.数轴上点A 对应的数为﹣2,与点A 相距5个单位长度的点所对应的数为 .12.哈尔滨某天最低气温为﹣2℃,最高气温9℃,那么哈尔滨当天的日温差是 ℃.13.2016年,东台市以“四大核心景区、四个重要节点、五个乡村旅游工程”为重点,接待中外游客3426000人次,实现旅游业总收入37.3亿元.其中,“3426000”用科学记数法可表示为 .14. 的绝对值等于4,平方得25的数是 .15.比较大小:⎪⎭⎫ ⎝⎛+-32 43-,21.0- 10009-.(填“<”、“=”或“>”). 16.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a-b+c= . 17.如图所示是计算机某计算程序,若开始输入x=﹣3,则最后输出的结果是 .18.一组数:1,﹣2,3,﹣4,5,﹣6,…,-2016,2017,这组数的和等于 . 三、解答题:(本大题有8小题,共64分.)19.(本题满分4分)将下列各数填入相应的集合内:3.1415926,﹣2.1,|﹣213|, 0,3π, -2.626626662…,1311-,60.0 . 正数集合:{ …} 负数集合:{ …} 有理数集合:{ …} 无理数集合:{ …}. 20.(本题满分6分)将下列各数在数轴上表示出来,并把它们用“<”连接起来.﹣|﹣2.5|,414,﹣(﹣1)100,﹣22,⎪⎭⎫ ⎝⎛--21,3.21.计算:(每小题4分,共24分,本题分值较大,同学们可要认真计算哦.................!) (1) ﹣7﹣1 (2) ()()()()171153--+--+-(3) ⎪⎭⎫ ⎝⎛+-÷31216 (4) ()24433121-⨯⎪⎭⎫⎝⎛+--(5) ()9181799-⨯ (6) ()[]222018238311-+-÷⎪⎭⎫ ⎝⎛---22.(本题满分4分)若|a|=7,|b|=3,求a+b 的值.23.(本题满分6分)定义一种新运算:a ⊕b=a ﹣b+ab . (1)求(-2)⊕(-3)的值; (2)求5⊕[1⊕(-2)]的值.24.(本题满分6分)检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A 地出发,到收工时,行走记录为(单位:千米):+8,﹣9,+4,+7,﹣2,﹣10,+18,﹣3,+7,+4.回答下列问题:(1)收工地点在A 地的哪个方向?距A 地多少千米?(2)若每千米耗油0.3升,那么从A 地出发到收工地点,共耗油多少升?25.(本题满分6分)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示5和1的两点之间的距离是;表示﹣3和4两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+2|=3,那么x= ;(3)若|a﹣3|=1,|b+2|=5,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣5与2之间,则|a+5|+|a﹣2|= .26.(本题满分8分)观察下列等式:第1个等式:a==(1﹣)1==(﹣)第2个等式:a2==(﹣)第3个等式:a3==(﹣)第4个等式:a4……请回答下列问题:= = (1)按上述等式的规律,列出第5个等式:a5(2)用含n的式子表示第n个等式:a= =n(3)求a1+a2+a3+a4+…+a2017的值.参考答案一、选择题(每小题2分,共16分.)D A D B C A C B 二、填空(每小题2分,共20分.)9.-500 10.-1;32-11.-7或3 12.11 13.610426.3⨯ 14.4±;5± 15.> ;< 16.2 17.-9 18.1009三、解答题(4+6+24+4+6+6+6+8,共64分) 19.(每空1分,共4分)正数集合:3.1415926,|﹣213|, 3π, 60.0 . 负数集合:﹣2.1, -2.626626662…,1311-有理数集合:3.1415926,﹣2.1,|﹣213|, 0, 1311-,60.0 . 无理数集合:3π, -2.626626662…20.(在数轴上表示各数4分,小于号连接2分)﹣22 < ﹣|﹣2.5| < ﹣(﹣1)100 < ⎪⎭⎫⎝⎛--21 < 3 <41421.(1)-8 (2)-2 (3)-36 (4)2 (5) 2119- (6) 87-22.±10, ±4 23.(1)7 (2)9 24.(1)东 24千米 (2) 21.6升 25.(1)4;7 (2)-5或1 (3)11;1 (4)7 26. (1)1191⨯ ⎪⎭⎫ ⎝⎛-1119121(2)()()12121+-n n ⎪⎭⎫ ⎝⎛+--12112121n n(3) 40352017附赠材料:怎样提高做题效率做题有方,考试才能游刃有余提到考试,映入我眼帘的就是一大批同学在题海里埋头苦干的情景。
七年级上第一月考数学试卷
一、选择题(每小题2分,共12分)
1.-2的倒数是( )
