高二数学逆矩阵的概念
- 格式:pdf
- 大小:1.09 MB
- 文档页数:12
矩阵的逆及其应用姓名:刘欣班级:14级数计1班专业:数学与应用数学学号:1408020129一、矩阵的逆的概念对于n阶矩阵A,如果有一个n阶矩阵B,使得AB=BA=E,则说矩阵A是可逆的,并把矩阵B称为A的逆矩阵,A的逆矩阵记作A1。
二、逆矩阵的性质和定理㈠逆矩阵的性质1、若矩阵A、B均可逆,则矩阵AB可逆,其逆矩阵为 ,当然这一性质可以推广到多个矩阵相乘的逆。
若A1,A2,,Am都是n阶可逆矩阵,则A1A2Am也可逆,且(A1A2Am)1=(Am)1(A2)1(A1)1.2、若A可逆,则 也可逆,且( )=A;3、若A可逆,实数λ≠0,则λA可逆,且(λ )=λ;4、若A可逆,则 也可逆,且( )=( );5、=;6、矩阵的逆是唯一的;证明:运用反证法,如果A是可逆矩阵,假设B,C都是A的逆,则有AB=BA=E=AC=CA,B=BE=B(AC)=(BA)C=EC=C(与B≠C矛盾),所以是唯一的。
㈡逆矩阵的定理1、初等变换不改变矩阵的可逆性。
2、n阶矩阵可逆的充分必要条件是A与n阶单位阵In等价。
3、n阶矩阵A可逆的充分必要条件是A可以表成一些初等矩阵的乘积。
4、n阶矩阵可逆的充分必要条件是A只经过一系列初等行变换便可化成单位矩阵。
5、n阶矩阵A可逆的充分必要条件是|A|≠0。
三、逆矩阵的计算方法㈠定义法定义:设A是n阶方阵,如果存在n阶方阵B使得AB=E,那么A称为可逆矩阵,B称为A的逆矩阵,记为A1。
例1、求矩阵A=223110121的逆矩阵。
解:∵|A|≠0∴A1存在设A1=x11x12x13x21x22x23x31x32x33,由定义知A1A=E,∴223110121x11x12x13x21x22x23x31x32x33=由矩阵乘法得2x11+2x21+3x312x12+2x22+3x322x13+2x23+3x33x11x21x12x22x12x23x11+2x21+x31x12+2x22+x32x13+2x23+x33=由矩阵相乘可解得x11=1x21=1x31=1;x12=4x22=5x32=6;x13=3x23=3x33=4故㈡、伴随矩阵法n阶矩阵A=(aij)可逆的充要条件|A|≠0,而且当n(n>=2)阶矩阵A有逆矩阵,A1=1AA,其中A为伴随矩阵。
1-6 逆矩阵1-6-1 逆矩阵的基本概念序:数的乘法有单位元1:对每一个数a,有1a=a1=a。
倒数:对数a,如果存在数b,使得ab=ba=1,说a有倒数,b为a的倒数,记为b=a1=1-a 。
有倒数的条件:a有倒数⇔a≠0。
除法:若a≠0,ax=b有唯一解x=a b =1-a b=b1-a ,叫a除b的商。
矩阵乘法有单位元En:对每一个n阶矩阵A,有EA=AE=A。
一、可逆矩阵和逆矩阵定义1.12[P53]设A为n阶方阵,如果存在n阶方阵B,使得AB=BA=E (*)则称A为可逆矩阵,B为A的逆矩阵。
若不存在使(*)式成立的方阵B,则称A为不可逆矩阵。
说明:(1)如果AB=BA,必有A、B是同阶方阵。
[只对方阵谈可逆性] k m n S B A ⨯⨯有意义⇒n=mn s k m A B ⨯⨯有意义⇒k=sk m n S B A ⨯⨯=n s k m A B ⨯⨯⇒s=m,k=n综上所述,得s=m=k=n,即A、B为同阶方阵。
(2)存在可逆矩阵。
如:E是可逆矩阵,其逆矩阵为E(因为EE=E)。
数k≠0,kE是可逆矩阵,其逆矩阵为k-1E,因为(kE)(k-1E)=E,(k-1E)(kE)=E。
