卡氏第二定理
- 格式:ppt
- 大小:1.33 MB
- 文档页数:25
卡氏第二定理卡氏第二定理(KummerSecondTheorem)又称为卡氏二元定理,它是由德国数学家卡氏于1852年提出的一种数论定理,是多个古老定理的总结,是一个重要的代数结构之一。
卡氏第二定理涉及了几何射影以及椭圆曲线的投影,是一项重要的数学理论,被广泛应用在数论、组合数学、多元代数和特殊函数的研究中。
卡氏第二定理的主要原理可以归结为三点:(1)设f(x)为一种单个变量的多项式,一般地,一个多项式具有n次不同的根,不论是实根还是复根,他们出现的次数总是n次。
(2)设P(x,y)为一个二元多项式,其中x和y是连续变量,该多项式的根是一个椭圆曲线E上的点的坐标。
若F(x,y)是P(x,y)的一个不可约因子,那么F(x,y)在E上的根也是E上的点的坐标,而且出现次数等于P(x,y)的根的出现次数。
(3)对于任意的二元多项式P(x,y),如果F(x,y)是P(x,y)的一个不可约因子,则P(x,y)的根总是满足如下条件:P(x,y)是一个整数关系。
卡氏第二定理在数论、组合数学、多元代数研究和计算数学中有着重要的应用价值。
它不仅用于解决多变量多项式的求根问题,而且还可以用来寻找椭圆曲线上有趣点的坐标,以及在数论中研究质素数和平方数等问题。
此外,在数据加密领域,卡氏第二定理的应用也是非常广泛的。
其中,最重要的应用是RSA加密算法,它是目前世界上最常用的公钥加密算法,而RSA算法的安全性完全依赖于卡氏第二定理的应用。
因此,卡氏第二定理的研究可以说是数学的“金矿”,在数学领域有着重要的应用价值,且极具前景。
现代数学家们仍一直在探索和研究卡氏第二定理,并发现了它具有良好的应用价值,为世界各地的科研人员提供了难以估量的帮助。
卡氏第二定理的研究不仅对数学的发展至关重要,而且对实际的应用也具有极大的意义,是数学巨人卡氏的一项重要成就。
面积A,拉应力为正)d,拉伸后试样直径 d1)纵向线应变和横向线应变外力偶P 功率, n 转速)弯矩、剪力和荷载集度之间的关系式轴向拉压杆横截面上正应力的计算公式杆件横截面轴力F N,横截面1.2.3.4.5.6.7.8.9.10.11.12.泊松比胡克定律受多个力作用的杆件纵向变形计算公式轴向拉压杆斜截面上的正应力与切应力计算公式夹角a 从x 轴正方向逆时针转至外法线的方位角为正)纵向变形和横向变形(拉伸前试样标距l ,拉伸后试样标距 l1 ;拉伸前试样直径承受轴向分布力或变截面的杆件,纵向变形计算公式轴向拉压杆的强度计算公式许用应力,脆性材料延伸率截面收缩率剪切胡克定律拉压弹性模量,塑性材料切变模量G,切应变gE、泊松比和切变模量圆截面对圆心的极惯性矩( a)实心圆b)空心圆)G之间关系式圆轴扭转时横截面上任一点切应力计算公式圆截面周边各点处最大切应力计算公式扭转截面系数,( a)实心圆扭矩T,所求点到圆心距离r )13.14.15.16.17.18.19.20.21.22.23.24.薄壁圆管(壁厚 δ≤ R 0 /10 ,R 0 为圆管的平均半径)扭转切应力计算公式圆轴扭转角 与扭矩 T 、杆长 l 、 扭转刚度 GH p 的关系式 同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时等直圆轴强度条件受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式平面应力状态下斜截面应力的一般公式b )空心圆25.26. 27. 28. 29. 30.31.32.33.或 塑性材料或 扭转圆轴的刚度条件 ? ;脆性材料平面应力状态的三个主应力 主平面方位的计算公式 ,面内最大切应力 三向应力状态最大切应力 广义胡克定律 四种强度理论的相当应力34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之 和的关系式平行移轴公式(形心轴 z c 与平行轴 z 1的距离为 a ,图形面积为 A )纯弯曲梁的正应力计算公式45. 46.47.48.49. 50.51.52.53.54., 组合图形的形心坐标计算公式 截面图形对轴 z 和轴y 的惯性半径 ?