A. -21 B .-2 C. 2
1 D.
2 2.有一种记分方法:以80分为基准,85分记为+5,某同学得77分应记为( )
A.+3 B .-3 C.+7 D .-7
3.已知A 地的海拔高度为-53米,而B 地比A 地高30米,则此时B 地的海拔高度为( )
A .-83
B .-23 C.30 D.23
4.在数轴上,与表示-1的点的距离是2的点表示的数是( )
A.1
B.3
C. ±2
D.1或-3
5.下列各式中,正确的是( ) A. 3
2->43- B .-4>0 C .-3<-6 D. 3+-<3-- 6.下表是某水库一周内水位高低的变化情况(用正数记水位比前一日上升数,用负数记下降数)那么本周星期几水位最低?
A.星期一
B.星期四
C.星期六
D.星期五
二、填空题(每小题3分,共24分)
7. 比-5大3.
8.有下列各数:0.003,10,-6.6,3
1-,0,-80,-(-3),2--,4-,其中属于非负整数的共有 个.
9.若-x 的相反数是-5.7,则x = .
10.若053=+++y x ,则x +y = .
11.从数轴上表示-1的点开始,向右移动6个单位长度,再向左移动5个单位长度,那么此时到达的终点所表示的数是 .
12.在数-5,1,-3,5,-2中任意三个数相乘,其中最大的积为 .
13.一天早晨的气温是-8℃,中午上升了12℃,午夜又下降中10℃,午夜的气温是 ℃.
14.被除数是2
13-,除数比被除数小211,则商为 . 三、解答题(每小题5分,共20分)
15.计算:⎪⎭
⎫ ⎝⎛
++⎪⎭⎫ ⎝⎛-312314
16.计算:⎪⎭⎫ ⎝⎛-+-
⨯-41322136.
17.计算:
451132131511÷⨯⎪⎭⎫ ⎝⎛-⨯.
18.计算:()4313133.0121-÷⎪⎭
⎫ ⎝⎛+⨯+.
四.解答题(每小题7分,共28分)
19.将下列各数填入相应的大括号内.
-0.01,212,0,-(-4),80%,⎪⎭
⎫ ⎝⎛+-23
正数 …
正整数 …
负分数 …
20.煤矿井下A 、B 、C 、D 四处的标高分别是:
A :-97.4m ,
B :-159.8m ,
C :-136.5m ,
D :-71.3m .
请用“<”将它们连接起来.
21.观察下列解题过程. 计算:⎪⎭
⎫ ⎝⎛--÷⎪⎭⎫ ⎝⎛-1278743187. 解:原式=12787878743187÷⎪⎭⎫ ⎝⎛--÷⎪⎭⎫ ⎝⎛--÷⎪⎭⎫ ⎝⎛-=7
128778877487⨯⎪⎭⎫ ⎝⎛--⨯⎪⎭⎫ ⎝⎛--⨯⎪⎭⎫ ⎝⎛- =223121=++-
你认为以上解题是否正确,若不正确,请写出正确的解题过程.
22.已知3=m ,2=n ,且n
m <0,求式子3m -2n 的值.
五、解答题(每小题8分,共16分)
23.某食品厂生产一批极易变质的食品,需要在-28℃的温度下冷冻.现在冷库的室温是-2℃,若每小时降4℃,问几小时后能降到所要求的温度?
24.若a =-1.5,b =2,c =0,d =-2.(1)请在数轴上表示数a 、b 、c 、d .
(2)计算()c d b a ++的值.
六、解答题(每小题10分,共20分)
25.某城市治安巡逻队员沿东向西方向的一条主道进行巡逻.某天早上从A地出发,晚上到达B地,约定向东为正方向,当天的行驶记录如下(单位:千米):+18,-9,+7,-12,-4,+12,-5,-6.
(1)B地在A地的何方?相距多少千米?
(2)若汽车每千米耗油1升,每升油价为7.2无,这天耗油费用为多少元?
26.在一次数学测验中,七年(2)班的平均分为87分,把高于平均分的部分记作正数,低于平均分的部分记作负数,下表是该班一个小组10名同学的成绩变化情况:
(1)该小组10名同学的成绩最低分是多少?最高分是多少?
(2)最高分比最低分高多少?
(3)该组10名同学的成绩总分是多少?
(4)若该组10名同学的成绩平均分不低于87分,将得到奖励,每高一分,每人奖励2个本,否则不奖励,那么该组10名同学是否受到奖励?若奖励,共奖励多少个本?。