(3)存在不可逆矩阵。
如: 零矩阵不可逆[因为0A=A0=0]A=⎥⎦⎤⎢⎣⎡0201不可逆。
证明1:P54 8——14行。
(了解) 证明2:因为A =0,所以A不可逆。
(掌握)(4)若(*)式成立,则A、B互为逆矩阵。
[逆矩阵的唯一性]如果A有逆矩阵,必是唯一的,记为1-A ;于是A1-A =1-A A=E。
证明:设B,C都是A的逆矩阵,有AB=BA=E,AC=CA=E。
于是得到 B=BE=B(AC)=(BA)C=EC=C。
二、n(n≥2)阶方阵A的伴随矩阵*A 及其性质定义1.13[P54]n(n≥2)阶方阵A的伴随矩阵*A 为:A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211−−−−−−→−或列的代数余子式作行行的代数余子式作列*A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n A A A A A A A A A 212221212111,其中ij A 是元素ij a 的代数余子式,i、j=1,2,……,n。
2.4.1 逆矩阵的概念1.逆矩阵的定义对于二阶矩阵A 、B ,假设有AB =BA =E ,那么称A 是可逆的,B 称为A 的逆矩阵,记为A -1.2.逆矩阵的性质(1)假设二阶矩阵A 、B 均可逆,那么AB 也可逆,且(AB )-1=B -1A -1. (2)A 、B 、C 为二阶矩阵且AB =AC ,假设A 存在逆矩阵,那么B =C . 3.逆矩阵的求法(1)公式法:对于二阶矩阵A =⎣⎢⎡⎦⎥⎤ab cd ,假设ad -bc ≠0,那么A 必可逆,且A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -bad -bc -c ad -bc a ad -bc .(2)待定系数法. (3)逆变换法.[对应学生用书P30]逆矩阵的求法[例1] 求矩阵A =⎣⎡⎦⎤3 22 1的逆矩阵.[思路点拨] 设出逆矩阵,利用待定系数法求解或直接利用公式法求解.[精解详析] 法一:待定系数法:设A -1=⎣⎢⎡⎦⎥⎤xy zw ,那么⎣⎢⎡⎦⎥⎤3 221⎣⎢⎡⎦⎥⎤xy zw =⎣⎢⎡⎦⎥⎤1001.即⎣⎡⎦⎤3x +2z 3y +2w 2x +z 2y +w =⎣⎡⎦⎤1 00 1,故⎩⎪⎨⎪⎧3x +2z =1,2x +z =0,⎩⎪⎨⎪⎧3y +2w =0,2y +w =1,解得x =-1,z =2,y =2,w =-3, 从而A 的逆矩阵为A -1=⎣⎡⎦⎤-122-3.法二:公式法:ad -bc =3×1-2×2=-1≠0,∴A -1=⎣⎢⎡⎦⎥⎤-122-3.用待定系数法求逆矩阵时,先设出矩阵A 的逆矩阵A -1,再由AA -1=E 得相等矩阵,最后利用相等矩阵的概念求出A -1.1.(某某高考)矩阵A =⎣⎢⎡⎦⎥⎤-1002,B =⎣⎢⎡⎦⎥⎤1206,求矩阵A -1B .解:设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤ab cd ,那么⎣⎢⎡⎦⎥⎤-10 02⎣⎢⎡⎦⎥⎤ab cd =⎣⎢⎡⎦⎥⎤1001,即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1 001故a =-1,b =0,c =0,d =12,从而A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12,所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-10 0 12⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -2 0 3. 