矩形、圆形、空心圆形的弯曲截面系数几种常见截面的最大弯曲切应力计算公式( 轴 z 的静矩, b 为横截面在中性轴处的宽度)为中性轴一侧的横截面对中性横力弯曲最大正应力计算公式工字形截面梁腹板上的弯曲切应力近似公式轧制工字钢梁最大弯曲切应力计算公式 圆形截面梁最大弯曲切应力发生在中性轴处弯曲正应力强度条件弯曲梁危险点上既有正应力 σ 又有切应力 τ 作用时的强度条件 或,梁的挠曲线近似微分方程 轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式55.56.57.58.59. 60.61.62.63.64.65. 66.算公式偏心拉伸(压缩) 圆环形薄壁截面梁最大弯曲切应力发生在中性轴处 几种常见截面梁的弯曲切应力强度条件梁的转角方程梁的挠曲线方程圆截面杆横截面上有两个弯矩 和 同时作用时,合成弯矩为圆截面杆横截面上有两个弯矩和同时作用时强度计算公式弯拉扭或弯压扭组合作用时强度计算公式剪切实用计算的强度条件挤压实用计算的强度条件 等截面细长压杆在四种杆端约束情况下的临界力计算公式 压杆的约束条件:( a )两端铰支 μ =l( b )一端固定、一端自由 μ =2( c )一端固定、一端铰支d )两端固定 μ =0.567.68.69.70.71.72.73. 74. 75. 76. 77.μ=0.778.压杆的长细比或柔度计算公式79.细长压杆临界应力的欧拉公式80.欧拉公式的适用范围81.压杆稳定性计算的安全系数法82.压杆稳定性计算的折减系数法83. 关系需查表求得3截面的几何参数4应力和应变5应力状态分析6内力和内力图7强度计算刚度校核9 压杆稳定性校核10 动荷载11 能量法和简单超静定问题材料力学公式汇总、应力与强度条件1、拉压maxmax2、剪切max3、4、挤压挤压圆轴扭转P挤压A挤压TWtmax平面弯曲①maxM maxy t maxI z*③ Q max S z max②t max5、斜弯曲max M z M yW z W yW z maxtmaxt maxmax注意:“5”与“ 6”两式仅供参考 ②第四强度理论r4w 2 3 n 2M w 20.75M n 2r4 w 3 n WWz二、变形及刚度条件1拉压LNLNLN i L iN ( x) dxEA EA LEA2扭转TLT i L i T x dx T 180 0( /GI pGI pGI pL GI p3弯曲(1) 积分法 : EIy ''( x) M(x) E Iy '(x) EI (x) M(x)dx CEIy ( x) [ M (x)dx]dx Cx D(2)叠加法 : f P 1,P 2 ⋯= f P 1 f P 2 +⋯, P 1, P 2 = P 1 P 2 ⋯M 2L =M i 2L i =M 2xdx2EI 2EI i 2EI(5)卡氏第二定理 ( 注:只给出线性弹性弯曲梁的公式 ) 三、应力状态与强度理论 1、 二向应力状态斜截面应力2、 二向应力状态极值正应力及所在截面方位角 3、 二向应力状态的极值剪应力注:极值正应力所在截面与极值剪应力所在截面夹角为 4504、 三向应力状态的主应力: 1 2 36、拉(压)弯组合 maxNM7、圆轴弯扭组合:①第三强度理论M w 2 M n2Wz(3)基本变形表 ( 注意:以下各公式均指绝对值,使用时要根据具体情 况赋予正负号 )ML3EI, A MLA6EIBA PL 216EI qL3 24EI (4)弹性变形能 ( 注:以下只给出弯曲构件的变形能 响, 其他变形与此相似 ,不予写出 ) 并忽略剪力影 B最大剪应力 : max1 325、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变) (2)、表达形式之二(用应变表示应力) 6、三向应力状态的广义胡克定律 强度理论 1) r1 1 1 bnb2)r 3 1 3五、动载荷(只给出冲击问题的有关公式)能量方程TVU7、 sn s8、平面应力状态下的应变分析sin 2x y x y1)2 2xys i n222tg2 0 xyxy四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类) ① 细长受压杆 p ② 中长受压杆 p ③ 短粗受压杆s2EI minPcr 2PcrL2cr a b“ cr ”2Ecr22、关于柔度的几个公式 或 b2Epasb3、惯性半径公式 i I Az短边长度 ))圆截面 i d4,矩形截面 i min b12(b 为2cos 2xyc o 2s2冲击系数 K d 1 1 2hst (自由落体冲击)K dgv0st(水平冲击)六、截面几何性质1、 惯性矩(以下只给出公式,不注明截面的形状) 442 d D 4 d132 DI P 2dA =2、惯性矩平移轴公式32。
