七年级下三角形数学试题月考卷
- 格式:doc
- 大小:718.50 KB
- 文档页数:27
2021-2022学年度下期七年级数学质量检测题参考答案(四)三角形一、选择题:1.C2.B3.C4.D5.B6.C7.A8.D9.C10.D二、填空题:11.∠B=∠E或∠C=∠D或AB=AE.12.3413.914.115.﹣3<a<﹣216.15°或75°三、解答题17.(1)解:由AAS,选的条件是:①,③,结论是②,故答案为:①,③,②(答案不唯一);(2)证明:在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.18.证明:(1)∵∠AOB=∠COD,∠ABO=∠DCO,AB=DC,在△ABO和△DCO中,,∴△ABO≌△DCO(AAS);(2)由(1)知,△ABO≌△DCO,∴OB=OC∴∠OBC=∠OCB.19.解:(1)∵∠ABC=80°,BD=BC,∴∠BDC=∠BCD=(180°﹣80°)=50°,∵∠A+∠ABC+∠ACB=180°,∠A=40°,∴∠ACB=180°﹣40°﹣80°=60°,∵CE=BC,∴△BCE是等边三角形,∴∠EBC=60°,∴∠ABE=∠ABC﹣∠EBC=20°;(2)∠BEC与∠BDC之间的关系:∠BEC+∠BDC=110°,理由:设∠BEC =α,∠BDC =β,在△ABE 中,α=∠A +∠ABE =40°+∠ABE ,∵CE =BC ,∴∠CBE =∠BEC =α,∴∠ABC =∠ABE +∠CBE =∠A +2∠ABE =40°+2∠ABE ,在△BDC 中,BD =BC ,∴∠BDC +∠BCD +∠DBC =2β+40°+2∠ABE =180°,∴β=70°﹣∠ABE ,∴α+β=40°+∠ABE +70°﹣∠ABE =110°,∴∠BEC +∠BDC =110°.20.解:(1)∵BE 是△ABC 的角平分线,∴∠DBE =∠EBC ,∵DB =DE ,∴∠DEB =∠DBE ,∴∠DEB =∠EBC ,∴DE ∥BC ;(2)∵DE ∥BC ,∴∠C =∠AED =45°,在△ABC 中,∠A +∠ABC +∠C =180°,∴∠ABC =180°﹣∠A ﹣∠C =180°﹣65°﹣45°=70°.∵BE 是△ABC 的角平分线,∴∠DBE =∠EBC =.21.(1)证明:∵BO⊥AC,∴∠AOP=∠BOC=90°又∵AH⊥BC,∴∠PAO+∠C=90°且∠OBC+∠C=90°∴∠PAO=∠OBC,又AO=BO∴BCO APO ∆≅∆,∴OP=OC=1…………………………………(4分)(2)方法一:作AH ON ⊥,BCOM ⊥∴∠ANO=∠AMO=90°,又∠NAO=∠OBM,AO=BO∴ΔANO≌ΔBMO,∴ON=OM,即OH 为AHC ∠的角平分线,∴∠OHP=45°……………………………………………………………(8分)方法二:在AP上取AK=BH,易证BHOAKO∆≅∆即OK=OH,再证明090=∠KOH所以KOH∆为等腰直角三角形,得证。
冀教版七年级数学下册第九章三角形专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为()A.42°B.48°C.52°D.58°∠的度数为()2、三个等边三角形的摆放位置如图所示,若12100∠+∠=°,则3A.80︒B.70︒C.45︒D.303、下列所给的各组线段,能组成三角形的是:( )A .2,11,13B .5,12,7C .5,5,11D .5,12,134、如图,点B 、G 、C 在直线FE 上,点D 在线段AC 上,下列是△ADB 的外角的是( )A .∠FBAB .∠DBC C .∠CDBD .∠BDG5、如图,直线l 1、l 2分别与△ABC 的两边AB 、BC 相交,且l 1∥l 2,若∠B =35°,∠1=105°,则∠2的度数为( )A .45°B .50°C .40°D .60°6、如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,将ABC 绕点C 逆时针旋转90°得到DEC ,则AED ∠的度数为( )A .105°B .120°C .135°D .150°7、下图中能体现∠1一定大于∠2的是( )A .B .C .D .8、如图,在△ABC 中,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,∠D =15°,则∠A 的度数为( )A .30°B .45°C .20°D .22.5°9、以下列各组线段为边,能组成三角形的是( )A .3cm ,4cm ,5cmB .3cm ,3cm ,6cmC .5cm ,10cm ,4cmD .1cm ,2cm ,3cm10、如图,在ABC 中,D 是BC 延长线上一点,50B ∠=︒,80A ∠=︒,则ACD ∠的度数为( )A .140︒B .130︒C .120︒D .110︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC ADC ∠=∠,AB CD ∥,BE 平分ABC ∠交AD 于点E ,连接CE ,AF 交CD 的延长线于点F ,180BCD AEB DAF ∠+∠+∠=︒,若3ECD F ∠=∠,80BEC ∠=︒,则CED ∠的度数为______.2、已知两个定点A 、B 的距离为4厘米,那么到点A 、B 距离之和为4厘米的点的轨迹是____________.3、已知ABC 中,AB =5,AC =7,BC =a ,则a 的取值范围是 ___.4、在△ABC 中,D 、E 分别是BC 、AD 的中点,S △ABC =4cm 2,则S △ABE =_____.5、如图,∠ABD =80°,∠C =38°,则∠D =___度.三、解答题(5小题,每小题10分,共计50分)1、如图,AB ∥CD ,∠BAC 的角平分线AP 与∠ACD 的角平分线CP 相交于点P ,求证:AP ⊥CP .2、在ABC 中,100,80,ADB C AD ∠=︒∠=︒平分,BAC BE ∠平分ABC ∠,求BED ∠的度数.3、已知:AD //BC ,点P 为直线AB 上一动点,点M 在线段BC 上,连接MP ,∠BAD =α,∠APM =β,∠PMC =γ.(1)如图1,当点P 在线段AB 上时,若MP ⊥AB ,α=120°,则γ= ;(2)如图2,当点P 在AB 的延长线上时,写出α、β与γ之间的数量关系,并说明理由;(3)如图3,当点P 在BA 的延长线上时,请画出图形,证明出α、β与γ之间的数量关系.4、如图,在△ABC 中,D 为BC 延长线上一点,DE ⊥AB 于E ,交AC 于F ,若∠A =40°,∠D =45°,求∠ACB 的度数.5、将一副三角板中的两块直角三角尺的直角顶点C 按如图1方式叠放在一起,其中60A ∠=︒,30,45D E B ∠=︒∠=∠=︒.(1)若l 25∠=︒,则2∠的度数为_______;(2)直接写出1∠与3∠的数量关系:_________;(3)直接写出2∠与ACB ∠的数量关系:__________;(4)如图2,当180ACE ∠<︒且点E 在直线AC 的上方时,将三角尺ACD 固定不动,改变三角尺BCE 的位置,但始终保持两个三角尺的顶点C 重合,这两块三角尺是否存在一组边互相平行?请直接写出ACE ∠角度所有可能的值___________.-参考答案-一、单选题1、B【解析】【分析】根据两直线平行,同位角相等可得42B AFG ∠=∠=︒,再由垂直的性质及三角形内角和定理即可得.【详解】解:∵FG BC ∥,∴42B AFG ∠=∠=︒,∵DE AB ⊥,∴90BDE ∠=︒,∴18048DEB BDE B ∠=︒-∠-∠=︒,故选:B .【点睛】题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.2、A【解析】【分析】利用三个平角的和减去中间三角形的内角和,再减去三个60︒的角即可.【详解】解:3180540⨯︒=︒,360180⨯︒=︒,540180180180∴︒-︒-︒=︒,123180∴∠+∠+∠=︒,12100∠+∠=︒,380∴∠=︒,故选:A .【点睛】本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.3、D【解析】【分析】根据三角形三边关系定理,判断选择即可.【详解】∵2+11=13,∴A不符合题意;∵5+7=12,∴B不符合题意;∵5+5=10<11,∴C不符合题意;∵5+12=17>13,∴D符合题意;故选D.【点睛】本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.4、C【解析】【分析】根据三角形的外角的概念解答即可.【详解】解:A.∠FBA是△ABC的外角,故不符合题意;B. ∠DBC不是任何三角形的外角,故不符合题意;C.∠CDB是∠ADB的外角,符合题意;D. ∠BDG不是任何三角形的外角,故不符合题意;故选:C.【点睛】本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.5、C【解析】【分析】根据三角形内角和定理球场∠3的度数,利用平行线的性质求出答案.【详解】解:∵∠B=35°,∠1=105°,∴∠3=180-∠1-∠B=40︒,∵l1∥l2,∴∠2=∠3=40︒,故选:C..【点睛】此题考查三角形内角和定理,两直线平行内错角相等的性质,熟记三角形内角和等于180度及平行线的性质并熟练解决问题是解题的关键.6、B【解析】【分析】由题意易得30,90A D ACB DCE ∠=∠=︒∠=∠=︒,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:30,90A D ACB DCE ∠=∠=︒∠=∠=︒,∴120AED D DCE ∠=∠+∠=︒;故选B .【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.7、C【解析】【分析】由对顶角的性质可判断A ,由平行线的性质可判断B ,由三角形的外角的性质可判断C ,由直角三角形中同角的余角相等可判断D ,从而可得答案.【详解】解:A 、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;B 、如图,13,∠=∠若两线平行,则∠3=∠2,则1=2,∠∠若两线不平行,则2,3∠∠大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C.【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.8、A【解析】【分析】由三角形的外角的性质可得,,ACE A ABC ECD CBD D再结合角平分线的性质进行等量代换可得112,22CBD D A ABC A CBD从而可得答案.【详解】解:∠ABC与∠ACE的平分线相交于点D,11,,22CBD ABC ECD ACE,, ACE A ABC ECD CBD D112,22CBD D A ABC A CBD1,2D A15,D30.A∴∠=︒故选A【点睛】本题考查的是三角形的角平分线的性质,三角形的外角的性质,熟练的利用三角形的外角的性质结合等量代换得到12D A ∠=∠是解本题的关键.9、A【解析】【分析】三角形的任意两条之和大于第三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.【详解】解:345, 所以以3cm ,4cm ,5cm 为边能构成三角形,故A 符合题意; 3+3=6, 所以以3cm ,3cm ,6cm 为边不能构成三角形,故B 不符合题意; 4+510, 所以以5cm ,10cm ,4cm 为边不能构成三角形,故C 不符合题意; 1+2=3, 所以以1cm ,2cm ,3cm 为边不能构成三角形,故D 不符合题意;故选A【点睛】本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.10、B【解析】【分析】根据三角形外角的性质可直接进行求解.【详解】解:∵50B ∠=︒,80A ∠=︒,∴130ACD A B ∠=∠+∠=︒;故选B .【点睛】本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.二、填空题1、80°##80度【解析】【分析】先根据AB CD ∥,ABC ADC ∠=∠,得出180ADC BCD ABC BCD ∠+∠=∠+∠=︒,可证AD∥BC ,再证∠BAD =∠BCD ,得出∠AEB =∠F ,然后证∠ABC =2∠CBE =2∠F ,得出∠ADC =2∠F ,利用三角形内角和得出∠CED =180°-∠EDC -∠ECD =180°-2∠F -3∠F =180°-5∠F ,根据平角得出∠AEB +∠CED =180°-∠BEC =180°-80°=100°,列方程∠F +180°-5∠F =100°求出∠F =20°即可.