2.矩阵M =⎣⎡⎦⎤21 -3-1所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的坐标.解:由M =⎣⎡⎦⎤21 -3-1,得2×(-1)-(-3)×1=1≠0,故M-1=⎣⎡⎦⎤-1-1 32.从而由⎣⎡⎦⎤21 -3-1⎣⎡⎦⎤x y =⎣⎡⎦⎤135得⎣⎡⎦⎤x y =⎣⎡⎦⎤-1-1 32⎣⎡⎦⎤13 5=⎣⎡⎦⎤-1×13+3×5-1×13+2×5=⎣⎡⎦⎤ 2-3, 故⎩⎪⎨⎪⎧x =2,y =-3,即A (2,-3)为所求.[例2] 用几何变换的观点求以下矩阵的逆矩阵.(1)A =⎣⎢⎡⎦⎥⎤2001;(2)B =⎣⎢⎡⎦⎥⎤01-10.[思路点拨] A 为伸压变换矩阵,B 为旋转变换矩阵,只需找到它们的逆变换,再写出逆变换对应的矩阵即为所求.[精解详析](1)矩阵A 为伸压变换矩阵,它对应的几何变换为平面内点的纵坐标保持不变,横坐标沿x 轴方向拉伸为原来2倍的伸缩变换,因此它存在逆变换T A -1:将平面内点的纵坐标保持不变,横坐标沿x 轴方向压缩为原来的12,所对应的变换矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤12 00 1.(2)矩阵B 为旋转变换矩阵,它对应的几何变换为将平面内的点绕原点顺时针旋转90°.它存在逆变换T B -1:将平面内的点绕原点逆时针旋转90°,所对应的变换矩阵为B -1=⎣⎢⎡⎦⎥⎤0 -11 0.从几何角度考虑矩阵对应的变换是否存在逆变换,就是观察在变换下是否能“走过去又能走回来〞,即对应的变换是一一映射.关键是熟练掌握反射变换、伸缩变换、旋转变换、切变变换等常用变换对应的矩阵,根据矩阵对应的几何变换找出其逆变换,再写出逆变换对应的矩阵,即为所求逆矩阵.3.矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤-1232-32 -12,求A -1.解:矩阵A 对应的变换是旋转变换R 240°,它的逆变换是R -240°∴A -1=⎣⎢⎡⎦⎥⎤cos -240° -sin -240°sin -240° cos -240°=⎣⎢⎢⎡⎦⎥⎥⎤-12 -32 32 -12. 4.矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 5,求A -1. 解:因矩阵A 所对应的变换为伸缩变换,所以A -1=⎣⎢⎢⎡⎦⎥⎥⎤2 00 15.逆矩阵的概念与性质的应用[例3] 假设矩阵A =⎣⎢⎡⎦⎥⎤2 005,B =⎣⎢⎡⎦⎥⎤1 301,求矩阵AB 的逆矩阵.[思路点拨] 根据公式(AB )-1=B -1A -1,先求出B -1、A -1,再利用矩阵乘法求解. [精解详析] 因为矩阵A 所对应的变换为伸缩变换,所以A-1=⎣⎢⎢⎡⎦⎥⎥⎤120015. 而矩阵B 对应的变换为切变变换,其逆矩阵B -1=⎣⎢⎡⎦⎥⎤1 -30 1,∴(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤1-301⎣⎢⎢⎡⎦⎥⎥⎤120015=⎣⎢⎢⎡⎦⎥⎥⎤12-350 15.