卡氏第二定理卡氏第二定理是意大利工程师 A.卡斯蒂利亚诺于1873年提出的。
它被用于求解弹性体的位移,也被用于求解静不定结构问题。
卡氏定理,卡氏定理(Castiglianos Theorem),是意大利工程师卡斯蒂利亚诺(A.Castigliano )于1873,故得其名,卡氏第一定理,卡氏第二定理,设弹性结构在支座的约束下无任何刚性位移,作用有外力,F1 ,F2 , ,Fi ,相应的位移为,1 , 2 , , i ,结构的变形能,卡氏定理的证明,只给Fi 一个增量Fi,引起所有力的作用点沿力方向的位移增量为,在作用Fi 的过程中, Fi 完成的功为,原有的所有力完成的功为,结构应变能的增量为,如果把原来的力看作第一组力,而把Fi 看作第二组力,根椐互等定理,略去高阶微量,或者,当Fi 趋于零时,上式为,这就是卡。
卡氏第二定理(Castiglianos Second Theorem )(卡氏定理)(Castiglianos Theorem,1)卡氏第二定理只适用于线性弹性体( Applying only to linearly elastic bodies,说明(Directions,2)Fi 为广义力(generalized force)i为相应的位移(displacement corresponding to force Fi,3)卡氏第二定理的应用( Application of castiglianos second theorem,a)轴向拉,压(Axial tension and co 。
【卡氏第二定理|卡氏第二定理】3、mpression,b)扭转(Torsion,c)弯曲(Bending,4)平面桁架(Plane truss,5)组合变形(Combined deformation,例 2.6,已知EI, 求 C 端挠度及A 截面的转角,解,根据卡氏定理,有,AB段,BC段,例2.7,图示刚架EI为常量,B截面受m作用。
第11章典型习题解析1.用卡氏第二定理求图12.3所示刚架A 截面的位移和B 截面的转角。
略去剪力Q 和轴力N 的影响,E Ⅰ为已知.解:(1)A 截面的位移AB 段弯矩:M(x)=-Px (0≤x ≤l ) ∂M(x) /∂P=-x在A 处虚加一水平力向右的力Q,之后,再令其为0.那么,BC 段弯矩:M(y)=-2P l - Q l +(P+Q)y∂M(y) /∂P=-2l +y ∂M(y) /∂ Q=-l +yA 截面的竖直位移:Y A ==∂∂∑⎰EI P Mdx ML 0 ()()()()⎰⎰+-+-+--L LEIdy y L Py PL EI dx x Px 00222 =EIPL 223A 截面的水平位移: X A =EI Q M M L ∂∂∑⎰0dx=()()EI dy y L Qy Py QL PL L 200+-++--⎰ 积分,令Q=0得 ()()EIPL EI dy y L Py PL XA L 1252230=+-+-=⎰(2)B 截面的转角在B 处虚加一力偶M B,AB 段弯矩:M(x)=-Px (0≤x<l )BC 段弯矩:M(y)=-2P l -B M +Py (0<y<l )∂M(x) /∂MB=0 ∂M(y) /∂MB =-1 ∑⎰∂∂=L B B EI dx M M M 0θ =()()⎰-+--L B EI dxPy M PL 0212 EIPL 432= 2.用卡氏第二定理求图示的A 截面的位移和B 截面的转角。
略去剪力Q 和轴力N 的影响,E Ⅰ为已知。