【详解】解:∵AB CD ∥,∴∠ABC +∠BCD =180°,∵ABC ADC ∠=∠∴180ADC BCD ABC BCD ∠+∠=∠+∠=︒,∴AD∥BC ,∵AB CD ∥,∴∠BAD +∠ADC =180°,∠BAF +∠F =180°,∵∠ADC +∠BCD =180°,∴∠BAD =∠BCD ,∵180BCD AEB DAF ∠+∠+∠=︒,∴180BAD AEB DAF ∠+∠+∠=︒,∵∠BAF =∠BAD +∠DAF ,∴∠BAF +∠AEB =180°,∴∠AEB =∠F ,∵AD∥BC ,∴∠CBE =∠AEB ,∵BE 平分ABC ∠,∴∠ABC =2∠CBE =2∠F ,∴∠ADC =2∠F ,∵3ECD F ∠=∠,在△CED 中,∠CED =180°-∠EDC -∠ECD =180°-2∠F -3∠F =180°-5∠F ,∵80BEC ∠=︒,∴∠AEB +∠CED =180°-∠BEC =180°-80°=100°,∴∠F +180°-5∠F =100°,解得∠F =20°,∴18052018010080CED ∠=︒-⨯︒=︒-︒=︒,故答案为80°.【点睛】本题考查平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,掌握平行线的判定与性质,三角形内角和,角平分线定义,平角,解一元一次方程,关键是证出∠ADC =2∠F .2、线段AB【解析】【分析】设到定点A、B的距离之和为4厘米的点是点P,若点P不在线段AB上,易得PA+PB>4,若点P在线段AB上,则PA+PB=AB=4,由此可得答案.【详解】解:设到定点A、B的距离之和为4厘米的点是点P,若点P在不在线段AB上,则点P在直线AB外或线段AB的延长线或线段BA的延长线上,则由三角形的三边关系或线段的大小关系可得:PA+PB>AB,即PA+PB>4,若点P在线段AB上,则PA+PB=AB=4,所以到点A、B的距离之和为4厘米的点的轨迹是线段AB.故答案为:线段AB.【点睛】本题考查了点的轨迹和三角形的三边关系,正确理解题意、掌握解答的方法是关键.3、2<a<12【解析】【分析】直接利用三角形三边关系得出a的取值范围.【详解】解:∵△ABC中,AB=5,AC=7,BC=a,∴7﹣5<a<7+5,即2<a<12.故答案为:2<a<12.【点睛】本题考查了三角形的三边关系,做题的关键是掌握三角形中任意两边之和大于第三边,两边之差小于第三边.4、1cm 2【解析】【分析】根据三角形的中线把三角形分成两个面积相等的三角形的性质分析,即可得到答案.【详解】∵D 是BC 的中点,S △ABC =4cm 2∴S △ABD =12S △ABC =12×4=2cm 2∵E 是AD 的中点,∴S △ABE =12S △ABD =12×2=1cm 2故答案为:1cm 2.【点睛】本题考查了三角形中线的知识;解题的关键是熟练掌握三角形中线的性质,从而完成求解. 5、42三、解答题1、见解析【解析】【分析】利用角平分线的性质及平行线的性质,通过等量代换能证明出90P ∠=︒,即可证明AP ⊥CP .【详解】证明:∵AB //CD (已知),∴∠BAC +∠ACD =180°(两直线平行,同旁内角互补),∵AP 、CP 分别平分∠BAC 、∠ACD (已知),∴∠CAP =12∠BAC ,∠ACP =12∠ACD ,∴∠CAP +∠ACP =12∠BAC +12∠ACD =12(∠BAC +∠ACD )=90°,又∵∠CAP +∠ACP +∠P =180°,∴∠P =90°,∴AP ⊥CP .【点睛】本题考查了角平分线的性质、平行线的性质,解题的关键是掌握角平分线的性质进行求解. 2、50︒【解析】【分析】根据外角的性质,求得20CAD ∠=︒,根据角平分线的定义可得20BAD ∠=︒,根据三角形的内角和求得60DBA ∠=︒,角平分线的性质可得30DBE ∠=︒,根据三角形内角和即可求解.【详解】解:∵100ADB C CAD ∠=∠+∠=︒,80C ∠=︒∴20CAD ∠=︒,∵AD 平分BAC ∠∴20BAD CAD ∠=∠=︒,由三角形内角和的性质可得,18060ABC ADB BAD ∠=︒-∠-∠=︒,∵BE 平分ABC ∠∴1302DBE ABC ∠=∠=︒,由三角形内角和的性质可得,18050BED ADB EBD ∠=︒-∠-∠=︒.【点睛】此题考查了三角形内角和的性质、外角的性质以及角平分线的定义,解题的关键是掌握并灵活运用相关性质进行求解.3、 (1)150°(2)γ=α+β,理由见解析(3)图形见解析,α、β与γ之间的数量关系为:α+γ-β=180°【解析】【分析】(1)由AD //BC ,α=120°可求出∠B =60°,由MP ⊥AB 得到∠MPB =90°,最后由γ=∠MPB +∠B =150°即可求解;(2)由AD //BC 得到∠CBP =α,再由γ=∠CBP +∠P =α+β即可求解;(3)画出图形,由AD //BC ,得到∠CMN =∠DNP =γ,∠PNA =180°-∠DNP =180°-γ,再在△PNA 中,由三角形外角定理即可求解.(1)解:如下图所示:∵AD //BC ,α=120°,∴∠B=60°,∵MP⊥AB,∴∠MPB=90°,∴γ=∠MPB+∠B=90°+60°=150°.故答案是:150°;(2)解:如下图所示:∵AD//BC,∴∠CBP=∠DAB=α,△MBP中,由三角形外角定理可知:∠CMP=∠CBP+∠P,∴γ=α+β.(3)解:当点P在BA的延长线上时,图形如下所示,α、β与γ之间的数量关系为:∵AD//BC,∴∠CMN=∠DNP=γ,∴∠PNA=180°-∠DNP=180°-γ,△PNA中,由三角形外角定理可知:∠DAB=∠PNA+∠P,∴α=180°-γ+β,故α、β与γ之间的数量关系为:α+γ-β=180°.【点睛】本题考查了平行线的性质,三角形的外角的性质,平角的定义,是基础题,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.4、95°【解析】【分析】根据三角形外角与内角的关系及三角形内角和定理解答.【详解】解:∵DF⊥AB,∠A=40°∴∠AEF =∠CED =50°,∴∠ACB =∠D +∠CED =45°+50°=95°.【点睛】本题考查了三角形外角与内角的关系:三角形的一个外角等于和它不相邻的两个内角的和.三角形内角和定理:三角形的三个内角和为180°.5、(1)65︒;(2)13∠=∠;(3)2180ACB ∠+∠=︒;(4)存在一组边互相平行;30︒或45︒或120︒或135︒或165︒.【解析】【分析】(1)根据垂直的性质结合图形求解即可;(2)根据垂直的性质及各角之间的关系即可得出;(3)由(2)可得180ACD ECB ∠+∠=︒,根据图中角度关系可得123ACB ∠+∠+∠=∠,将其代入即可得;(4)根据题意,分五种情况进行分类讨论:①当∥CB AD 时;②当∥EB AC 时;③当∥AD EC 时;④当∥DC EB 时;⑤当AD EB ∥时;分别利用平行线的性质进行求解即可得.【详解】解:(1)∵AC CD ⊥,∴90ACD ∠=︒,∵125∠=︒,∴2165ACD ∠=∠-∠=︒,故答案为:65︒;(2)∵AC CD ⊥,EC CB ⊥,∴90ACD ∠=︒,90ECB ∠=︒,即1290∠+∠=︒,3290∠+∠=︒,∴13∠=∠,故答案为:13∠=∠;(3)由(2)得:180ACD ECB ∠+∠=︒,∴1232180∠+∠+∠+∠=︒,由图可知:123ACB ∠+∠+∠=∠,∴2180ACB ∠+∠=︒,故答案为:2180ACB ∠+∠=︒;(4)①如图所示:当∥CB AD 时,30D DCB ∠=∠=︒,由(2)可知:30ACE DCB ∠=∠=︒;②如图所示:当∥EB AC 时,45ACE E ∠=∠=︒;③如图所示:当∥AD EC 时,30D DCE ∠=∠=︒,∴120ACE ACD DCE ∠=∠+∠=︒;④如图所示:当∥DC EB 时,45E DCE ∠=∠=︒,∴135ACE ACD DCE ∠=∠+∠=︒;⑤如图所示:当AD EB ∥时,延长AC 交BE 于点F ,∴60A CFB ∠=∠=︒,∵45E ∠=︒,∴15ECF CFB E ∠=∠-∠=︒,∴180165ACE ECF ∠=︒-∠=︒;综合可得:ACE ∠的度数为:30︒或45︒或120︒或135︒或165︒,故答案为:30︒或45︒或120︒或135︒或165︒.【点睛】题目主要考查垂直的性质、各角之间的计算、平行线的性质等,熟练掌握平行线的性质进行分类讨论是解题关键.。
冀教版七年级数学下册第九章 三角形月考考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△ABC 中,AD 是△ABC 的中线,△ABD 的面积为3,则△ABC 的面积为( )A .8B .7C .6D .52、如图,四边形ABCD 是梯形,AD BC ∥,DAB ∠与ABC ∠的角平分线交于点E ,CDA ∠与BCD ∠的角平分线交于点F ,则1∠与2∠的大小关系为( )A .12∠>∠B .12∠=∠C .12∠∠<D .无法确定3、利用直角三角板,作ABC 的高,下列作法正确的是( )A .B .C .D .4、下列各组数中,不能作为一个三角形三边长的是( )A .4,4,4B .2,7,9C .3,4,5D .5,7,95、一把直尺与一块三角板如图放置,若140∠=︒,则2∠=( )A .120°B .130°C .140°D .150°6、若一个三角形的两边长分别为3和8,则第三边长可能是 ( )A .4B .5C .8D .117、已知三角形的两边长分别是3cm 和7cm ,则下列长度的线段中能作为第三边的是() A .3cm B .4cm C .7cm D .10cm8、如图,AD ∥BC ,∠C =30°,∠ADB :∠BDC =1:2,∠EAB =72°,以下四个说法:①∠CDF =30°;②∠ADB =50°;③∠ABD =22°;④∠CBN =108°其中正确说法的个数是( )A.1个B.2个C.3个D.4个9、如图,CM是ABC的中线,4cmAM ,则BM的长为()A.3cm B.4cm C.5cm D.6cm 10、下图中能体现∠1一定大于∠2的是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在△ABC中,若AC=3,BC=7则第三边AB的取值范围为________.2、如图,将ABC绕点B逆时针旋转95︒,得到EBD△,若点E恰好落在AD的延长线上,则∠=__________︒.CAD3、已知,在△ABC中,∠B=48°,∠C=68°,AD是BC边上的高,AE平分∠BAC,则∠DAE的度数为____.4、如图,A B C D E∠+∠+∠+∠+∠=______.5、如图,在直线l1∥l2,把三角板的直角顶点放在直线l2上,三角板中60°的角在直线l1与l2之间,如果∠1=35°,那么∠2=___度.三、解答题(5小题,每小题10分,共计50分)1、如图,∠B=45°,∠A+15°=∠1,∠ACD=60°.求证:AB∥CD.2、如图,在同一平面内,点D、E是△ABC外的两点,请按要求完成下列问题.(此题作图不要求写出画法)(1)请你判断线段AB BC +与AC 的数量关系是_________,理由是_________________.(2)连接线段CD ,作射线BE 、直线DE ,在四边形BCDE 的边BC 、CD 、DE 、EB 上任取一点,分别为点K 、L 、M 、N 并顺次连接它们,则四边形KLMN 的周长与四边形BCDE 周长哪一个大,直接写出结果(不用说出理由).(3)在四边形KLMN 内找一点O ,使它到四边形四个顶点的距离之和最小(作图找到点即可).3、如图,在ABC 中,AD 是角平分线,54B ∠=︒,76C ∠=︒.(1)求BAD ∠的度数;(2)若DE AC ⊥,求EDC ∠的度数.4、已知:如图,AD 是△ABC 的角平分线,点E 在BC 上,点F 在CA 的延长线上,EF 交AB 于点G ,且∠AGF =∠F .求证:EF ∥AD .5、如图,已知:DE//BC,CD是∠ACB的平分线,∠B=80°,∠A=50°,求:∠EDC与∠BDC的度数.-参考答案-一、单选题1、C【解析】【分析】根据三角形的中线将三角形的面积分成相等的两部分即可求解.【详解】解:∵△ABC中,AD是BC边上的中线,△ABD的面积为3,∴△ABC的面积=3×2=6.故选:C.【点睛】考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.2、B【解析】【分析】由AD∥BC可得∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,由角平分线的性质可得∠AEB=90°,∠DFC=90°,由三角形内角和定理可得到∠1=∠2=90°.【详解】解:∵AD∥BC,∴∠BAD+∠ABC=180°,∠ADC+∠BCD=180°,∵∠DAB与∠ABC的角平分线交于点E,∠CDA与∠BCD的角平分线交于点F,∴∠BAE=12∠BAD,∠ABE=12∠ABC,∠CDF=12∠ADC,∠DCF=12∠BCD,∴∠BAE+∠ABE=12(∠BAD+∠ABC)=90°,∠CDF+∠DCF=12(∠ADC+∠BCD) =90°,∴∠1=180°-(∠BAE+∠ABE)= 90°,∠2=∠CDF+∠DCF= 90°,∴∠1=∠2=90°,故选:B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.3、D【解析】【分析】由题意直接根据高线的定义进行分析判断即可得出结论.