(1)要避免犯如下错误(AB )-1=A -1B -1. (2)此题也可以先求出AB 再求其逆.5.A =⎣⎢⎡⎦⎥⎤1 -10 1⎣⎢⎢⎡⎦⎥⎥⎤12-323212,求A -1.解:设M =⎣⎢⎡⎦⎥⎤1 -10 1,N =⎣⎢⎢⎡⎦⎥⎥⎤12 -3232 12,那么A =MN . ∵1×1-0×(-1)=1≠0,∴M -1=⎣⎢⎡⎦⎥⎤1101,同理N -1=⎣⎢⎢⎡⎦⎥⎥⎤ 1232-32 12.由逆矩阵的性质,得A -1=(MN )-1=N -1M -1=⎣⎢⎢⎡⎦⎥⎥⎤1232-3212⎣⎢⎡⎦⎥⎤1101=⎣⎢⎢⎡⎦⎥⎥⎤121+32-321-32. 6.假设矩阵A =⎣⎢⎡⎦⎥⎤1001,B =⎣⎢⎡⎦⎥⎤1201,求曲线x 2+y 2=1在矩阵(AB )-1变换下的曲线方程.解:(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤1-201⎣⎢⎡⎦⎥⎤1001=⎣⎢⎡⎦⎥⎤1-201.设P (x ,y )是圆x 2+y 2=1上任意一点,P 点在(AB )-1对应变换下变成Q (x ′,y ′) 那么⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 -20 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x -2y y . ∴⎩⎪⎨⎪⎧x ′=x -2y ,y ′=y .故⎩⎪⎨⎪⎧x =x ′+2y ′,y =y .′∴P (x ′+2y ′,y ′).又P 点在圆上,∴(x ′+2y ′)2+(y ′)2=1. 展开整理为(x ′)2+4x ′y ′+5(y ′)2=1. 故所求曲线方程为x 2+4xy +5y 2=1.[例4] 矩阵A =⎣⎢⎡⎦⎥⎤12-2-3,B =⎣⎢⎡⎦⎥⎤2312,C =⎣⎢⎡⎦⎥⎤0110,求满足AXB =C 的矩阵X .[思路点拨] 由AXB =C 得X =A -1CB -1,从而求解. [精解详析] ∵A -1=⎣⎢⎡⎦⎥⎤-3 -2 2 1,B -1=⎣⎢⎡⎦⎥⎤ 2 -3-1 2,∴X =A -1CB -1=⎣⎢⎡⎦⎥⎤-3 -2 2 1⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤ 2 -3-1 2 =⎣⎢⎡⎦⎥⎤-2 -3 1 2⎣⎢⎡⎦⎥⎤ 2 -3-1 2=⎣⎢⎡⎦⎥⎤-1 0 01.此种题型要特别注意左乘还是右乘相应的逆矩阵,假设位置错误,那么得不到正确结果,原因是矩阵乘法并不满足交换律.7.矩阵A =⎣⎢⎡⎦⎥⎤1 -23 -7.假设矩阵X 满足AX =⎣⎢⎡⎦⎥⎤31,试求矩阵X .解:设A -1=⎣⎢⎡⎦⎥⎤xy zw ,那么⎣⎢⎡⎦⎥⎤1 -23 -7⎣⎢⎡⎦⎥⎤xy zw =⎣⎢⎡⎦⎥⎤1 001,即⎣⎢⎡⎦⎥⎤x -2zy -2w 3x -7z 3y -7w =⎣⎢⎡⎦⎥⎤1001,所以⎩⎪⎨⎪⎧x -2z =1,y -2w =0,3x -7z =0,3y -7w =1,解得⎩⎪⎨⎪⎧x =7,y =-2,z =3,w =-1.故所求的逆矩阵A -1=⎣⎢⎡⎦⎥⎤7 -23 -1.因为AX =⎣⎢⎡⎦⎥⎤31,所以A -1AX =A -1⎣⎢⎡⎦⎥⎤31, 所以X =A -1⎣⎢⎡⎦⎥⎤31=⎣⎢⎡⎦⎥⎤7 -23 -1⎣⎢⎡⎦⎥⎤31=⎣⎢⎡⎦⎥⎤19 8. 8.假设点A (2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.