高二数学方阵的行列式与逆矩阵
- 格式:ppt
- 大小:751.50 KB
- 文档页数:18
逆矩阵和原矩阵的行列式的值概述矩阵是线性代数中重要的工具,它具有广泛的应用。
在矩阵的操作中,逆矩阵和行列式是两个基本的概念。
逆矩阵是指在矩阵乘法中具有类似于乘法中的逆元的概念,而行列式是一个矩阵的标量值。
本文将详细介绍逆矩阵和行列式的概念,以及它们之间的关系。
首先,我们将介绍逆矩阵的定义和性质,然后探讨行列式的定义和计算方法。
接下来,我们将研究逆矩阵和行列式的关系,特别是逆矩阵的行列式与原矩阵的行列式的关系。
逆矩阵定义给定一个方阵A,如果存在另一个方阵B,使得AB=BA=I,其中I是单位矩阵,那么矩阵B就是矩阵A的逆矩阵。
逆矩阵通常用A的逆表示,记作A⁻¹。
性质逆矩阵具有以下性质:1.如果A是一个可逆矩阵,那么A的逆矩阵也是可逆的,且(A⁻¹)⁻¹=A。
2.如果A和B都是可逆矩阵,那么AB也是可逆的,并且(AB)⁻¹=B⁻¹A⁻¹。
3.如果A是可逆矩阵,那么A的转置矩阵也是可逆的,并且(Aᵀ)⁻¹=(A⁻¹)ᵀ。
4.如果A是可逆矩阵,那么A的行列式不等于零。
逆矩阵在解线性方程组和矩阵求逆等问题中发挥重要作用。
行列式定义给定一个n阶方阵A=(aᵢⱼ),其中aᵢⱼ表示矩阵A的第i行第j列的元素,行列式det(A)定义为:det(A) = ∑((-1)^(i+j) * aᵢⱼ * det(Aᵢⱼ))其中Aᵢⱼ表示去掉矩阵A的第i行第j列后得到的n-1阶子阵,det(Aᵢⱼ)表示Aᵢⱼ的行列式。
计算方法行列式的计算方法有多种,其中一种常用的方法是通过对矩阵进行初等行变换化简为上三角阵,然后将主对角线上的元素相乘即可得到行列式的值。
逆矩阵的行列式与原矩阵的行列式的关系逆矩阵的行列式与原矩阵的行列式之间存在重要的关系。
具体来说,如果方阵A可逆,那么A的逆矩阵的行列式等于A的行列式的倒数,即det(A⁻¹) = 1/det(A)。
矩阵行列式与可逆矩阵一、n 阶矩阵行列式下面介绍线性代数中另一个基本概念——行列式,由于内容较多,我们主要介绍行列式的定义及其简单的计算,行列式的性质等内容请大家自己学习教材.定义2.9 对任一n 阶矩阵 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211 用式nnn n n n a a a a a a a a a212222111211表示一个与A 相联系的数,称为A 的行列式,记作A . 规定:当n = 1时,1111a a A ==; 当n = 2时,2112221122211211a a a a a a a a A -==;当n > 2时,∑==+++=nj j j n n A a A a A a A a A 1111112121111 ,其中j A 1=j j M 11)1(+-,称j M 1为A 中元素j a 1的余子式,它是A 中划去第一行、第j 列后剩下的元素按原来顺序组成的n – 1阶行列式;j A 1为A 中元素j a 1的代数余子式.(由定义可知,一个n 阶矩阵行列式表示一个数,而这个数可以由第一行的元素与其相应的代数余子式的乘积之和求出.应该指出的是,方阵是一个数表,不能求数值的;而与它相应的行列式则表示一个数,是可以计算数值的.)(下面通过例题简单介绍行列式的计算方法)例1 计算 =A 2112123212230121313231-----解 首先按性质5,从第一行提出公因子31,再从第四行提出21,即=A 12132122301231212131-----⨯⨯ 再利用性质7把第三列的元素尽可能多的化为零,即作“第三行加上第一行的1倍,第四行加上第一行的-2倍”的变换,得12132122301231212131-----⨯⨯=505510013012312161---⨯再利用性质3按第3列展开,即505510013012312161---⨯=555101312)1(16131--⨯-⨯⨯+ 再作“第三列加上第一列的-1倍”的变换,并按第二行展开,即55510131261--⨯=105500111261--⨯=⎥⎦⎤⎢⎣⎡--⨯-⨯⨯+10511)1(16112 =65)510(61=+-⨯-例2 计算 =A 3351110243152113------解 首先交换第一列与第二列,然后作“第二行加上第一行的-1倍,第四行加上第一行的5倍”的变换,得=A 3315112043512131------=72160112064802131-----首先交换第二行与第三行,然后作“第三行加上第二行的4倍,第四行加上第二行的-8倍”的变换,得72160112064802131-----=1510001080011202131----再作“第四行加上第三行的45倍”,化成三角形行列式,其值就是对角线上的元素乘积,即1510001080011202131----=25001080011202131---=4025821=⨯⨯⨯(关于矩阵行列式,有一个重要结论请大家记住.) 定理2.1 对于任意两个方阵A ,B ,总有B A AB = 即方阵乘积的行列式等于行列式的乘积.