【详解】解:A、B、C均不是高线.故选:D.【点睛】本题考查的是作图-基本作图,熟练掌握三角形高线的定义即过一个顶点作垂直于它对边所在直线的线段,叫三角形的高线是解答此题的关键.4、B【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边即可求解.【详解】解:选项A:4,4,4可以构成等边三角形,故选项A正确;选项B:2+7=9,两边之和等于第三边,不能构成三角形,故选项B错误;选项C:3+4>5,这三边可以构成三角形,故选项C正确;选项D:任意两边之和大于第三边,两边之差小于第三边,可以构成三角形,故选项D正确;故选:B.【点睛】本题考查了构成三角形的三边的条件:两边之和大于第三边,两边之差小于第三边,由此即可求解.5、B【解析】【分析】由BC∥ED,得到∠2=∠CBD,由三角形外角的性质得到∠CBD=∠1+∠A=130°,由此即可得到答案.【详解】解:如图所示,由题意得:∠A=90°,BC∥EF,∴∠2=∠CBD,又∵∠CBD=∠1+∠A=130°,∴∠2=130°,【点睛】本题主要考查了三角形外角的性质,平行线的性质,熟知相关知识是解题的关键.6、C【解析】【分析】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【详解】解:∵一个三角形的两边长分别为3和8,∴5<第三边长<11,则第三边长可能是:8.故选:C.【点睛】此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.7、C【解析】【分析】设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.解:设三角形的第三边是xcm.则7-3<x<7+3.即4<x<10,四个选项中,只有选项C符合题意,故选:C.【点睛】本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.8、D【解析】【分析】根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.【详解】解:∵AD∥BC,∠C=30°,∴∠FDC=∠C=30°,故①正确;∴∠ADC=180°-∠FDC=180°-30°=150°,∵∠ADB:∠BDC=1:2,∴∠BDC=2∠ADB,∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,解得∠ADB=50°,故②正确∵∠EAB=72°,∴∠DAN=180°-∠EAB=180°-72°=108°,∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确∵AD∥BC,∴∠CBN=∠DAN=108°,故④正确其中正确说法的个数是4个.故选择D.【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.9、B【解析】【分析】直接根据三角形中线定义解答即可.【详解】解:∵CM是ABC的中线,4cmAM=,∴BM= 4cmAM=,故选:B.【点睛】本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.10、C【解析】由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.【详解】解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;∠=∠B、如图,13,∠∠若两线平行,则∠3=∠2,则1=2,若两线不平行,则2,3∠∠大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.故选:C.【点睛】本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.二、填空题1、4<AB<10【解析】【分析】根据三角形的三边关系,直接求解即可.解:∵在△ABC中,AC=3,BC=7,∴BC AC AB BC AC-<<+,即7373-<<+,AC解得410AB<<.故答案为:410<<.AB【点睛】本题考查的是三角形的三边关系,熟悉相关性质是解题的关键.三角形中第三边的长大于其他两边之差,小于其他两边之和.2、85【解析】【分析】利用旋转的性质得出旋转前后对应线段相等、对应角相等即可.【详解】解:∵将△ABC绕点B逆时针旋转95°,∴∠ABE=95°,AB=BE,∠CAB=∠E,∵AB=BE,∴∠E=∠BAE,∴∠BAE+∠CAB=∠BAE+∠E=180°−∠ABE=180°−95°=85°,故答案为:85.【点睛】本题主要考查了旋转的性质以及三角形内角和定理的应用,熟记旋转的性质是解决问题的关键. 3、10°##10度【解析】【分析】由三角形内角和求出BAC ∠的度数,然后利用角平分线的定义求出BAE ∠的度数,再根据AD ⊥BC 求出BAD ∠的度数,利用DAE BAD BAE ∠=∠-∠即可求出DAE ∠的度数.【详解】解:如图,∵∠B =48°,∠C =68°180180486864BAC B C ∴∠=︒-∠-∠=︒-︒-︒=︒∵AE 平分∠BAC11643222BAE BAC ∴∠=∠=⨯︒=︒ ∵AD ⊥BC90BDA ∴∠=︒904842BAD BDA B ∴∠=∠-∠=︒-︒=︒423210DAE BAD BAE ∴∠=∠-∠=︒-︒=︒故答案为10︒【点睛】本题主要考查三角形内角和定理和角平分线的定义,掌握三角形内角和定理和角平分线的定义是解题的关键.4、180度##180︒【解析】【分析】如图,连接,BC 记,CD BE 的交点为,G 先证明,D E GBC GCB ∠+∠=∠+∠再利用三角形的内角和定理可得答案.【详解】解:如图,连接,BC 记,CD BE 的交点为,G180,180,,D E DGE GBC GCB BGC DGE BGC ∠+∠=︒-∠∠+∠=︒-∠∠=∠,D E GBC GCB ∴∠+∠=∠+∠180,A ABG GBC GCB ACG ∴∠+∠+∠+∠+∠=︒180,A ABG ACG D E ∴∠+∠+∠+∠+∠=︒故答案为:180︒【点睛】本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.5、65【解析】【分析】根据三角形外角性质即可求得∠3的度数,再依据平行线的性质,可求得∠3=∠2.【详解】解:∵∠3是△ABC的外角,∠1=∠ABC=35°,∴∠3=∠C+∠ABC=30°+35°=65°,∵直线l1∥l2,∴∠2=∠3=65°,故答案为:65.【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.三、解答题1、见解析【解析】【分析】由三角形内角和定理和已知条件求出∠A=60°,得出∠ACD=∠A,即可得出AB∥CD.【详解】证明:∵∠A+∠B+∠1=180°,∠A+15°=∠1,∴∠A+45°+∠A+15°=180°,解得:∠A=60°,∵∠ACD=60°,∴∠ACD=∠A,∴AB∥CD.【点睛】本题考查了平行线的判定方法、三角形内角和定理;熟练掌握平行线的判定方法,由三角形内角和定理求出∠A是解决问题的关键.2、 (1)AB+BC>AC,三角形的两边之和之和大于第三边(2)作图见解析,四边形KLMN的周长小于四边形BCDE周长(3)见解析【解析】【分析】(1)根据三角形的两边之和大于等三边判断即可;(2)根据直线,射线,线段的大于以及题目要求作出图形即可;(3)连接KM,LN交于点O,点O即为所求.【小题1】解:AB+BC>AC(三角形的两边之和之和大于第三边),故答案为:AB+BC>AC,三角形的两边之和之和大于第三边;【小题2】如图,线段CD,射线BE,直线DE,四边形KLMN即为所求.四边形KLMN的周长小于四边形BCDE周长.理由是:在△EMN和△BNK和△DLM和△CLK中,EM +EN >MN ,BN +BK >KN ,DM +DL >ML ,CK +CL >KL ,∴EN +EM +DM +DL +BN +BK +CL +CK >MN +NK +ML +KL ,即四边形KLMN 的周长小于四边形BCDE 周长.【小题3】如图,连接NL ,MK ,交于点O ,点O 即为所求,根据两点之间,线段最短可得:NL ≥ON +OL ,MK ≥MO +KO ,∴点O 到四个顶点的距离最短.【点睛】本题考查作图-复杂作图,三角形的两边之和大于等三边等知识,解题的关键是理解直线,射线,线段的定义,灵活应用所学知识解决问题.3、 (1)25BAD ∠=︒;(2)14EDC ∠=︒.【解析】【分析】(1)根据三角形内角和定理可求出50BAC ∠=︒,然后利用角平分线进行计算即可得;(2)根据垂直得出90AED ∠=︒,然后根据三角形内角和定理即可得. (1)解:∵54B ∠︒=,76C ∠︒=,∴180180547650BAC B C ∠=︒-∠-∠=︒-︒-︒=︒,∵AD 是角平分线, ∴1252BAD BAC ∠=∠=︒,∴25BAD ∠=︒;(2)∵DE AC ⊥,∴90AED ∠=︒,∴180180907614EDC AED C ∠=︒-∠-∠=︒-︒-︒=︒,∴14EDC ∠=︒.【点睛】题目主要考查三角形内角和定理,角平分线的计算等,熟练运用三角形内角和定理是解题关键.4、见解析【解析】【分析】利用角平分线得到∠BAD =∠CAD ,根据三角形外角的性质推出∠CAD =∠F ,即可得到结论.【详解】∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD ,又∵∠BAD +∠CAD =∠AGF +∠F ,且∠AGF =∠F ,∴∠CAD =∠F ,∴EF AD ∥.【点睛】此题考查了角平分线的计算,三角形外角性质,平行线的判定定理,熟记平行线的判定定理是解题的关键.5、∠BDC=75°,∠EDC=25°【解析】【分析】先根据三角形内角和定理求出∠ACB=50°,再由角平分线的定义求出1===252BCD ACD ACB∠∠∠,则由三角形内角和定理可求出∠BDC=180°-∠B-∠BCD=75°,再由平行线的性质即可得到∠EDC=∠BCD=25°.【详解】解:∵∠A=50°,∠B=80°,∴∠ACB=180°-∠A-∠B=50°,∵CD平分∠ACB,∴1===252BCD ACD ACB∠∠∠,∴∠BDC=180°-∠B-∠BCD=75°,∵DE∥BC,∴∠EDC=∠BCD=25°.【点睛】本题主要考查了三角形内角和定理,角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.。
江苏省七年级下学期6月份月考数学试题一、选择题(本大题共8题,每题3分,共24分。
每题的四个选项中,只有一个选项是符合要求的。
)1、下列运算中正确的是 ………………………………………………………………(▲)A .632x x x =⋅B .()532x x =C .2x –2 = 12x 2D .()()336x x x -=-÷- 2、观察下列图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)平移得到的是(▲)3、下列运算中,正确的是(▲)A.5322a a a =+B.532a a a =•C.32a a •=6aD.532a a a =+4、如图,下列说法中,正确的是 (▲)A .因为∠A +∠D =180°,所以AD ∥BCB .因为∠C +∠D =180°,所以AB ∥CDC .因为∠A +∠D =180°,所以AB ∥CDD .因为∠A +∠C =180°,所以AB ∥CD5、如图,∠BAC =40°,DE ∥AB ,交AC 于点F ,∠AFE 的平分线FG 交AB 于点H ,则正确的是(▲)A .∠AFG =70°B .∠AFG >∠AHFC .∠FHB =100°D .∠CFH =2∠EFG6、已知a 、b 、c 是有理数,下列不等式变形中,一定正确的是( ▲ )A 、若 ac >bc ,则a >bB 、若a >b ,则ac >bc (第5题图)C 、若ac 2>bc 2,则a >bD 、若a >b ,则ac 2>bc 27、若关于x 、y 的二元一次方程组25245x y k x y k +=+⎧⎨-=-⎩的解满足不等式x <0,y >0,则k 的取值范围是(▲)A .-7<k <113 B .-7<k <13C .-7<k <813D .-3<k <8130321x a x -≥⎧⎨-≥-⎩8、如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角 ∠ACF .以下结论:①AD ∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°-∠ABD ;④BD 平分∠ADC ;⑤∠BDC =12∠BAC .其中正确的结论有(▲) A . 2个 B. 3个 C .4个 D. 5个(第8题图)二.填空题(本大题共10题,每题3分,共30分。