解:因为M ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2,即⎣⎢⎡⎦⎥⎤2cos α-2sin α2sin α+2cos α=⎣⎢⎡⎦⎥⎤-2 2,所以⎩⎪⎨⎪⎧cos α-sin α=-1,sin α+cos α=1.解得⎩⎪⎨⎪⎧cos α=0,sin α=1.所以M =⎣⎢⎡⎦⎥⎤0-110.法一:由M =⎣⎢⎡⎦⎥⎤0-110=⎣⎢⎡⎦⎥⎤cos 90°-sin 90°sin 90°cos 90°,知M 是绕原点O 逆时针旋转90°的旋转变换矩阵,于是M -1=⎣⎢⎡⎦⎥⎤cos -90°-sin -90°sin -90°cos -90°=⎣⎢⎡⎦⎥⎤01-10.法二:由M =⎣⎢⎡⎦⎥⎤0-110,那么ad -bc =1≠0.∴M -1=⎣⎢⎡⎦⎥⎤01-10.[对应学生用书P32]1.求以下矩阵的逆矩阵.(1)A =⎣⎢⎡⎦⎥⎤1123;(2)B =⎣⎢⎡⎦⎥⎤2345.解:法一:利用逆矩阵公式.(1)注意到1×3-2×1=1≠0,故A 存在逆矩阵A -1,且 A -1=⎣⎢⎢⎡⎦⎥⎥⎤31-11-2111=⎣⎢⎡⎦⎥⎤3-1-21. (2)注意到2×5-4×3=-2≠0,故B 存在逆矩阵B -1,且 B -1=⎣⎢⎢⎡⎦⎥⎥⎤5-2 -3-2-4-2 2-2=⎣⎢⎢⎡⎦⎥⎥⎤-52 32 2 -1.法二:利用待定系数法. (1)设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤ab cd ,那么⎣⎢⎡⎦⎥⎤1 123⎣⎢⎡⎦⎥⎤ab cd =⎣⎢⎡⎦⎥⎤1 001,即⎣⎢⎡⎦⎥⎤a +cb +d 2a +3c 2b +3d =⎣⎢⎡⎦⎥⎤1 001.故⎩⎪⎨⎪⎧a +c =1,2a +3c =0,b +d =0,2b +3d =1.解得a =3,c =-2,b =-1,d =1. 从而A -1=⎣⎢⎡⎦⎥⎤3 -1-2 1.(2)设矩阵B 的逆矩阵为⎣⎢⎡⎦⎥⎤xy zw ,那么⎣⎢⎡⎦⎥⎤2 345⎣⎢⎡⎦⎥⎤xy zw =⎣⎢⎡⎦⎥⎤1001,即⎣⎢⎡⎦⎥⎤2x +3z 2y +3w 4x +5z 4y +5w =⎣⎢⎡⎦⎥⎤1 001.故⎩⎪⎨⎪⎧2x +3z =1,4x +5z =0,2y +3w =0,4y +5w =1.解得x =-52,z =2,y =32,w =-1.从而B -1=⎣⎢⎢⎡⎦⎥⎥⎤-52 322 -1.2.可逆矩阵A =⎣⎢⎡⎦⎥⎤a273的逆矩阵A -1=⎣⎢⎡⎦⎥⎤b -2-7 a ,求a ,b 的值. 解:根据题意,得AA -1=E , 所以⎣⎢⎡⎦⎥⎤a27 3⎣⎢⎡⎦⎥⎤ b -2-7 a =⎣⎢⎡⎦⎥⎤1 001,即⎣⎢⎡⎦⎥⎤ab -2×7 -2a +2a 7b -21 -2×7+3a =⎣⎢⎡⎦⎥⎤1001, 所以⎩⎪⎨⎪⎧ab -14=1,7b -21=0,-14+3a =1,解得a =5,b =3.3.A =⎣⎢⎡⎦⎥⎤1 11 2,B =⎣⎢⎡⎦⎥⎤2 -1-1 1,求证B 是A 的逆矩阵. 证明:因为A =⎣⎢⎡⎦⎥⎤1112,B =⎣⎢⎡⎦⎥⎤ 2 -1-1 1, 所以AB =⎣⎢⎡⎦⎥⎤111 2⎣⎢⎡⎦⎥⎤ 2 -1-1 1=⎣⎢⎡⎦⎥⎤1 001,BA =⎣⎢⎡⎦⎥⎤ 2 -1-1 1⎣⎢⎡⎦⎥⎤1112=⎣⎢⎡⎦⎥⎤1 001, 所以B 是A 的逆矩阵.4.