材料力学卡式定理
- 格式:ppt
- 大小:847.50 KB
- 文档页数:16
卡氏定理求解力卡氏定理是力学中的一项重要定理,用于计算物体所受合力的大小。
它是根据牛顿第二定律推导出来的,能够帮助我们更好地理解和解决力学问题。
卡氏定理的表述是:“当一个物体受到多个力的作用时,这些力的矢量和等于物体的质量乘以加速度的矢量。
”简单来说,就是物体所受合力等于物体质量乘以加速度。
为了更好地理解卡氏定理,我们可以通过一个具体的例子来说明。
假设有一个质量为2千克的物体,在水平方向上受到两个力的作用:一个是10牛的向右的力,另一个是5牛的向左的力。
我们需要求解物体的加速度。
根据卡氏定理,我们可以将这个问题转化为一个简单的数学方程。
首先,我们需要计算合力。
由于两个力的方向相反,所以合力的大小等于10牛减去5牛,即5牛。
然后,我们需要计算物体的加速度。
根据卡氏定理,合力等于物体质量乘以加速度,所以加速度等于合力除以物体质量,即5牛除以2千克,得到2.5米每平方秒。
通过这个例子,我们可以看出卡氏定理的应用和价值。
它可以帮助我们计算物体所受合力的大小,并进一步求解物体的加速度。
在力学问题中,卡氏定理是一个非常重要的工具,可以帮助我们分析和解决各种力学问题。
除了上述例子中的计算方法,我们还可以通过向量的方法来应用卡氏定理。
在向量法中,我们可以将力和加速度用向量表示,然后利用向量的运算规则来求解问题。
这种方法在处理复杂的力学问题时更加方便和直观。
卡氏定理还可以用于解决一些实际问题。
例如,在工程中,我们经常需要计算物体所受的合力和加速度,以确定结构的强度和稳定性。
在运动学和动力学的研究中,卡氏定理也是一个重要的工具,可以帮助我们理解和描述物体的运动规律。
卡氏定理是力学中一项重要的定理,可以帮助我们计算物体所受的合力和加速度。
它是根据牛顿第二定律推导出来的,具有广泛的应用价值。
通过应用卡氏定理,我们可以更好地理解和解决力学问题,在工程和科学研究中发挥重要作用。
希望通过本文的介绍,读者能够对卡氏定理有一个更清晰的认识,并能够灵活运用它解决实际问题。
Mechanics of Materials卡氏第二定理d d E A I N Δl l ii x xF GI F E F M ++∂∂⎰⎰T T P N ()()()()d ()()i l i x F x x EA M x M x x M x F ∂=∂∂∂⎰22F M EIEI 2NTεP ()()()d d d 222x M x x V x x x EA GI =++⎰⎰⎰F xk N 1Δnj j Nj i j j j iF l F E A F =∂=∂∑桁架结构N ()F x T ()M x ()M x N ()F x T ()M x ()M x S S ()()d 2ix F x GA F ∂+∂⎰组合变形构件图示外伸梁抗弯刚度为EI,只考虑弯曲变形,试求外伸端C的挠度wC 和截面B 的转角θB 。
解:⑴求支座约束力解得:-=AyFa F l=AyFaFl⑵求梁各段的弯矩方程及对载荷的偏导数【例题】AB段BC段(0)x l≤≤()==AyFaM x F x xl()∂=∂M x axF l()l x l a≤≤+()()=+-M x F l a x()∂=+-∂M xl a xF⑶ 求载荷作用点相应的位移0()()()()d d +∂∂=+∂∂⎰⎰ll a C l M x M x M x M x w x xEI F EI F 231()33=+Fa l Fa EI 011d ()()d +=⋅++-⋅+-⎰⎰l l a lFa a x x x F l a x l a x x EI l l EI AB 段BC 段(0)x l ≤≤()==Ay Fa M x F x xl ()∂=∂M x ax F l()l x l a ≤≤+()()=+-M x F l a x ()∂=+-∂M x l aF⑶ 求载荷作用点相应的位移11221200()()()()d d ∂∂=+∂∂⎰⎰la C M x M x M x M x w x x EI F EI F 231()33=+Fa l Fa EI 1112220011d d =⋅+⋅⎰⎰l a Fa a x x x Fx x x EI l l EI AB 段BC 段1(0)≤≤x l 111()==Ay FaM x F x x l11()∂=∂M x a x F l 2(0)≤≤x a 22()=M x Fx 22()∂=∂M x xFlM x F x x Fa M Ay a ==-()111M lM x x a ∂=-∂()11M x Fx =()22M M x a∂=∂0()2⑵ 求梁各段的弯矩方程及对载荷的偏导数AB 段BC 段≤≤x l (0)1x a ≤≤(0)2⑴ 求支座约束力 解得:∑=MB0:Fa F l M Ay a --=0lF Fa M Aya =-↑()有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)1122120()()()()d d θ∂∂=+∂∂⎰⎰la B a a M x M x M x M x x x EI M EIM 11122011()d 0d a a laa M M Fa M x x x Fx x EIl lEI ==-=⋅-+⋅⎰⎰-Fal11()-=aFa M M x x l⑵ 求梁各段的弯矩方程及对载荷的偏导数 AB 段BC 段⑶ 求载荷作用点相应的位移结果负值说明位移方向与对应载荷方向相反3EI =【讨论】图示情况 含义FV ∂∂εFV B D ∂∂ε求 B 处 F 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)1. 