OEDCA B ′C ′D ′O ′A ′ODC BA七年级数学下学期三角形测试题一、填空题:1.已知等腰角三角形有一边长为5,一边长为2,则周长为2.如图在建筑工地上,工人师傅砌门时,常用木条 EF 固定长方形门框, 使其不变形,这种做法的根据是3.如图,△ABC 中,∠A =40º,∠B =80º,CD 平分∠ACB , 则∠ACD = .4.已知△ABC ≌△DEF ,且△ABC 的三边长分别为3,4,5, 则△DEF 的周长为 cm.5.如图,已知AB =AC ,EB =EC ,则图中共有全等三角形6.用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠A′O′B′=∠AOB ,需要 证明△A′O′B′≌△AOB ,则这两个三角形全等的依据是 (写出全等的简写即可)7.把一副三角板按如图所示放置,已知∠A =45º,∠E =30º,则两条斜边相交所成的钝角∠AOE 的度数为 度二、选择题(每题2分,共20分)1.有下列长度的三条线段,能组成三角形的是( ) A 、1cm ,2cm ,3cm B 、1cm ,4cm ,2cm C 、2cm ,3cm ,4cm D 、6cm ,2cm ,3cm 2、下列条件中,能判断两个直角三角形全等的是( ) A 、一个锐角对应相等 B 、两个锐角对应相等 C 、一条边对应相等 D 、两条边对应相等3.两根木条的长分别是10cm 和20cm ,要钉成一个三角形的木架,则第三根木条的长度可以是 ( )A 、10cm B 、5cm C 、25cm D 、35cm4、小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形. 应该带( ). A .第1块 B .第2 块 C .第3 块 D .第4块 5.如图,两根钢条AA ′、BB ′的中点 O 连在一起,使 AA ′、 BB ′可以绕着点 O 自由转动,就做成了一个测量工具,DCBAABCDE1234DC BA 21A ′B ′的长等于内槽宽 AB ,那么判定△OAB ≌△OA ′B ′的理由是( ) A .边角边 B .角边角C .边边边D .角角边6.已知等腰三角形的两边长是5cm 和6cm ,则此三角形的周长是( ) A .16cmB .17cmC .11cmD .16cm 或17cm7.下列说法:①两个面积相等的三角形全等;②一条边对应相等的两个等边三角形全等;③全等图形的面积相等;④所有的正方形都全等中,正确的有 ( ) A 、1个 B 、2个 C 、3个 D 、4个8.如图,已知∠1=∠2,则下列条件中,不能使△ABC ≌△DBC 成立的是 ( ) A 、AB =CD B 、AC =BD C 、∠A =∠D D 、∠ABC =∠DBC9.在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=1∶5∶6,③∠A=900-∠B ,④∠A=∠B=12 ∠C 中,能确定△ABC 是直角三角形的条件有 ( ) A 、1个 B 、2个 C 、3个 D 、4个 三、解答、说理题:1.如图,△ABC 中,AD ⊥BC 于点D ,BE 是∠ABC 的平分线,已知∠ABC =40º,∠C =60º,求∠AOB 的度数(6分) ]2.如图,已知A 、B 、C 、D 在一条直线上,AB =CD , AE ∥DF ,BF ∥EC ,那么∠E =∠F ,为什么?(6分)FEDCBAO EDC BAO D C B A 213.如图,已知OA =OC ,OB =OD ,∠1=∠2,那么∠B =∠D ,为什么?(8分)4. 已知:如图,C 为BE 上一点,点A 、D 分别在BE 两侧.AB ∥ED ,AB =CE ,BC =ED .说明AC =CD .A BCDE5. 已知:如图所示,A 、B 、C 、D 在同一直线上,AD =BC ,AE =BF ,CE =DF ,试说明:(1)DF ∥CE ;(2)DE =CF .AB CDEF12图2 图1BCDOODCB4、如图1、图2,△AOB ,△COD 均是等腰直角三角形,∠AOB =∠COD =90º, (1)在图1中,AC 与BD 相等吗?请说明理由(4分)(2)若△COD 绕点O 顺时针旋转一定角度后,到达力2的位置,请问AC 与BD 还相等吗?为什么?(8分)5. 复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC 中,AB =AC ,P 是△ABC 内部任意一点,将AP 绕A 顺时针旋转至AQ ,使∠QAP =∠BAC ,连接BQ 、CP ,则BQ =CP .”小亮是个爱动脑筋的同学,他通过对图①的分析,说明了△ABQ ≌△ACP ,从而得BQ =CP 之后,将点P 移到等腰三角形ABC 之外,原题中的条件不变,发现“BQ =CP ”仍然成立,请你就图②给出推理.ABCPQ①ABCPQ②。
山东省青岛市胶州市瑞华实验初级中学2023-2024学年七年级下学期5月月考数学试题一、单选题1.正方形的对称轴条数是( ) A .2B .4C .6D .82.下列条件中,能判定两个直角三角形全等的是( ) A .一锐角对应相等 B .两锐角对应相等 C .一条边对应相等D .两条直角边对应相等3.下列用七巧板拼成的图形(不考虑内部线条)中,为轴对称图形的是( )A .B .C .D .4.下列条件不可推得ABC ∆和111A B C ∆全等 的条件是( ) A .11AB A B =,1A A ∠=∠,1C C ∠=∠ B .11AB A B =,11AC AC =,11BC B C = C .11AB A B =,11AC AC =,1B B ∠=∠D .11AB A B =,1A A ∠=∠,1B B ∠=∠5.如图是雨伞在开合过程中某时刻的截面图,伞骨AB AC =,点D ,E 分别是AB ,AC 的中点,DM ,EM 是连接弹簧和伞骨的支架,且=DM EM ,已知弹簧M 在向上滑动的过程中,总有ADM AEM △△≌,其判定依据是( )A .ASAB .AASC .SSSD .SAS6.小芳的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小芳爷爷离家的距离y (米)与时间x (分钟)之间的关系的大致图象是( )A .B .C .D .7.如图,AB=DE,AC=DF,BC=EF,则∠D 等于( )A .30°B .50°C .60°D .100°8.地表以下岩层的温度()y ℃随着所处深度(km)x 的变化而变化,在某个地点y 与x 的部分对应数据如下表,则该地y 与x 的关系可以近似的表示为( )A .3520y x =+B .3520y x =+C .45y x =D .35y x =9.如图①所示(图中各角均为直角),动点P 从点A 出发,沿A B C D E →→→→路线匀速运动,AFP V 的面积y (2cm )随点P 运动的时间x (s )之间的函数关系图象如图②所示,已知6cm AF =,下列说法错误的是( )A .动点P 速度为1cm/sB .a 的值为30C .EF 的长度为10cmD .当15y =时,x 的值为810.如图,长方形ABCD 中,点E 为AD 上一点,连接CE ,将长方形ABCD 沿着直线CE 折叠,点D 恰好落在AB 的中点F 上,点G 为CF 的中点,点P 为线段CE 上的动点,连接PF 、PG ,若,,AE a ED b AF c ===,则PF PG +的最小值是( )A .a c b +-B .2b c +C .2a b c ++D .a b +二、填空题11.CD 是ABC V 的中线,它把ABC V 分成的两个三角形的周长差是5cm ,8cm BC =,则边AC 长.12.气温与海拔高度有关,一般情况下,每升高1km ,气温下降6C ︒.某山地面温度为28C ︒,请写出气温()C t ︒与高度()km h 之间的关系式:.13.如图,已知方格纸中是 4 个相同的正方形,则∠1 与∠2 的度数和为.14.如图,点E ,F 在BC 上,BE CF =,AFB DEC ∠=∠,请你添加一个条件(不添加字母和辅助线),使得ABF V ≌DCE V ,你添加的条件是.15.如图,在ABC V 中,A ∠、B ∠的平分线相交于点I ,若140AIB ∠=︒,则C ∠=度.16.尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,再分别以点C ,D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP .由作法得△OCP ≌△ODP 的根据是.17.如图,D 、E 分别是ABC V 边AB BC ,上的点,2AD BD =,BE CE =,设ADF △的面积为1S ,FCE △的面积为2S ,若36ABC S =△,则12S S -的值为.18.如图,AB CD ∥,90G FEH ∠=∠=︒,45GEF ∠=︒,60H ∠=︒,若28AEG ∠=︒,则DFH ∠=.三、解答题19.作图题:如图,已知,αβ∠∠,线段a ,求作ABC ∆,使,,A B AB a αβ∠=∠∠=∠=. (尺规作图,不写作法,保留作图痕迹).20.(1)()()2223a a a ⋅-÷;(2)20042005514145⎛⎫⎛⎫⋅ ⎪⎪⎝⎭⎝⎭.(3)先化简,再求值:22(2)()(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中2x =,12y =. 21.已知:点B 、E 、C 、F 在一条直线上,AB DE AC DF BE CF =,,∥∥.求证:ABC DEF ≌△△.22.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,C EFG ∠=∠,CED GHD ∠=∠.(1)试判断AED ∠与D ∠之间的数量关系,并说明理由; (2)若85EHF ∠=︒,25D ∠=︒,求AEM ∠的度数.23.如图,点E ,F 在CD 上,AD CB P ,DE CF =,A B ∠=∠,试判断AF 与BE 有怎样的数量和位置关系,并说明理由.24.已知:如图①,AB BD ⊥,DE BD ⊥,点C 是BD 上一点,且BC DE =,CD AB =.(1)试判断AC 与CE 的位置关系,并说明理由;(2)如图②,若把CDE V 沿直线BD 向左移动,使CDE V 的顶点C 与B 重合,AC 与BE 交于点F ,此时AC 与BE 的位置关系怎样?请说明理由;(3)图②中,若12ABC S =△,:3:1AF CF =,求四边形CDEF 的面积.。
人教版数学七年级下册第三次月考试题一、单选题(每小题3分,共36分)1.4的算术平方根是()A.-2B.2C.±2D.22.二元一次方程5a-11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解3.下列式子正确的是()A.a2>0B.a2≥0C.(a+1)2>1D.(a﹣1)2>1 4.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可以画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.2个B.3个C.4个D.5个5.下列实数中是无理数的是()A.0.38B.πC D.2276.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC7.如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A .80°B .85°C .90°D .95°8.下列语句:①同一平面上,三条直线只有两个交点,则三条直线中必有两条直线互相平行;②如果两条平行线被第三条直线所截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A .①、②是真命题B .②、③是真命题C .①、③是真命题D .以上结论皆错9.线段MN 是由线段EF 经过平移得到的,若点E(﹣1,3)的对应点M(2,5),则点F(﹣3,﹣2)的对应点N 的坐标是()A .(﹣1,0)B .(﹣6,0)C .(0,﹣4)D .(0,0)10.当a<0时,-a 的平方根是()A .aB a -C .aD .-a 11.若﹣2a m b 4与5a n+2b 2m+n 可以合并成一项,则m n 的值是()A .2B .0C .﹣1D .112.不等式组12x a x <+⎧⎨>-⎩有3个整数解,则a 的取值范围是()A .1<a≤2B .0<a≤1C .0≤a<1D .1≤a<2二、填空题13.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1),将线段MN 平移后得到线段M ′N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为_________.14.关于x 的某个不等式组的解集在数轴上表示为如图,则不等式组的解集为______.15.如果电影院中“5排7号”记作(5,7),那么(3,4)表示的意义是_____.16.若()1231a a x y --+=是关于x 、y 的二元一次方程,则a=____.17.某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.18.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P′(-y+1,x+2),我们把点P′(-y +1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,P n.