求矩阵乘积AB 的逆矩阵. (1)A =⎣⎢⎡⎦⎥⎤2 001,B =⎣⎢⎡⎦⎥⎤1 004;(2)A =⎣⎢⎡⎦⎥⎤-1 0 0 -1,B =⎣⎢⎡⎦⎥⎤1234.解:(1)(AB )-1=B -1A -1=⎣⎢⎢⎡⎦⎥⎥⎤1 00 14⎣⎢⎢⎡⎦⎥⎥⎤12 00 1=⎣⎢⎢⎡⎦⎥⎥⎤12 014. (2)(AB )-1=B -1A -1=⎣⎢⎢⎡⎦⎥⎥⎤-2132-12⎣⎢⎡⎦⎥⎤-100-1 =⎣⎢⎢⎡⎦⎥⎥⎤2-1-32 12. 5.变换矩阵A 把平面上的点P (2,-1),Q (-1,2)分别变换成点P 1(3,-4),Q 1(0,5). (1)求变换矩阵A ;(2)判断变换矩阵A 是否可逆,如果可逆,求矩阵A 的逆矩阵A -1;如果不可逆,请说明理由.解:(1)设A =⎣⎢⎡⎦⎥⎤ab cd ,依题意,得⎣⎢⎡⎦⎥⎤ab cd ⎣⎢⎡⎦⎥⎤ 2-1=⎣⎢⎡⎦⎥⎤ 3-4,⎣⎢⎡⎦⎥⎤ab cd ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤05,即⎩⎪⎨⎪⎧2a -b =3,2c -d =-4,-a +2b =0,-c +2d =5.解得⎩⎪⎨⎪⎧a =2,b =1,c =-1,d =2.所以A =⎣⎢⎡⎦⎥⎤21-12.(2)变换矩阵A 是可逆的,理由如下:设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤xy zw ,那么由⎣⎢⎡⎦⎥⎤ 2 1-1 2⎣⎢⎡⎦⎥⎤xy zw =⎣⎢⎡⎦⎥⎤1 00 1,得⎩⎪⎨⎪⎧2x +z =1,2y +w =0,-x +2z =0,-y +2w =1.解得⎩⎪⎪⎨⎪⎪⎧x =25,y =-15,z =15,w =25.故矩阵A 的逆矩阵为A-1=⎣⎢⎢⎡⎦⎥⎥⎤25 -1515 25. 6.矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤100 12,N =⎣⎢⎢⎡⎦⎥⎥⎤12 00 1,试求曲线y =cos x 在矩阵M -1N 对应的线性变换作用下的函数解析式.解:M -1=⎣⎢⎡⎦⎥⎤1 002,∴M -1N =⎣⎢⎡⎦⎥⎤1 002⎣⎢⎢⎡⎦⎥⎥⎤12 00 1=⎣⎢⎢⎡⎦⎥⎥⎤12 00 2. ∴⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤12 00 2⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤12x 2y 即⎩⎪⎨⎪⎧x ′=12x ,y ′=2y .∴⎩⎪⎨⎪⎧x =2x ′,y =12y ′.代入y =cos x 得12y ′=cos 2x ′故曲线y =cos x 在矩阵M -1N 对应的变换作用下解析式为y =2cos 2x . 7.矩阵A =⎣⎢⎡⎦⎥⎤1 234.(1)求矩阵A 的逆矩阵B ;(2)假设直线l 经过矩阵B 变换后的方程为y =x ,求直线l 的方程. 解:(1)设矩阵A 的逆矩阵为B =⎣⎢⎡⎦⎥⎤ab cd ,那么⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤ab cd =⎣⎢⎡⎦⎥⎤1 00 1,得⎩⎪⎨⎪⎧a +2c =1,b +2d =0,3a +4c =0,3b +4d =1,解得⎩⎪⎨⎪⎧a =-2,b =1,c =32,d =-12,所以B =⎣⎢⎢⎡⎦⎥⎥⎤-2132-12. (2)设直线l 上任一点P (x ,y )经过B 对应变换变为点P (x ′,y ′),那么⎣⎢⎢⎡⎦⎥⎥⎤-2132-12⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, 即⎩⎪⎨⎪⎧x ′=-2x +y ,y ′=32x -12y ,又y ′=x ′,所以-2x +y =32x -12y ,即直线l 的方程为7x -3y =0.8.