解:(1)A 截面的位移在A 点虚加一向下的力F ,支反力2qL F P Y B ++= (L 为AB 和AD 的长度) P X qL P Y C C -=--=,2AB 段弯矩: M1=0∂ M1 /∂F=0AD 段弯矩:M2(x)=2qL P F qx 2++⋅1()x-2∂M2(x) /∂F=xCD 段弯矩:M3(y)=PyaⅠⅠ2ⅠC DA 截面的竖直位移:∑⎰∂∂=L A EIdx F M M Y 0=⎰⋅⎥⎦⎤⎢⎣⎡-⋅⎪⎭⎫ ⎝⎛++L EI xdx qx x F qL P 02222 积分,令F=0得34A PL qL Y 6EI 24EI =+求A 截面的水平位移时, 在A 处虚加一水平力向右的力Q, 再令其为0.那么, 支反力B qL Y P Q 2=++ (L 为AB 和AD 的长度)C C qL Y P Q X P Q 2=-+=-+()+,() AB 段弯矩: M1=0∂ M1 /∂Q=0AD 段弯矩:M2(x)=(P+Q)x ⋅∂M2(x) /∂Q=xCD 段弯矩:M3(y)=(P+Q )y∂M3(y) /∂Q=yA 截面的水平位移∑⎰∂∂=L A EI dx Q M M X 0=()⎰⋅+L EIdx x Q P 022=()⎰⋅+L EI ydy y Q P 0积分,令Q=0得 EIPL X A 23= (2) B 截面的转角在B 处虚加一顺时针的力偶M B, 积分,并令其为零。
卡氏第二定理求位移例题摘要:一、卡氏第二定理简介1.卡氏第二定理的概念2.卡氏第二定理的意义二、卡氏第二定理求位移例题解析1.问题描述2.解题思路3.具体步骤4.结论正文:【提纲】一、卡氏第二定理简介卡氏第二定理,又称柯西- 施瓦茨(Cauchy-Schwarz)不等式,是数学分析领域中一个非常重要的不等式。
该定理可以用于求解许多与位移相关的问题,例如求解速度、加速度等物理量。
【提纲】二、卡氏第二定理求位移例题解析以下是一个利用卡氏第二定理求位移的例题:问题描述:设有一质点在一维空间的运动方程为x(t) = x0 + v0t +0.5at^2,已知质点在t = 0 时刻的位置为x0 = 1,初始速度为v0 = 2,加速度为a = 3。
求质点在t = 2 秒时的位移。
解题思路:首先,根据位移公式,我们可以得到x(2) = x0 + v0*2 +0.5*a*(2^2)。
然后,利用卡氏第二定理对速度、加速度进行替换,以求得更简单的表达式。
具体步骤:1.根据卡氏第二定理,有(x0 + v0t + 0.5at^2)^2 ≤ (x0^2 + (v0t)^2 + (0.5at^2)^2)。
2.将t = 2 代入,得到(1 + 2*2 + 0.5*3*(2^2))^2 ≤ (1^2 + (2*2)^2 + (0.5*3*(2^2))^2)。
3.计算得(7)^2 ≤ (1 + 4 + 12)。
4.化简得49 ≤ 17,显然成立。
5.根据柯西不等式,有(x0 + v0t + 0.5at^2)/√(1 + (v0t)^2 +(0.5at^2)^2) ≤ √(x0^2 + (v0t)^2 + (0.5at^2)^2)。
6.将t = 2 代入,得到(x(2) - 1)/√(1 + (2*2)^2 + (0.5*3*(2^2))^2) ≤ √(1^2 + (2*2)^2 + (0.5*3*(2^2))^2)。
7.计算得x(2) - 1 ≤ 5,即x(2) ≤ 6。
卡氏第二定理求位移例题摘要:1.卡氏第二定理简介2.位移的概念3.求位移的例题4.例题解答过程5.总结正文:【1.卡氏第二定理简介】卡氏第二定理,又称卡氏定理二,是结构力学中的一个重要定理。
它是由俄国力学家卡尔·弗里德里希·高斯(Carl Friedrich Gauss)提出的。
卡氏第二定理主要用于研究杆件系统在位移、内力及反力作用下的平衡问题。
【2.位移的概念】位移是指物体从一个位置到另一个位置的位置变化。
在结构力学中,位移通常用来描述杆件在受力情况下的形变。
位移可以分为线位移和角位移两种。
线位移是指杆件在受力情况下的长度变化,而角位移是指杆件在受力情况下的旋转角度变化。
【3.求位移的例题】假设有一个简支梁,梁的两端分别固定在两个支座上,梁的中点处有一个集中力F 作用在梁的上方。
现在需要求解在集中力作用下,梁的位移。
【4.例题解答过程】根据卡氏第二定理,我们可以通过求解梁的内力来计算位移。
首先,我们需要列出梁在集中力作用下的力学平衡方程。
根据力学平衡原理,梁的反力和内力之和应该等于零。
设梁的上部为受压区,下部为受拉区。
由于梁是简支梁,所以梁的左右两端支座反力为零。
根据力学平衡方程,我们可以得到以下方程组:(1)梁上部受压区:ΣF_N = 0,其中F_N 表示梁上部受压区的反力。
(2)梁下部受拉区:ΣF_T = 0,其中F_T 表示梁下部受拉区的反力。
(3)梁的弯曲部分:M_x = EI * δ,其中M_x 表示梁的弯矩,E 表示梁的弹性模量,I 表示梁的惯性矩,δ表示梁的弯曲角。
根据以上方程组,我们可以求解出梁的位移。