(在上一讲中,我们介绍了矩阵的加法、减法和乘法运算,那么矩阵是否有除法运算呢?这就是这下面要介绍内容.) 二、逆矩阵定义定义2.11 对于n 阶矩阵A ,如果有n 阶矩阵B ,满足 AB = BA = I (2-5-1)则称矩阵A 可逆,称B 为A 的逆矩阵,记作A -1. (由定义可知:)满足公式(2-5-1)的矩阵A , B 一定是同阶矩阵.例3 设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012211110,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----123124112验证A 是否可逆?解 因为AB =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012211110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----123124112=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001BA =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----123124112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012211110=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001即A , B 满足 AB = BA = I .所以矩阵A 可逆,其逆矩阵A -1=B .可以验证:单位矩阵I 是可逆矩阵;零矩阵是不可逆的.(1) 单位矩阵I 是可逆矩阵. 证 因为单位矩阵I 满足: II = I 所以I 是可逆矩阵,且I I -=1. (2)零矩阵是不可逆的. 证 设O 为n 阶零矩阵,因为对任意n 阶矩阵B ,都有 OB = BO = O ≠I 所以零矩阵不是可逆矩阵.可逆矩阵具有以下性质:(1) 若A 可逆,则1-A 是唯一的.证 设矩阵B 1 , B 2都是A 的逆矩阵,则B 1 A = I ,AB 2 = I ,且B 1 =B 1 I = B 1 (AB 2 )= (B 1 A )B 2 = I B 2 = B 2故1-A 是唯一的.(2) 若A 可逆,则A -1也可逆,并且 ()A --11= A若A 可逆,则A -1也可逆,并且 ()A --11= A .证 由公式(2-5-1)可知,A A -1= A -1A = I ,故A -1是A 的逆矩阵,同时A是A -1的逆矩阵,即()A --11= A .(3) 若A 可逆,数k ≠0,则kA 也可逆,且 ()kA -1= 11-A(4) 若n 阶方阵A 和B 都可逆,则AB 也可逆,且()AB B A ---=111证 因为 A 和B 都可逆,即A -1和B -1存在,且(AB )(B -1A -1) = A ( B B -1)A -1= AI A -1= A A -1= I (B -1A -1)(AB ) = B ( A A -1)B -1= B I B -1= B B -1= I根据定义2.11,可知AB 可逆,且()AB B A ---=111.性质(4)可以推广到多个n 阶可逆矩阵相乘的情形,即当n 阶矩阵A 1 , A 2 , … , A m 都可逆时,乘积矩阵A 1A 2…A m 也可逆,且( A 1A 2…A m )-1= A A A m ---12111特别地,当m = 3时,有( A 1A 2A 3)-1= A A A 312111---问题:若n 阶方阵A 和B 都可逆,那么A +B 是否可逆?答:尽管n 阶矩阵A 和B 都可逆,但是A + B 也不一定可逆,即使当A + B 可逆(A B +-)1≠A B --+11,例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-200010001, B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200010001都是可逆矩阵,但是A +B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡400000002是不可逆的.而A + A = 2A 可逆,但是(A A +-)1=(21A )-=211--A ≠A A --+11= 2A -1(5) 若A 可逆,则A '也可逆,且 1)(-'A = )(1'-A .若A 可逆,则A '也可逆,且 1)(-'A = )(1'-A . 证 因为矩阵A 可逆,故A -1存在,且 )(1'-A A '=)(1'-AA =I '=IA ')(1'-A =)(1'-A A =I '=I 根据定义2.11,可知A '也是可逆的,且1)(-'A = )(1'-A .三、可逆矩阵的判定若方阵A 可逆,则存在1-A ,使I AA =-1.