若点P1的坐标为(2,0),则点P2017的坐标为____________.三、解答题19120.解方程组:35215x yx y-=⎧⎨-+=⎩.21.解不等式组21023 23xx x+>⎧⎪-+⎨≥⎪⎩.22.如图,直线AB、CD相交于点O,OE平分∠BOC,∠COF=90°,(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.23.如图,已知∠1=∠2,∠3+∠4=180°.求证:AB∥EF24.某花卉种植基地欲购进甲、乙两种君子兰进行培育.若购进甲种2株,乙种3株,则共需成本l700元;若购进甲种3株,乙种l 株.则共需成本l500元.(1)求甲、乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购入甲、乙两种君子兰,若购入乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?25.已知,在平面直角坐标系中,点A,B 的坐标分别是(a,0),(b,0)420a b ++-=.(1)求a,b 的值;(2)在y 车由上是否存在点C ,使三角形ABC 的面积是12?若存在,求出点C 的坐标;若不存在,请说明理由.(3)已知点P 是y 车由正半轴上一点,且到x 车由的距离为3,若点P 沿x 轴负半轴方向以每秒1个单位长度平移至点Q ,当运动时间t 为多少秒时,四边形ABPQ 的面积S 为15个平方单位写出此时点Q 的坐标.参考答案1.B【解析】试题分析:因22=4,根据算术平方根的定义即可得4的算术平方根是2.故答案选B.考点:算术平方根的定义.2.B【解析】【详解】解:二元一次方程5a-11b=21中a,b都没有限制故a,b可任意实数,只要方程成立即可,故原成有无数解,故选B3.B【解析】试题分析:根据偶次方具有非负性解答即可.解:a2≥0,A错误;B正确;(a+1)2≥0,C错误;(a﹣1)2≥0,D错误.故选B.考点:非负数的性质:偶次方.4.C【解析】①一条直线有无数条垂线,故①错误;②不相等的两个角一定不是对顶角,故②正确;③在同一平面内,两条不相交的直线叫做平行线,故③错误;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等或互补,故④错误;⑤不在同一直线上的四个点可画4或6条直线,故⑤错误;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,故⑥正确.所以错误的有4个,故选C.5.B【解析】根据无理数的三种形式,结合选项找出无理数的选项.解:A、0.38是有理数,故本选项错误;B、π是无理数,故本选项正确;C、=2,是有理数,故本选项错误;D、227是有理数,故本选项错误.故选B.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.6.C【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.故选C.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.B【解析】试题分析:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.考点:平行线的性质.8.A【解析】三条直线只有两个交点,则其中两条直线互相平行,所以①正确;如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直,所以②正确;过直线外一点有且只有一条直线与已知直线平行,所以③错误。
江苏省扬州市2022~2023学年七年级下学期第一次月考数学试题一、选择题:(本大题共8小题,每小题3分,共24分)1. 下列计算正确的是 ( )A. B. C. D. 325a a a+=326a a a ⋅=236(2)8a a -=-()340a a a a ÷=≠2. 计算的结果是( )()32a -A. B. C. D. 5a 5a -6a 6a -3. 如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3的度数等于( )A. 25°B. 30°C. 45°D. 55°4. 若,则 ( )0(1)x x -=A. B. C. D. 1x =1x =-1x =±1≥x 5. 一个多边形的每个内角均为135°,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形6. 在下列条件中,①∠A+∠B=∠C ; ②∠A :∠B :∠C=1:2:3; ③∠A=∠B=∠C ;1213 ④∠A=∠B=2∠C ; ⑤∠A=2∠B=3∠C ,能确定△ABC 为直角三角形的条件有( )A. 2个B. 3个C. 4个D. 5个7. 如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m ,n ,则m﹣n 等于( )A. 2B. 3C. 4D. 无法确定8. 如图,将一条长为60cm 的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1:2:3,则折痕对应的刻度的可能性有( )A. 4种B. 5种C. 6种D. 7种二、填空题:(本大题共10小题,每小题3分,共30分)9. 已知,则=________.128m =m 10. 已知某种植物花粉的直径为0.00035米,用科学记数法表示该种花粉的直径是_______米.11. 已知,,则_______.5ma =7n a =2m n a -=12. 已知三角形的两边长分别为5和7,则第三边的取值范围是_______.x 13. 如图,在△ABC 中,∠B =42°,∠C =64°,AD 平分∠BAC ,交BC 于D ,DE AB ,交AC 于E ,则∠ADE ∥的大小是_______°14. 如图所示,分别以n 边形的顶点为圆心,以1cm 为半径画圆,则图中阴影部分的面积之和为________.15. 用等腰直角三角板画,并将三角板沿方向平移到如图所示的虚线处后绕点逆时针45AOB ∠= OB M 方向旋转,则三角板的斜边与射线的夹角为______.22OA α16. 如图,将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,则∠1+∠2的度数为_____°.17. 若,则x 的值为________.()121x x +-=18. 如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别是4、5、8,则四边形DHOG 的面积是________.三、解答题:(本大题共10小题,共96分)19. 计算:(1);()()32x x x -÷⋅-(2);()()332a a -⋅-(3);()()()()24331111m m m m -⋅-+-⋅-(4).20172018522125⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭20. 如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1;(2)图中AC 与A 1C 1的关系是:_____.(3)画出△ABC 的AB 边上的高CD ;垂足是D ;(4)图中△ABC 的面积是_____.21.(1)若,,求的值.32x =35y =9x y -(2)已知,求的值.26279ba ==ab +(3)已知,,用含有m ,n 的代数式表示.3x m =5x n =14x 22. 比较274与813的大小,并说明理由.23. 一个多边形,它所有的内角与一个外角的和为1700°,求这个多边形的边数与这一个外角的度数.24. 如图,已知∠A =∠F ,∠C =∠E ,求证:BE ∥CD .25. 已知:如图,BC //DE ,BE 、DF 分别是∠ABC 、∠ADE 的平分线. 求证:∠1=∠2.26. 如图,已知∠ABC +∠ECB =180°,∠P =∠Q .求证:∠1=∠2.27. 如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC ,M 为边AC 上一点,ME ⊥BC ,垂足为E ,∠AME 的平分线交直线AB 于点F .试说明BD 与MF 的位置关系,并说明理由.28. 直线与直线垂直相交于点O ,点A 在直线上运动,点B 在直线上运动.MN PQ PQ MN(1)如图1,已知分别是和角的平分线,点在运动的过程中,的大AE BE 、BAO ∠ABO ∠AB 、AEB ∠小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出的大小.AEB ∠(2)如图2,已知不平行分别是和的角平分线,又分别是AB CD AD BC ,、BAP ∠ABM ∠DE CE 、和的角平分线,点在运动的过程中,的大小是否会发生变化?若发生变化,ADC ∠BCD ∠A B 、CED ∠请说明理由;若不发生变化,试求出的度数.CED ∠(3)如图3,延长至G ,已知的角平分线与的角平分线及反向延长线相交于BA BAO OAG ∠∠、BOQ ∠,在中,如果有一个角是另一个角的3倍,则的度数为____(直接写答案)E F 、AEF ABO ∠江苏省扬州市2022~2023学年七年级下学期第一次月考数学试题一、选择题:(本大题共8小题,每小题3分,共24分)1. 下列计算正确的是 ( )A. B. C. D.325a a a +=326a a a ⋅=236(2)8a a -=-()340a a a a ÷=≠C【详解】解:A .不是同类项,不能合并,故A 错误;B .,故B 错误;325a a a ⋅=C .,故C 正确;236(2)8a a -=-D .,故D 错误.3411a a a a -÷==故选C .2. 计算的结果是( )()32a -A. B. C. D. 5a 5a -6a 6a -D【详解】试题分析:根据幂的乘方和积的乘方运算法则计算作出判断:.()()3322361a a a ⨯-=-⋅=-故选D.考点:幂的乘方和积的乘方.3. 如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3的度数等于 ( )A. 25°B. 30°C. 45°D. 55°A【详解】解:如图.∵a ∥b ,∴∠4=∠2=55°.又∵∠4=∠1+∠3,∴∠3=∠4-∠1=55°-30°=25°.故选A.4. 若,则 ( )0(1)x x -=A. B. C. D. 1x =1x =-1x =±1≥x B【详解】解:当x ≠1时,,∴且x ≠1,解得:x =-1.故选B .0(1)1x -=1x =5. 一个多边形的每个内角均为135°,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形D 【详解】解:正多边形的每个外角都相等,每个外角为,18013545︒-︒=︒多边形的外角和为,360︒所以边数为:360458︒÷︒=故选:D.6. 在下列条件中,①∠A+∠B=∠C ; ②∠A :∠B :∠C=1:2:3; ③∠A=∠B=∠C ;1213 ④∠A=∠B=2∠C ; ⑤∠A=2∠B=3∠C ,能确定△ABC 为直角三角形的条件有( )A. 2个B. 3个C. 4个D. 5个B 【详解】①因为∠A+∠B=∠C ,则2∠C=180°,∠C=90°,符合题意;②因为∠A :∠B :∠C=1:2:3,设∠A=x ,则x+2x+3x=180,x=30,∠C=30°×3=90°,符合题意;③因为∠A=∠B=∠C ,设∠A=x ,则x+2x+3x=180,x=30,∠C=30°×3=90°,符合题意;1213④因为∠A=∠B=2∠C ,设∠C=x ,则x+2x+2x=180,x=36,∠B=∠A=36°×2=72°,不符合题意;⑤因为∠A=2∠B=3∠C ,设∠A=6x ,则∠B=3x , ∠C=2 x ,6x+3x+2x=180 ,解得x= ,∠A= ,不符合题意;18011108011所以能确定△ABC 是直角三角形的有①②③共3个.故选B .本题要能够结合已知条件和三角形的内角和定理求得角的度数,根据直角三角形的定义进行判定.7. 如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m ,n ,则m﹣n 等于( )A. 2B. 3C. 4D. 无法确定B 【详解】试题分析:设空白出图形的面积为x,根据题意得:m+x=9,n+x=6,则m n=9 6=3.故选B .考点:三角形的面积.8. 如图,将一条长为60cm 的卷尺铺平后折叠,使得卷尺自身的一部分重合,然后在重合部分(阴影处)沿与卷尺边垂直的方向剪一刀,此时卷尺分为了三段,若这三段长度由短到长的比为1:2:3,则折痕对应的刻度的可能性有 ( )A. 4种B. 5种C. 6种D. 7种A 【详解】解:∵三段长度由短到长的比为1:2:3,∴三段长度分别为:10cm ,20cm ,30cm .