数学分层教学效果影响因素的灰色关联分析
- 格式:pdf
- 大小:257.18 KB
- 文档页数:4
论文题目: 关于层次分析法和灰色关联分析法的研究目录目录 (I)摘要 (I)Abstract .............................................................................................................................................. I I 1引言 (1)2层次分析法 (2)2.1 层次分析法的步骤 (2)2.1.1 层次结构的建立 (2)2.1.2 构建判断矩阵 (4)2.1.3 层次排序和一致性检验 (6)2.1.4 层次总排序及一致性检验 (10)2.2 层次分析法结论 (13)3 灰色关联分析法 (15)3.1 灰色关联的具体步骤 (15)3.1.1 确定分析序列 (15)3.1.2 无量纲化 (16)3.1.3 求关联度 (17)3.2 灰色关联结论 (20)3结论 (20)参考文献: (22)附录 (23)致谢 (25)摘要层次分析法是将半定型、半定量的问题转化为定量问题的一种行之有效的方法,是分析多目标、多准则的复杂大系统的强有力的工具有思路清晰、方法简便、使用面广、系统性强等特点。
灰色关联分析目的是寻求系统各因素之间的重要关系,而灰色关联度是灰色关联分析的基础,其算法基本思想是根据行为序列曲线几何形状的相似性来确定序列之间联系的紧密型。
本文尝试将这两种思想应用于NBA常规赛最有价值球员(MVP)的评判上。
通过结果研究层次分析法和灰色关联分析这两种思想的差异性、优缺点。
关键词:层次分析法;灰色关联分析;NBA;MVPAbstractAnalytic Hierarchy Process is a semi-stereotypes, semi-quantitative problem into an effective method of quantitative problems, is to analyze the multi-objective, multi-criteria large complex system a powerful tool for clear thinking, method is simple, using the surfacewide systemic. Gray relational analysis seeks the important relationship between the factors of the system, and the gray relational grade gray relational analysis. The basic idea of the algorithm is based on the similarity of behavior sequence curve geometry to determine the sequence of the link between compact. This paper attempts to apply these two ideas on the judgment of the NBA regular season Most Valuable Player (MVP). By the results of analytic hierarchy process and gray relational analysis of these two ideological differences, advantages and disadvantages.Key words: Analytic Hierarchy Process;Grey Relational Analysis;NBA;MVP1引言在日常生活中,人们要对许多较为复杂、较为模糊的问题做出决策。
从零开始的数学建模:(三)灰⾊关联分析灰⾊关联分析适⽤于⼩样本数据,⼤样本数据推荐使⽤标准化回归分析;基本原理是根据曲线的⼏何形状的相似程度来判断联系是否紧密,也就是说,如果y的曲线和某个x的曲线长得很像,那么这个x或许就是最能影响y的因素;灰⾊关联分析可⽤于系统分析与综合评价⼀、系统分析上的运⽤(1)确定分析序列以⾃变量作为⼦序列,因变量作为母序列,对应本题即第⼀、⼆、三产业作为⼦序列,国内⽣产总值为母序列;(2)对变量进⾏预处理计算每⼀列的均值,并将每⼀列的数除以该均值(注意这⾥使⽤的⽅法和Topsis不⼀样),可得到以下结果:(3)计算极差与关联系数分别计算|x1−x0|、|x2−x0|、|x3−x0|,可求出最⼩值a与最⼤值b,本题计算结果如下:对上述结果执⾏:y=a+ρ|x i−x0|+ρ∗b即可得到关联系数:对以上三列分别求均值,可得到三个数值:0.5084、0.6243、0.7573,因此最终得出结论,第三产业对GDP总量影响最⼤;⼆、综合评价上的运⽤综合评价类问题只有⼀列⼜⼀列数据,需要根据这些数据计算得分;在利⽤灰⾊关联分析之前,仍需要进⾏指标正向化;(1)确定⼦序列与母序列⼦序列即各个因素,取出⼦序列构成的矩阵的每⼀⾏中的最⼤值,组成母序列;(2)对变量进⾏预处理步骤同上,得到z ij;(3)计算极差与关联系数步骤同上,得到r i;(4)计算权重与得分计算各个指标的权重与得分:w i=r ir1+r2+⋯+r ms k=∑w i∗z ij 最后对得分进⾏归⼀化处理即可得到每个样本的评分:S k=s k∑s1+s2+⋯+s n本⽂算法思想参考源于,特此注明Processing math: 100%。