建立内力方程【总结】卡氏第二定理求位移的解题步骤()()d ∂∂⎰l i M x M x x EI F ()[()]d -∂-∂⎰l iM x M x x EI F 2. 内力方程对 F i 求偏导3. 将内力方程及偏导代入积分表达式求位移各段内力方程坐标原点可以不一样 若所求位移处无对应载荷,可虚设对应载荷,偏导后才能令该虚载荷等于 0若所求位移为正,说明实际位移方向与对应载荷方向一致,否则与对应载荷方向相反内力正负规定不会影响计算结果 内力方程不要用约束力表示。
材料力学公式大全材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。
在工程设计和分析中,材料力学公式起着至关重要的作用。
下面为大家详细介绍一些常见的材料力学公式。
一、应力与应变1、正应力公式:轴向拉伸与压缩时,正应力$\sigma =\frac{F}{A}$,其中$F$ 是轴力,$A$ 是横截面面积。
圆轴扭转时,横截面上的切应力$\tau =\frac{T}{Ip}$,$T$ 是扭矩,$Ip$ 是极惯性矩。
2、线应变公式:轴向拉伸与压缩时,线应变$\epsilon =\frac{\Delta L}{L}$,$\Delta L$ 是长度的改变量,$L$ 是原长。
3、切应变公式:圆轴扭转时,切应变$\gamma =\frac{r\theta}{L}$,$r$ 是半径,$\theta$ 是扭转角,$L$ 是轴的长度。
二、胡克定律1、轴向拉伸与压缩时:$\sigma = E\epsilon$ ,其中$E$ 是弹性模量。
2、剪切胡克定律:$\tau = G\gamma$ ,$G$ 是剪切模量。
三、杆件的内力1、轴力$F_N$ :通过截面法求解,沿杆件轴线方向的内力。
2、扭矩$T$ :外力偶矩对杆件产生的内力。
3、剪力$F_Q$ 和弯矩$M$ :在梁的弯曲分析中,通过截面法求解。
四、梁的弯曲应力1、纯弯曲时的正应力:$\sigma =\frac{M y}{I_z}$,$y$ 是所求应力点到中性轴的距离,$I_z$ 是横截面对于中性轴的惯性矩。
2、横力弯曲时的正应力:需要考虑切应力的影响,进行修正。
五、梁的弯曲变形1、挠度$y$ 和转角$\theta$ 的计算公式:通过积分法或叠加法求解。
2、挠曲线近似微分方程:$EIz''= M(x)$。
六、组合变形1、拉(压)弯组合:分别计算拉伸(压缩)应力和弯曲应力,然后叠加。
2、弯扭组合:先计算弯曲应力和扭转切应力,然后根据强度理论进行强度校核。
材料力学卡式定理力学卡式定理是朗格朗日动力学的核心定理之一,它建立了广义坐标和广义速度与系统的拉格朗日函数之间的关系。
力学卡式定理提供了一种便捷的方法来描述物体在运动中所受到的力和受力对象之间的相互关系。
力学卡式定理最初是由拉格朗日(lagrange)在18世纪中叶提出的。
他认为,任何一个力学系统都可以通过选取适当的广义坐标来描述。
广义坐标是描述物体位置和状态的参数,例如物体的位置、速度、角度等。
拉格朗日将系统的动能和势能表示为广义速度和广义坐标的函数,他提出了一个形式简洁的拉格朗日方程:d/dt (∂L/∂q') - ∂L/∂q = Q其中,L是系统的拉格朗日函数,q和q'分别是广义坐标和广义速度,Q表示外力,d/dt表示对时间的导数。
这个方程就是力学卡式定理的数学表达形式。
根据这个方程,可以得到系统的运动方程。
力学卡式定理的重要性在于,它从整体的角度描述了物体的运动,将动能和势能作为系统的性质进行分析,并通过广义坐标和广义速度的选择,实现了对系统的普遍描述。
拉格朗日函数能够统一描述刚体、弹性体和流体等多种物体的力学行为,从而使得力学分析变得更加简洁和系统化。
以一个简单的弹簧振子为例,来说明力学卡式定理的应用。
假设一个弹簧振子由一个质量为m的物体和一个劲度系数为k的弹簧组成。
我们可以选择物体的位置和速度作为广义坐标和广义速度,那么系统的拉格朗日函数可以表示为:L = T - V = (1/2)m(q')^2 - (1/2)kq^2其中,T表示动能,V表示势能。
根据力学卡式定理,我们可以得到运动方程:d/dt (∂L/∂q') - ∂L/∂q = 0化简后可以得到:m(q'') + kq = 0这个方程就是弹簧振子的运动方程。
从这个简单的例子中可以看出,力学卡式定理提供了一种简洁的描述物体运动的方法,并能够方便地得到系统的运动方程。
力学卡式定理在物理学中的应用非常广泛。