①当剪切处右边上部分的长度为10cm ,剪切处左边的卷尺为20cm 时,折痕处为:10+20÷2=20cm ;②当剪切处右边上部分的长度为10cm ,剪切处左边的卷尺为30cm 时,折痕处为:10+30÷2=25cm ;③当剪切处右边上部分的长度为20cm ,剪切处左边的卷尺为10cm 时,折痕处为:20+10÷2=25cm ;④当剪切处右边上部分的长度为20cm ,剪切处左边的卷尺为30cm 时,折痕处为:20+30÷2=35cm ;⑤当剪切处右边上部分的长度为30cm ,剪切处左边的卷尺为10cm 时,折痕处为:30+10÷2=35cm ;⑥当剪切处右边上部分的长度为30cm ,剪切处左边的卷尺为20cm 时,折痕处为:30+20÷2=40cm ;综上所述:折痕对应的刻度有4种可能.故选A .点睛:本题考查了图形的剪拼,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意分类思想的运用.二、填空题:(本大题共10小题,每小题3分,共30分)9. 已知,则=________.128m =m -3【详解】解:,∴m =-3.故答案为-3.31228m -==10. 已知某种植物花粉的直径为0.00035米,用科学记数法表示该种花粉的直径是_______米.-43.510⨯【详解】解:0.00035=.43.510-⨯故答案为.43.510-⨯11. 已知,,则_______.5ma =7n a =2m n a -=257【分析】首先应用含a m 、a n 的代数式表示a 2m-n ,然后将a m 、a n 的值代入即可求解.【详解】解:==25÷7=.22m n m n a a a -=÷2()m na a ÷257故答案为.257本题主要考查了同底数幂的除法,幂的乘方,熟练掌握运算性质并灵活运用是解题的关键.x12. 已知三角形的两边长分别为5和7,则第三边的取值范围是_______.x2<<12【详解】解:由题意得:7-5<x<7+5,即2<x<12.故答案为2<x<12.∥13. 如图,在△ABC中,∠B=42°,∠C=64°,AD平分∠BAC,交BC于D,DE AB,交AC于E,则∠ADE 的大小是_______°37【分析】根据平行线的性质可得∠ADE=∠BAD,然后可得∠BAC=74°,进而问题可求解∥【详解】解:∵DE AB,∴∠ADE=∠BAD,∵∠B=42°,∠C=64°,∴∠BAC=180°-42°-64°=74°.∵AD平分∠BAC,∴∠BAD=37°,∴∠ADE=37°.故答案为37.本题考查了三角形内角和定理以及角平分线的定义,得到∠ADE=∠BAD是解题的关键.14. 如图所示,分别以n边形的顶点为圆心,以1cm为半径画圆,则图中阴影部分的面积之和为________.【详解】单独一个个求扇形的面积是不可能的,由于所有扇形的圆心角的和正好是多边形的外角和,而多边形的外角和为360°,因此所有扇形正好组成一个半径1的圆.15. 用等腰直角三角板画,并将三角板沿方向平移到如图所示的虚线处后绕点逆时针45AOB ∠= OB M 方向旋转,则三角板的斜边与射线的夹角为______.22OA α22【分析】根据平移的性质,对应线段平行,再根据旋转角为22°进行计算.【详解】如图,根据题意,得∠AOB =45°,M 处三角板的45°角是∠AOB 的对应角,根据三角形的外角的性质,可得三角板的斜边与射线OA 的夹角为22°.故答案为22.平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.本题关键是利用了对应线段平行且对应角相等的性质.16. 如图,将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,则∠1+∠2的度数为_____°.180°【详解】∵将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,∴∠B=∠HOG,∠A=∠DOE,∠C=∠EOF,∠1+∠2+∠HOG+∠EOF+∠DOE=360°,∵∠HOG+∠EOF+∠DOE=∠A+∠B+∠C=180°,∴∠1+∠2=360°−180°=180,故答案为180.17. 若,则x 的值为________.()121x x +-=3或1或-1【分析】分底数为1或-1,指数为0几种情况,分类讨论,列方程求解即可.【详解】解:当,解得:,21x -=3x =此时,()121x x +-=当,解得:,21x -=-1x =此时,()()12211x x +-=-=当,解得:,此时,10x +=1x =-()()102121x x +-=--=综上所述:的值为:3或1或-1.x 故3或1或-1.本题考查了乘方的性质、0指数的性质,解题关键是根据底数和指数进行分类讨论,注意:0指数底数不为0.18. 如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别是4、5、8,则四边形DHOG 的面积是________.7【详解】解:连接OC ,OB ,OA ,OD .∵E 、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,∴S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE .∵S 四边形AEOH =4,S 四边形BFOE =5,S 四边形CGOF =8,∴4+8=5+S 四边形DHOG ,解得:S 四边形DHOG =7.故答案为7.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而得到结论.三、解答题:(本大题共10小题,共96分)19. 计算:(1);()()32x x x -÷⋅-(2);()()332a a -⋅-(3);()()()()24331111m m m m -⋅-+-⋅-(4).20172018522125⎛⎫⎛⎫-⨯ ⎪ ⎪⎝⎭⎝⎭(1) 4x -(2) 9a (3)0 (4)125-【分析】(1)根据幂的混合运算法则计算即可;(2)根据幂的混合运算法则计算即可;(3)根据同底数幂的乘法法则计算即可;(4)根据积的乘方法则计算即可.【小问1详解】解:原式==;31+2x --4x -【小问2详解】解:原式=246(1)(1)(1)m m m -⋅---=66(1)(1)m m ---=0【小问3详解】解:原式=246(1)(1)(1)m m m -⋅---=66(1)(1)m m ---=0【小问4详解】解:原式=201751212(×)×1255-=125-本题主要考查了同底数幂的乘法,幂的乘方与积的乘方等知识,解题关键是掌握运算法则.20. 如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1;(2)图中AC 与A 1C 1的关系是:_____.(3)画出△ABC 的AB 边上的高CD ;垂足是D ;(4)图中△ABC 的面积是_____.(1)画图见解析;(2)平行且相等;(3)画图见解析;(4)8【分析】(1)根据网格结构找出点A 、B 、C 向右平移4个单位后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据平移的性质解答;(3)延长AB ,作出AB 的高CD 即可;(4)利用△ABC 所在的矩形的面积减去四周三个三角形的面积,列式计算即可得解.【详解】解:(1)如图所示,(2)根据平移的性质得出,AC 与A 1C 1的关系是:平行且相等;(3)如图所示,(4)△ABC的面积=5×7-×7×5-×7×2-×5×1=8.12121221. (1)若,,求的值.32x =35y =9x y -(2)已知,求的值.26279ba ==ab +(3)已知,,用含有m ,n 的代数式表示.3x m =5x n =14x (1) ;(2)6 ;(3)4253m n【分析】(1)逆用同底数幂的的除法法则解答即可;(2)先把原式变成求出a 、b 的值,即可得到结果;66233b a ==(3)把变成即可得到结论.14x 95x x ⋅【详解】解:(1)=;2222999(3)(3)25x y x y x y -=÷=÷=÷425(2) , , 则 ;26279b a ==∴66233b a ==∴3,3a b ==6a b +=(3).14953353()x x x x x m n =⋅=⋅=本题考查了同底数幂的乘法与幂的乘方,解决本题的关键是熟练掌握公式,灵活运用公式的逆运算.22. 比较274与813的大小,并说明理由.= 427381【详解】试题分析:把底数统一成3即可得出结论.试题解析:解:,,∴.4341227(3)3==3431281(3)3==432781=23. 一个多边形,它所有的内角与一个外角的和为1700°,求这个多边形的边数与这一个外角的度数.11;80°【分析】设边数为n ,这个外角为x 度,则0<x <180°,然后根据“所有的内角与一个外角的和为1700°”列方程,然后采用列举法即可解答.【详解】解:设边数为n ,这个外角为x 度,则0<x <180°.根据题意得:(n ﹣2)•180°+x =1700°,即(n ﹣2)•180°+x =9×180°+80°∵0<x <180°,∴x =80°,n -2=9∴x =80°,n =11.∴这个多边形的边数为11 ,这一个外角的度数为80°.本题主要考查了多边形内角和定理、二元一次方程的应用等知识点,正确设出未知数,列出二元一次方程是解答本题的关键.24. 如图,已知∠A =∠F ,∠C =∠E ,求证:BE ∥CD .见解析【分析】根据∠A=∠F,∠C=∠E,和三角形内角和定理,∠A+∠C+∠AHC=180°,∠F+∠E+∠FGE=180°,得出∠AHC=∠FGE,根据平行线的判定定理,内错角相等,两直线平行,即可判定BE∥CD.【详解】如图,∵∠A=∠F,∠C=∠E,又∵∠A+∠C+∠AHC=180°,∠F+∠E+∠FGE=180°,∴∠AHC=∠FGE,∴BE∥CD此题主要考查平行线的判定定理,熟练运用,即可解题.25. 已知:如图,BC//DE,BE、DF分别是∠ABC、∠ADE的平分线. 求证:∠1=∠2.见解析【分析】根据平行线的性质得出∠ABC =∠ADE ,根据角平分线定义得出∠3=∠ABC ,∠4=∠ADE ,求出1212∠3=∠4,根据平行线的判定得出DF //BE ,根据平行线的性质即得出可结论.【详解】证明:∵BC //DE ,∴∠ABC =∠ADE .∵BE 、DF 分别是∠ABC 、∠ADE 的平分线,∴∠3=∠ABC ,∠4=∠ADE ,1212∴∠3=∠4,∴DF //BE ,∴∠1=∠2.26. 如图,已知∠ABC +∠ECB =180°,∠P =∠Q .求证:∠1=∠2.见解析【分析】由同旁内角互补,两直线平行得到AB ∥CD ,进而得到∠ABC =∠BCD ,再由∠P =∠Q ,得到PB ∥CQ ,从而有∠PBC =∠QCB ,根据等式性质得到∠1=∠2.【详解】证明:∵∠ABC +∠ECB =180°,∴AB ∥CD ,∴∠ABC =∠BCD .∵∠P =∠Q ,∴PB ∥CQ ,∴∠PBC =∠QCB ,∴∠ABC ﹣∠PBC =∠BCD ﹣∠QCB ,即∠1=∠2.本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.27. 如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC ,M 为边AC 上一点,ME ⊥BC ,垂足为E ,∠AME 的平分线交直线AB 于点F .试说明BD 与MF 的位置关系,并说明理由.BD MF∥【分析】根据角平分线的定义与四边形的内角和定理求出∠ABD +∠AMF =90°,又∠AFM +∠AMF =90°,得到∠ABD =∠AFM ,然后根据同位角相等,两直线平行可得BD MF .∥【详解】解: BD MF .理由如下:∥∵∠A =90°,ME ⊥BC ,∴∠ABC +∠AME =360° 90°×2=180°.∵BD 平分∠ABC ,MF 平分∠AME ,∴∠ABD =∠ABC ,∠AMF =∠AME ,1212∴∠ABD +∠AMF =(∠ABC +∠AME )=90°.12又∵∠AFM +∠AMF =90°,∴∠ABD =∠AFM ,∴BD MF .∥本题考查了直角三角形的性质,垂线的定义,平行线的判定,三角形的内角和定理.正确识图,准确找出角度之间的关系是解题的关键.28. 直线与直线垂直相交于点O ,点A 在直线上运动,点B 在直线上运动.MN PQ PQ MN(1)如图1,已知分别是和角的平分线,点在运动的过程中,的大AE BE 、BAO ∠ABO ∠AB 、AEB ∠小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出的大小.AEB ∠(2)如图2,已知不平行分别是和的角平分线,又分别是AB CD AD BC ,、BAP ∠ABM ∠DE CE 、和的角平分线,点在运动的过程中,的大小是否会发生变化?