灰色关联分析灰色关联分析(Grey Relational Analysis, GRA)什么是灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。
灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。
此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。
与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。
灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。
其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。
灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。
[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。
而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。
[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。
确定反映系统行为特征的参考数列和影响系统行为的比较数列。
反映系统行为特征的数据序列,称为参考数列。
影响系统行为的因素组成的数据序列,称比较数列。
设参考数列(又称母序列)为Y={Y(k) | k = 1,2,Λ,n};比较数列(又称子序列)X i={X i(k)| k = 1,2,Λ,n},i = 1,2,Λ,m。
灰色关联分析法原理及解题步骤---------------研究两个因素或两个系统的关联度(即两因素变化大小,方向与速度的相对性)关联程度——曲线间几何形状的差别程度灰色关联分析是通过灰色关联度来分析和确定系统因素间的影响程度或因素对系统主行为的贡献测度的一种方法。
灰色关联分析的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密1> 曲线越接近,相应序列之间的关联度就越大,反之就越小 2> 灰色关联度越大,两因素变化态势越一致分析法优点它对样本量的多少和样本有无规律都同样适用,而且计算量小,十分方便,更不会出现量化结果与定性分析结果不符的情况。
灰色系统关联分析的具体计算步骤如下 1》参考数列和比较数列的确定参考数列——反映系统行为特征的数据序列比较数列——影响系统行为的因素组成的数据序列2》无量纲化处理参考数列和比较数列(1) 初值化——矩阵中的每个数均除以第一个数得到的新矩阵(2) 均值化——矩阵中的每个数均除以用矩阵所有元素的平均值得到的新矩阵(3) 区间相对值化3》求参考数列与比较数列的灰色关联系数ξ(Xi) 参考数列X0比较数列X1、X2、X3……………比较数列相对于参考数列在曲线各点的关联系数ξ(i)称为关联系数,其中ρ称为分辨系数,ρ?(0,1),常取0.5.实数第二级最小差,记为Δmin。
两级最大差,记为Δmax。
为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。
记为Δoi(k)。
所以关联系数ξ(Xi)也可简化如下列公式:4》求关联度ri关联系数——比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。
因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:5》排关联序因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小。
灰色关联分析方法灰色关联分析方法(Grey Relational Analysis,GRA)是一种多指标决策方法,它用于研究因素之间的关联程度。
与传统的关联分析方法相比,灰色关联分析方法具有较强的适用性和灵活性。
它可以用于分析多个指标之间的关联程度,对于复杂决策问题具有较强的应用能力。
灰色关联分析方法的基本思想是将系统的各个指标转化为灰色数列,再利用灰色关联度来评估指标之间的关联程度。
该方法可以对多个指标进行综合评价,找出各个指标之间的关联程度,并根据关联程度来进行排序和决策。
灰色关联分析方法的具体步骤如下:1. 数据预处理:将原始数据进行标准化处理,以确保各指标在同一数量级上进行比较。
2. 构建灰色数列:将标准化后的数据转化为灰色数列,通过建立灰色微分方程来描述数据序列的发展趋势。
3. 确定关联度测度:根据灰色数列的特点,选择适当的关联度测度方法来计算指标之间的关联程度。
4. 计算关联度:根据所选择的关联度测度方法,计算每个指标与其他指标之间的关联度。
5. 排序和决策:根据计算得到的关联度值进行排序,并作出相应的决策。
灰色关联分析方法的优点有以下几个方面:1. 适用性广泛:灰色关联分析方法适用于各种类型的指标数据,包括定量指标和定性指标。
2. 考虑了指标之间的时序关系:灰色关联分析方法考虑了指标数据的时序性,能够更好地反映指标之间的演变趋势。
3. 简单易行:灰色关联分析方法不需要过多的统计方法和复杂的计算过程,容易被理解和操作。
4. 提供了多指标综合评价的能力:灰色关联分析方法可以将多个指标之间的关联程度综合考虑,对于决策问题的综合评价有着较好的效果。
然而,灰色关联分析方法也存在一些限制和局限性:1. 灵敏度不高:由于灰色关联分析方法只考虑了指标之间的线性关联程度,对于非线性关系的刻画较为困难,灵敏度较低。
2. 依赖于初始数据:灰色关联分析方法对初始数据的选取较为敏感,不同的初始数据可能导致不同的关联度结果。