于是1=11--==A A AA I (定理2.1) 得 0≠A .把满足0≠A 的方阵A 称为非奇异的(或非退化的),否则就称为奇异的(或退化的).(由此可以得到定理2.2:)定理2.2 方阵A 可逆的必要条件为A 是非奇异的,即0≠A .(定理2.2结论是很重要的,但要注意,它是方阵A 可逆的必要条件,不是充分条件.因此,大家就会想到若0≠A ,方阵A 是否可逆呢?要回答这个问题,需要引进伴随矩阵的概念)定义2.12 对于n 阶方阵 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211,称n 阶方阵 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n nn n A A A A A A A A A 212221212111 为A 的伴随矩阵,记作*A ,其中ij A 为行列式A 中元素ij a 的代数余子式.(注意:伴随矩阵中各元素的位置秩序与常规的不一样,是由常规秩序经过转置后获得的.)(利用伴随矩阵可以证明:)定理2.3 若方阵A 是非奇异的,即0≠A ,则A 是可逆矩阵,并且有*11A AA =- (定理2.3的证明请看教材.该定理不仅给出了可逆矩阵的一种判别方法,即当方阵A 的行列式0≠A 时,A 是可逆矩阵;若0=A ,则A 不是可逆矩阵.而且还给出了求逆矩阵的一种方法——伴随矩阵法,即若A 可逆,那么只要求出它的伴随矩阵*A ,再除以它对应的行列式A 的值,就能获得逆矩阵*11A AA =-.)例4 设矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=012211110A 判别A 是否可逆?解 因为 012211110-=A =21100)1(112210⨯⨯----⨯⨯+⨯⨯+= 1即 0≠A ,所以A 是可逆矩阵.例5 设⎥⎦⎤⎢⎣⎡=d c b a A ,问:当a , b , c , d 满足什么条件时,矩阵A 可逆?当A 可逆时,求1-A .解 因为 bc ad d c ba A -==当 0≠-bc ad 时,由0≠A ,(由定理2.3知道)得A 可逆.又 d A =11,c A -=12,b A -=21,a A =22⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=a c b d A A A AA 22122111* (问题:2阶矩阵的伴随矩阵与原矩阵中的元素之间有什么联系?)所以,*11A A A =- =⎥⎦⎤⎢⎣⎡---a c b d bc ad 1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------bc ad a bc ad c bc ad b bc ad d(把定理2.2和定理2.3合在一起,得到判别矩阵A 是否可逆的充分必要条件.)定理2.4 矩阵A 为可逆矩阵的充分必要条件是0≠A ,且有 *11A A A =-.。
高中数学矩阵与行列式矩阵与行列式是高中数学中重要的内容,它们在代数和几何中有广泛应用。
本文将从基本定义、运算性质、逆矩阵和行列式的应用等方面来探讨矩阵与行列式的知识。
一、矩阵的基本定义矩阵是由$m$行$n$列的数表所组成,用$A=(a_{ij})_{m \timesn}$表示,其中$a_{ij}$表示矩阵$A$的第$i$行、第$j$列的元素。
根据矩阵的定义,可以将矩阵分为行矩阵、列矩阵和方阵等。
二、矩阵的运算性质矩阵的运算包括加法、数乘和乘法等,下面将对这些运算性质做详细介绍。
1. 矩阵的加法设$A=(a_{ij})_{m \times n}$和$B=(b_{ij})_{m \times n}$是两个$m\times n$的矩阵,它们的和$A+B$定义为$(a_{ij}+b_{ij})_{m \times n}$,即将对应位置的元素相加得到新的矩阵。
2. 矩阵的数乘设$A=(a_{ij})_{m \times n}$是一个$m \times n$的矩阵,$k$是一个实数,那么$kA$定义为$(ka_{ij})_{m \times n}$,即将矩阵$A$中的每个元素乘以$k$得到新的矩阵。
3. 矩阵的乘法设$A=(a_{ij})_{m \times s}$和$B=(b_{ij})_{s \times n}$是两个矩阵,它们的乘积$AB$是一个$m \times n$的矩阵,定义为$(c_{ij})_{m \times n}$,其中$c_{ij}=\sum_{k=1}^{s}a_{ik}b_{kj}$。
即矩阵$A$的第$i$行与矩阵$B$的第$j$列相乘并求和得到新矩阵$AB$的第$i$行第$j$列的元素。
三、逆矩阵逆矩阵是矩阵的重要概念,对于一个方阵$A$,如果存在一个方阵$B$,使得$AB=BA=I$,其中$I$是单位矩阵,则称$A$是可逆矩阵,$B$是$A$的逆矩阵,记作$A^{-1}$。
逆矩阵具有以下性质:1. 如果矩阵$A$可逆,则其逆矩阵唯一。