若发生变化,ADC ∠BCD ∠A B 、CED ∠请说明理由;若不发生变化,试求出的度数.CED ∠(3)如图3,延长至G ,已知的角平分线与的角平分线及反向延长线相交于BA BAO OAG ∠∠、BOQ ∠,在中,如果有一个角是另一个角的3倍,则的度数为____(直接写答案)E F 、AEF ABO ∠(1)不发生变化,∠AEB =135°;(2)不发生变化,∠CED =67.5°;(3)60°或45°【分析】(1)根据直线MN 与直线PQ 垂直相交于O 可知∠AOB =90°,再由AE 、BE 分别是∠BAO 和∠ABO 的角平分线得出∠BAE =∠OAB ,∠ABE =∠ABO ,由三角形内角和定理即可得出结论;1212(2)延长A D 、BC 交于点F ,根据直线MN 与直线PQ 垂直相交于O 可得出∠AOB =90°,进而得出∠OAB +∠OBA =90°,故∠PAB +∠MBA =270°,再由A D 、BC 分别是∠BAP 和∠ABM 的角平分线,可知∠BAD =∠BAP ,∠ABC =∠ABM ,由三角形内角和定理可知∠F =45°,再根据DE 、CE 分别是∠ADC 1212和∠BCD 的角平分线可知∠CDE +∠DCE =112.5°,进而得出结论;(3)由∠BAO 与∠BOQ 的角平分线相交于E 可知∠EAO =∠BAO ,∠EOQ =∠BOQ ,进而得出∠E 的1212度数,由AE 、AF 分别是∠BAO 和∠OAG 的角平分线可知∠EAF =90°,在△AEF 中,由一个角是另一个角的3倍分四种情况进行分类讨论.【详解】解:(1)∠AEB 的大小不变,∵直线MN 与直线PQ 垂直相交于O ,∴∠AOB =90°,∴∠OAB +∠OBA =90°,∵AE 、BE 分别是∠BAO 和∠ABO 角的平分线,∴∠BAE =∠OAB ,∠ABE =∠ABO ,1212∴∠BAE +∠ABE =(∠OAB +∠ABO )=45°,12∴∠AEB =135°;(2)∠CED 的大小不变.延长A D 、BC 交于点F .∵直线MN 与直线PQ 垂直相交于O ,∴∠AOB =90°,∴∠OAB +∠OBA =90°,∴∠PAB +∠MBA =270°,∵AD 、BC 分别是∠BAP 和∠ABM 的角平分线,∴∠BAD =∠BAP ,∠ABC =∠ABM ,1212∴∠BAD +∠ABC =(∠PAB +∠ABM )=135°,12∴∠F =45°,∴∠FDC +∠FCD =135°,∴∠CDA +∠DCB =225°,∵DE 、CE 分别是∠ADC 和∠BCD 的角平分线,∴∠CDE +∠DCE =112.5°,∴∠CED =67.5°;(3)∵∠BAO 与∠BOQ 的角平分线相交于E ,∴∠EAO =∠BAO ,∠EOQ =∠BOQ ,1212∴∠E =∠EOQ -∠EAO =(∠BOQ -∠BAO )=∠ABO ,1212∵AE 、AF 分别是∠BAO 和∠OAG 的角平分线,∴∠EAF =90°.在△AEF 中,∵有一个角是另一个角的3倍,故有:①∠EAF =3∠E ,∠E =30°,∠ABO =60°;②∠EAF =3∠F ,∠E =60°,∠ABO =120°(舍弃);③∠F =3∠E ,∠E =22.5°,∠ABO =45°;④∠E =3∠F ,∠E =67.5°,∠ABO =135°(舍弃).∴∠ABO为60°或45°.故60°或45°.本题考查的是平行线的判定和性质,三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.第23页/共23页。
七年级数学下册第三次月考试题卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第四章《三角形》班级姓名得分一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.下列运算正确的是()A. (−x)2·x3=x6B. (−x)3÷x=x2C. 3x2yz÷(−xy)=−3xzD. (a−b)6÷(a−b)3=a3−b32.如图,点F,E分别在线段AB和CD上,下列条件能判定AB//CD的是()A. ∠1=∠2B. ∠1=∠4C. ∠4=∠2D. ∠3=∠43.有一辆汽车储油45升,从某地出发后,每行驶1千米耗油0.1升,如果设剩余油量为(升,行驶的路程为(千米),则与的关系式为A. y=45−0.1xB. y=45+0.1xC. y=45−xD. y=45+x4.已知BD是△ABC的中线,AB=4,AC=3,BD=5,则△ABD的周长为()A.12B. 10.5C. 10D. 8.55.如图,已知△ABC的六个元素,而在图甲、乙、丙中,仅已知甲、乙、丙三个三角形中某些元素,则与△ABC一定全等的三角形是()A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙6.2020年初以来,红星消毒液公司生产的消毒液在库存量为m吨的情况下,日销售量与产量持平.自1月底抗击“新冠病毒”以来,消毒液需求量猛增,该厂在生产能力不变的情况下,消毒液一度脱销,下面表示2020年初至脱销期间,该厂库存量y(吨)与时间t(天)之间关系的大致图象是()A. B. C. D.7.下列说法中正确的是()A. 如果|x|=7,那么x一定是7B. −a表示的数一定是负数C. 射线AB和射线BA是同一条射线D. 一个锐角的补角比这个角的余角大90°8.设a=355,b=444,c=533,则a、b、c的大小关系是()A. c<a<bB. a<b<cC. b<c<aD. c<b<a9. 如果二次三项式x 2−14x +m 2是一个完全平方式,那么m 的值是( ) A. 7 B. ±7 C. 49 D. √1410. 如图,在长方形ABCD 中,AB =6cm ,BC =8cm ,点E 是AB 上的一点,且AE =2BE.点P 从点C 出发,以2cm/s 的速度沿点C −D −A −E 匀速运动,最终到达点E.设点P 运动时间为ts ,若三角形PCE 的面积为18cm 2,则t 的值为( )A. 98或194B. 98或194或274C. 94或6 D. 94或6或274 二、填空题(本大题共5小题,共20.0分)11. 如图,已知BD 是△ABC 的中线,AB =5,BC =3,△ABD 和△BCD 的周长的差是 .12. 某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶,在行驶过程中,油箱的余油量y(升)与行驶时间t(小时)之间的关系如下表:t(小时)0 1 2 3 y(升) 120 112 104 96由表格中y 与t 的关系可知,当汽车行驶 小时时,油箱的余油量为0升. 13. 如图,点O 在直线AB 上,OC ⊥OD ,OC ,OF 分别平分∠AOE 和∠BOD.若∠AOC =20∘,则∠BOF 的度数为 .14. 若2x =5,2y =1,2z =6.4,则x +y +z = .15. 如图所示,与∠A 是同旁内角的角共有______个.三、解答题(本大题共10小题,共100.0分)16. (8分)化简(2a +b)(b −2a)−(a −2b)2+4a(a −b)中,其中a =3,b =−217. (10分)如图,点O 是直线AB 上任一点,射线OD 和射线OE 分别平分∠AOC 和∠BOC .(1)填空:与∠AOE 互补的角有______;(2)若∠COD =30°,求∠DOE 的度数;(3)当∠AOD =α°时,请直接写出∠DOE 的度数.18.(10分)如图,四边形ABCD中,AB//CD,CD=AD,∠ADC=60°,对角线BD平分∠ABC交AC于点P.CE是∠ACB的角平分线,交BD于点O.(1)请求出∠BAC的度数;(2)试用等式表示线段BE、BC、CP之间的数量关系,并说明理由.19.(10分)如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一直线上,连接BD.(1)△BAD与△CAE全等吗?为什么?(2)试猜想BD,CE有何特殊位置关系,并说明理由.20.(10分)棱长为a的小正方体,按照下图的方法继续摆放,自上而下分别叫第一层、第二层、…、第n层.第n层的小正方体的个数记为S.解答下列问题:(1)按要求填写下表:n1234…S13…(2)研究上表可以发现S随n的变化而变化,且S随n的增大而增大有一定的规律,请你用式子来表示S与n的关系,并计算当n=10时,S的值为多少?21.(8分)如图,直线AB,CD相交于点O,∠1=35∘,∠2=75∘,求∠EOB的度数.22.(10分)数学课上,老师出了这样一道题:先化简,再求值:(2x+y)(2x−y)−(2x−y)2+2y2,其中xy=2021.小亮一看,题中没有给出x和y的值,只给出了xy的值,所以小亮认为根据题中条件不可能求出题目的值.你认为小亮的说法正确吗⋅请说明理由.23.(10分)陈杰骑自行车去上学,当他以往常的速度骑了一段路时,忽然想起要买某本书,于是又折回到刚经过的一家书店,买到书后继续赶去学校.以下是他本次上学所用的路程与时间的关系示意图.根据图中提供的信息回答下列问题:(1)陈杰家到学校的距离是多少米?书店到学校的距离是多少米?(2)陈杰在书店停留了多少分钟?本次上学途中,陈杰一共行驶了多少米?(3)在整个上学的途中哪个时间段陈杰骑车速度最快?最快的速度是多少米?(4)如果陈杰不买书,以往常的速度去学校,需要多少分钟?本次上学比往常多用多少分钟?24.(12分)在平面直角坐标系中,O为原点,点A(2,0),点B(0,3).(Ⅰ)如图①,三角形AOB的面积为______;(Ⅱ)如图②,将线段AB向右平移2个单位长度,再向上平移1个单位长度,得到线段A1B1,求三角形OA1B1的面积;(Ⅲ)如图①,在x轴上是否存在点C,使三角形ABC的面积等于6.若存在,求点C 的坐标;若不存在,请说明理由.25.(12分)如图,将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)判断大小关系:∠AOD______∠BOC(填>、=、<等);(2)若∠BOD=35°,则∠AOC=____________;若∠AOC=135°,则∠BOD=__________;(3)猜想∠AOC与∠BOD的数量关系,并说明理由.答案1.C2.B3.A4.B5.B6.D7.D8.A9.B10.C11.212.1513.35°14.515.416.解:原式=b2−4a2−a2+4ab−4b2+4a2−4ab =−3b2−a2,当a=3,b=−2时,原式=−3×4−9=−12−9=−21.17.解:(1)∠BOE、∠COE;(2)∵OD、OE分别平分∠AOC、∠BOC,∠BOC,∴∠COD=∠AOD=30°,∠COE=∠BOE=12∴∠AOC=2×30°=60°,∴∠BOC=180°−60°=120°,∠BOC=60°,∴∠COE=12∴∠DOE=∠COD+∠COE=90°;(3)当∠AOD=α°时,∠DOE=90°.18.(1)解:∵CD=AD,∠ADC=60°,∴△ACD为等边三角形,∵AB//CD,∴∠ACD=60°,∴∠BAC=∠ACD=60°;(2)证明::在BC上截取BF=BE,∵BD平分∠ABC,∴∠EBO=∠OBF,∵OB=OB,∴△BEO≌△BFO(SAS),∴∠BOE=∠BOF,∵∠BAC=60°,CE是∠ACB的角平分线,∴∠OBC=∠OCB=60°,∴∠POC=∠BOE=60°,∴∠COF=60°,∴∠COF=∠POC,又∵OC=OC,∠OCP=∠OCF,∴△CPO≌△CFO(ASA),∴CP=CF,∴BC=BF+CF=BE+CP.19.解:(1)全等.因为∠BAC=∠DAE=90°,所以∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.在△BAD和△CAE中,所以△BAD≌△CAE(SAS).(2)BD,CE的特殊位置关系为BD⊥CE.理由:由(1)知△BAD≌△CAE,所以∠ADB=∠E.因为∠DAE=90°,所以∠E+∠ADE=90°.所以∠ADB+∠ADE=90°,即∠BDE=90°.所以BD,CE的特殊位置关系为BD⊥CE.20.解:(1)6,10(2)S=n(n+1).2=55.当n=10时,S=10×(10+1)221.解:因为∠1与∠DOB是对顶角,所以∠DOB=∠1=35∘.又因为∠2=75∘,所以∠EOB=∠2+∠DOB=75∘+35∘=110∘.22.解:不正确.理由如下:因为(2x+y)(2x−y)−(2x−y)2+2y2=4x2−y2−4x2+4xy−y2+2y2=4xy.所以,当xy=2021时,原式=4×2021=8084.23.解:(1)陈杰家到学校的距离是1500米,1500−600=900(米).所以书店到学校的距离是900米.(2)12−8=4(分钟),所以陈杰在书店停留了4分钟.1200+(1200−600)+(1500−600)=2700(米),所以本次上学途中,陈杰一共行驶了2700米.(3)(1500−600)÷(14−12)=450(米/分钟),所以在整个上学的途中12分钟到14分钟时段陈杰骑车速度最快,最快的速度是450米/分钟.(4)1500÷(1200÷6)=7.5(分钟),14−7.5=6.5(分钟),所以陈杰以往常的速度去学校,需要7.5分钟,本次上学比往常多用6.5分钟.答:陈杰以往常的速度去学校,需要7.5分钟,本次上学比往常多用6.5分钟.24.解:(Ⅰ)如图①中,∵A(2,0),点B(0,3),∴OA=2,OB=3,∴S△AOB=12⋅OA⋅OB=12×2×3=3.故答案为3.(Ⅱ)如图②中,过点B1作B1E⊥x轴于E,过点A1作A1F⊥x轴于F.由题意A1(4,1),B1(2,4),∴E(2,0),F(4,0),∴OE=2,EB1=4,EF=2,A1F=1,∴S△OA1B1=S△AB1E+S梯形EFA1B1−S△OFA1=12×2×4+12×(4+1)×2−12×1×4=7.(Ⅲ)如图1−1中,存在点C.设C(m,0),由S△ABC=12×AC×OB=6,可知12×|2−m|×3=6,解得m=−2或6,∴C(−2,0)或C(6,0).25.解:(1)=;(2)145°;45°;(3)猜想:∠AOC+∠BOD=180°,理由:依题意∠AOB=∠DOC=90°,∴∠AOC+∠BOD=(∠AOB+∠BOC)+∠BOD,=∠AOB+(∠BOC+∠BOD),=∠AOB+∠DOC=90°+90°,=180°.。