由于梁的弯曲部分是连续的,所以梁的位移应该是均匀分布的。
我们可以通过求解梁的弯矩来计算位移。
假设梁的长度为L,集中力F 作用在距离梁端点L/4 的位置,梁的弹性模量E 为200 GPa,梁的惯性矩I 为1/12 * L^4。
代入卡氏第二定理,我们可以得到:δ= F * L^3 / (8 * E * I)根据上述公式,我们可以求解出梁的位移。
卡氏第二定律卡氏第二定律,也称为牛顿第二定律,是物理学中最基本的定律之一。
它描述了物体的运动与所受力的关系,被广泛应用于力学和动力学的研究中。
卡氏第二定律的数学表达式为F = ma,其中F表示物体所受的合力,m表示物体的质量,a表示物体的加速度。
根据这个定律,如果一个物体受到一个力,它将以与该力成正比的加速度运动。
卡氏第二定律可以通过以下实例更好地理解。
假设有一个质量为2千克的小车,施加在小车上的力为10牛顿。
根据卡氏第二定律,我们可以计算出小车的加速度。
代入公式F = ma,可得10 = 2a,解方程可得a = 5米/秒²。
这意味着小车将以每秒5米的加速度向前移动。
卡氏第二定律的应用不仅限于直线运动,也可以用于描述旋转运动。
对于一个刚体的转动,卡氏第二定律可以表示为τ = Iα,其中τ表示刚体所受的合力矩,I表示刚体的转动惯量,α表示刚体的角加速度。
这个公式告诉我们,刚体的旋转运动与所受的力矩成正比。
卡氏第二定律的重要性在于它是力学的基础,可以用来解释和预测物体的运动。
它帮助我们理解为什么物体会加速或减速,为物体的运动提供了定量的描述。
除了基本的数学表达式外,卡氏第二定律还有一些重要的特点和应用。
首先,它遵循矢量运算规则,即力和加速度是矢量量。
其次,它适用于惯性参考系,即在不受外力干扰的情况下才能准确描述物体的运动。
此外,卡氏第二定律还可以与其他定律和原理结合使用,如牛顿第三定律和动量守恒定律等。
卡氏第二定律的应用广泛,涉及许多领域。
在工程学中,它用于设计和分析机械系统的运动。
在航天学中,它用于预测和控制航天器的运动。
在生物学中,它用于理解动物和人体的运动机制。
在体育运动中,它用于优化运动员的训练和表现。
卡氏第二定律是物理学中最基本的定律之一,描述了物体的运动与所受力的关系。
它的应用范围广泛,为我们理解和控制物体的运动提供了重要的工具。
通过深入学习和应用卡氏第二定律,我们能够更好地理解和解释世界的运动规律。
§11-1概述1.变形功与变形能弹性杆受拉力P作用(图11-1),当P从零开始到终值缓慢加载时,力P在其作用方向上的相应位移也由零增至而做功,称为变形功。
(11-1)与此同时弹性杆被拉长而具有做功的能力,表明杆件内储存了变形能。
单位体积储存的应变能称为应变比能(11-2)整个杆件的变形能为(11-3)如果略去拉伸过程中的动能及其它能量的变化与损失,由能量守恒原理,杆件的变形能U在数值上应等于外力做的功W,即有U=W (11-4)这是一个对变形体都适用的普遍原理称为功能原理,弹性固体变形是可逆的,即当外力解除后,弹性体将恢复其原来形状,释放出变形能而做功。
但当超出了弹性范围,具有塑性变形的固体,变形能不能全部转变为功,因为变形体产生塑性变形时要消耗一部分能量,留下残余变形。
2.应变余功与余能变形体受外力作用时的余功定义为其中P1是外力从零增加到的终值,仿照功与变形能相等的关系,将余功相应的能称为余能,用U c表示。
余功与余能相等,即可仿照前面,定义单位体积余应变能(或应变余能),称为余应变比能由此整个结构余应变能可写成应指出:余功、余应变能、余应变比能具有功的量纲,是变形体的另一能量参数,但都没有具体的物理概念,只是常力所做的功减去变力所做功余下的那部分功。
3.能量原理固体力学中运用功与能有关的基本原理统称为能量原理,由此发展出来的方法称为能量法。
能量原理是在总体上从功与能的角度考察变形体系统的受力、应力与变形的原理与方法,是进一步学习固体力学的基础,也是当今应用甚广的有限元法求解力学问题的重要基础。
4.本章内容本章只涉及能量原理在材料力学中常用的部分内容,如:变形能、互等定理、卡氏定理、虚功原理、单位载荷法及图乘法,更为深入的,如最小势能原理,最小余能原理等变分原理,可参考其它专著。
§11-2 杆件变形能计算杆件不同受力情况下的变形能。
1.轴向拉伸或压缩线弹性杆件(图11-3)拉、压杆应变比能则整个杆的变形能或(11-5)(11-6)其中,N是内力(轴力),A是截面面积,l是杆长。