曲线C 在矩阵⎣⎢⎢⎡⎦⎥⎥⎤13 00 12对应的变换作用下的象为x 2+y 2=1,求曲线C 的方程.解:矩阵⎣⎢⎢⎡⎦⎥⎥⎤13 00 12对应的变换为:平面内点的纵坐标沿y 轴方向缩短为原来的12,横坐标沿x 轴方向缩短为原来的13,其逆变换为:将平面内点的纵坐标沿y 轴方向拉伸为原来的2倍,横坐标沿x 轴方向拉伸为原来的3倍,故⎣⎢⎢⎡⎦⎥⎥⎤13 00 12-1=⎣⎢⎡⎦⎥⎤3 002.设圆x 2+y 2=1上任一点P (x ,y )在矩阵⎣⎢⎡⎦⎥⎤3002对应的伸缩变换作用下的象为P ′(x ′,y ′),那么⎩⎪⎨⎪⎧x ′=3x ,y ′=2y ,即⎩⎪⎨⎪⎧x =13x ′,y =y ′2,代入x 2+y 2=1,得x ′29+y ′24=1.故曲线C 的方程为x 29+y 24=1.。
2.4.1逆矩阵的概念学习目标:1、通过具体的图形变换,理解逆矩阵的意义并掌握二阶矩阵存在逆矩阵的条件;通过具体的投影变换,说明它所对应矩阵的逆矩阵不存在;2、会证明逆矩阵的唯一性和111)(---=B A AB 等简单性质,并了解其在变换中的意义; 3、会从几何变换的角度求出AB 的逆矩阵;4、会用逆矩阵的知识解释二阶矩阵的乘法何时满足消去律。
活动过程:活动一:逆矩阵的意义背景:二阶矩阵对应着平面上的一个几何变换,它把点),(y x 变换到点),(y x ''。
反过来,如果已知变换后的结果),(y x '',能不能“找到回家的路(逆变换)”,让它变回原来的),(y x 呢?问题:对于下列给出的变换对应的矩阵A ,是否存在变换矩阵B ,使得连续进行两次变换(先T A 后T B )的结果与恒等变换的结果相同? (1)以x 为反射轴的反射变换;(2)绕原点逆时针旋转60º作旋转变换;(3)横坐标不变,沿y 轴方向将纵坐标拉伸为原来的2倍作伸压变换; (4)沿y 轴方向,向x 轴作投影变换;(5)纵坐标y 不变,横坐标依纵坐标的比例增加,且满足(x ,y )→(x +2y ,y )作切变变换。
思考:通过上述问题可以得到一个什么结论?结论:1、逆变换的含义:2、逆矩阵的定义:注:通常记可逆矩阵A 的逆矩阵为1-A 。
活动二:逆矩阵的简单性质例1 证明:若二阶矩阵A 存在逆矩阵B ,则逆矩阵是惟一的。
思考:对于任意的二阶矩阵M 满足什么条件时,它是可逆的?例2 证明:若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且111)(---=B A AB 。
并从几何变换的角度给予解释。
活动三:逆矩阵的求解例3:从几何变换的观点判断下列矩阵是否存在逆矩阵,若存在,请把它求出来;若不存在,请说明理由。
(1)A=01⎡⎢⎣ 10⎤⎥⎦; (2)B =120⎡⎢⎢⎣ 01⎤⎥⎦; (3)C =01⎡⎢⎣ -10⎤⎥⎦; (4)D =11⎡⎢⎣00⎤⎥⎦例4:求矩阵A =57⎡⎢⎣ 13⎤⎥⎦的逆矩阵变式训练:求二阶矩阵A =)0(≠-⎥⎦⎤⎢⎣⎡bc ad d c b a 的逆矩阵例5:已知A =1⎡⎢⎣02⎤⎥⎦,B =10⎡⎢⎢⎢⎣ 121⎤⎥⎥⎦,求矩阵AB 的逆矩阵。