七年级下三角形数学试题月考卷一、选择题(每题3分)1.如图,在△ABC 中,∠B=46°,∠C=54°,AD 平分∠BAC ,交BC 于D ,DE ∥AB ,交AC 于E ,则∠ADE 的大小是( )A .45°B .54°C .40°D .50°2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是( )A. 5B. 10C. 11D. 123.图(1)是四边形纸片ABCD ,其中∠B=120︒,∠D=50︒。
若将其右下角向内折出∆PCR ,恰使CP//AB ,RC//AD ,如图(2)所示,则∠C 为( )A .80︒B .85︒C .95︒D .110︒4.如图,在△ABC 和△DEC 中,∠BCE=∠ACD ,BC=EC请你,添加一个条件,使得△ABC 和△DEC 全等。
并加以证明。
你添加的条件是5.如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E、点F ,△ABC 中BC 边上的高是( )A.CF ;B.BE ;C.AD ;D.CD ;6.如图,BE 、CF 都是△ABC 的角平分线,且∠BDC=1100,则∠A 的度数为 ( )A B C DP R 图(2) AB C D 图(1)(A) 500 (B) 400 (C) 700 (D) 3507.以下列各组线段为边,能组成三角形的是( )A .2cm 、2cm 、4cmB .8cm 、6cm 、3cmC .2cm 、6cm 、3cmD .11cm 、4cm 、6cm8.已知如图DE 是△ABC 的中位线,AF 是BC 边上的中线,DE 、AF 交于点O 。
现有以下结论:①DE ∥BC ;②;③AO=FO )A .1B .2C .3D .49.下列命题中的真命题是( )A .锐角大于它的余角B .锐角大于它的补角C .钝角大于它的补角D .锐角与钝角之和等于平角10.如图,∠ACB=90°,CD ⊥AB ,垂足为D ,下列结论错误的是( )A.有三个直角三角形B.∠1=∠2C.∠1和∠B 都是∠A 的余角D.∠2=∠A11.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°, 则3∠的度数等于( )A .50°B .30°C .20°D .15°12.如图,090=∠ACD ,015=∠D ,B 点在AD 的垂直平分线上,若AC=4,则BD 等于( )A、10B、8C、6D、413.到△ABC的三个顶点距离相等的点是△ABC的( ).A.三条中线的交点 B.三条角平分线的交点C.三条高的交点 D.三条边的垂直平分线的交点14.下面关于直角三角形的全等的判定,不正确的是( ).A.有一锐角和一边对应相等的两个直角三角形全等B.有两边对应相等的两个直角三角形全等C.有两角对应相等,且有一条公共边的两个直角三角形全等D.有两角和一边对应相等的两个直角三角形全等15.下列三条线段能构成三角形的是( )A.1,2,3 B.20,20,30 C.30,10,15 D.4,15,7二、填空题(每题3分)16.如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是(填出一个即可).17.如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△FCE的面积为S2,若S△ABC=6,则S1-S2的值为____________.18.将一副学生用三角板按如图所示的方式放置.若AE∥BC,则∠AFD的度数是 _________.19.如图,AB∥CD,AD与BC交于点E,EF是∠BED的平分线,若∠1=30°,∠2=40°,则∠BEF= 度.20.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,∠A=50°,∠ADE=60°,则∠C= .21.如图,将纸片△ABC 沿DE 折叠,点A 落在点A 1处,已知∠1+∠2=100°,则∠A= 。
22.△ABC ≌△DEF ,且△ABC 的周长为12,若AB=3,EF=4,AC = .23.在△ABC 中,AB =5,AC =3,AD 是BC 边上的中线,则AD 的取值范围是 .24.如下图,将ABC ∆的各边都延长一倍至A '、B '、C ',连接这些点,得到一个新的三角形A B C ''',若ABC ∆的面积为3,则A B C '''∆的面积是25.如下图,在△ABC 中,∠B=600,∠C=400,AD ⊥BC 于D ,AE 平分∠BAC ;则∠DAE= .26.在△ABC中,点I是内心,若∠A=40°,则∠BIC的度数为__________。
三、解答题27.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使CE=AC,求证:DA=DE.28.如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.(1)求证:BE=CE;(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.29.如图,AB是Oe的切线BD交AC的延长线于点D,E e的直径,C是的中点,O是OB的中点,CE的延长线交切线BD于点F,AF交Oe于点H,连接BH.(1)求证:AC CD=;(2)若2OB=,求BH的长.30.如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =.求证:A E ∠=∠.31.如图,在△ABC 中,∠ACB=90º, D 是AC 上的一点,且AD=BC ,DE ⊥AC 于D , ∠EAB=90º.求证:AB=AE .32.如图,∠AOB=90°, OA =OB ,,直线EF 经过点O ,AC ⊥EF 与点C ,BD ⊥EF 与点D ,求证:AC=OD .33.已知:如图,△MNQ 中,MQ ≠NQ .(1)请你以MN 为一边,在MN 的同侧构造一个与△MNQ 全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:B=∠.求证:CD=AB .34.已知:如图,E 是AC 上一点,AB=CE ,AB ∥CD ,∠ACB =∠D .求证:BC =ED .35.Rt ΔABC 中,∠C=90°,点D 、E 分别是ΔABC 边AC 、BC 上的点,点P 是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠.(1)若点P 在线段AB 上,如图(1)所示,且∠=50°,则∠1+∠2= ___________ °;(2)若点P 在边AB 上运动,如图(2)所示,则∠、∠1、∠2之间有何关系?(3)若点P 在Rt △ABC 斜边BA 的延长线上运动(CE <CD ),则∠、∠1、∠2之间有何关系?猜想并说明理由。
36.已知如图,射线CB ∥OA ,∠C=∠OAB=100°,E 、F 在CB 上,且满足∠FOB=∠AOB ,OE 平分∠COF 。
(1)求∠EOB 的度数;(2)若平行移动AB ,那么∠OBC ∶∠OFC 的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由。
37.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC的AB边上的中线CD;(2)画出△ABC向右平移4个单位后得到的△A1B1C1;(3)图中AC与A1C1的关系是:_____________.(4)图中△ABC的面积是_______________.38.已知:如图,点B、F、C、E在同一直线上,BF=CE,AB⊥BE,DE⊥BE,垂足分别为B、E,联结AC、DF,∠A=∠D.求证:AB=DE.39.已知:如图,在△DBC中,BC=DC,过点C作CE⊥DC交DB的延长线于点E,过点C作AC ⊥BC且AC=EC,连结AB.求证:AB=ED.40.如图,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE.求证:AC=AD.41.如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.42.如图,D是AB上一点,DF交AC于点E,AE=EC,CF∥AB.求证:AD=CF.43.如图所示,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.44.如图所示,点B,E,C,F在同一直线上,AB=DE,∠B=∠DEF,BE=CF.求证:AC=DF.45.如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE与∠AEC的度数.46.如图,AC交BD于点O,请你从三项中选出两个作为条件,另一个作为结论,写出一个真命题,并加以证明.①OA=OC ②OB=OD ③AB∥CD47.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,求证:AB=DC.48.已知, BC∥OA,∠B=∠A=100°,试回答下列问题:如图1所示,求证:OB∥AC.(2)如图2,若点E、F在线段BC上,且满足∠FOC=∠AOC ,并且OE平分∠BOF.则∠EOC 的度数等于__ _____;(在横线上填上答案即可).(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于 .(在横线上填上答案即可).(图3)(图2)(图1)OE F A E B C F O B C A C B A O49.已知:如图,△ABC 和△CDE 都是等边三角形,点D 在BC 边上.求证:AD=BE .50.如图,△ABC 和△ADC 有公共边AC ,E 是公共边上一点.(1)已知:AB=AD ,BE=DE . 求证:△ABC ≌△ADC .(2)已知:∠1=∠2,∠3=∠4.求证:∠5=∠6参考答案1.C.【解析】试题分析:解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B ﹣∠C=180°﹣46°﹣54°=80°,∵AD 平分∠BAC ,∴∠80°=40°, ∵DE ∥AB ,∴∠ADE=∠BAD=40°.故选C .考点:平行线的性质;三角形内角和定理.2.B .【解析】试题分析:根据三角形的第三边大于两边之差,而小于两边之和应用排他法逐一作出判断:A.∵3+5=8,∴该三角形第三边的长不可能是5;B. ∵38>10,83<10+- ,∴该三角形第三边的长可能是10;C. ∵3811+=,∴该三角形第三边的长不可能是11;D. ∵38<12+,∴该三角形第三边的长不可能是12.故选B .考点:三角形三边关系.3.C【解析】由折叠及平行可求出∠CPR=60°,∠CRP=25°,最后利用三角形内角和定理可求出∠C 的度数4.CD=CA ,证明见解析.【解析】试题分析:添加的条件:CD=CA ,然后根据条件∠BCE=∠ACD ,可得∠ECD=∠ACB ,再加条件CD=AC ,CB=CE 可证明△ABC ≌△DEC .试题解析:添加的条件:CD=CA ,理由:∵∠BCE=∠ACD ,∴∠BCE+∠BCD=∠ACD+∠BCD ,即∠ECD=∠ACB ,在△ABC 和△DEC 中CD CA ECD BCA CD CA =∠=∠=⎧⎪⎨⎪⎩,∴△ABC ≌△DEC (SAS ),考点:全等三角形的判定.5.B.【解析】试题分析:如图,AD 、BE 、CF 分别是三角形ABC 三条边上的高,与AC 对应的高是BE . 故选B.考点:作三角形的高.6.B.【解析】试题分析:∵BE 、CF 都是△ABC 的角平分线,∴∠A=180°-(∠ABC+∠ACB ),=180°-2(∠DBC+∠BCD )∵∠BDC=180°-(∠DBC+∠BCD ),∴∠A=180°-2(180°-∠BDC )∴∠BDC=90°A , ∴∠A=2(110°-90°)=40°.故选B .考点:三角形内角和定理;角平分线的定义.7.B.【解析】试题分析:根据三角形任意两边的和大于第三边,进行分析判断.A、2+2=4,不能组成三角形;故该选项错误;B、3+6=9>8,能组成三角形;故该选项正确;C、2+3=3<6,不能够组成三角形;故该选项错误;D、4+6=10<11,不能组成三角形;故该选项错误.故选B.考点:三角形三边关系.8.C.【解析】试题分析:∵DE是△ABC的中位线,∴DE∥BC;;故结论①正确;∵AF是BC边上的中线,∴AO是DE边上的中线,∴故结论②正确;∵DE∥BC又AD=DB∴AO=OF故结论③正确;故结论④错误故选C.考点:1.三角形的中位线;2.三角形的中线.9.C【解析】解:大于小于的角叫锐角,大于而小于的角叫钝角。