1、图1圆截面直杆的横截面面积为A,长度为 ,弹性模量为E
- 格式:doc
- 大小:481.50 KB
- 文档页数:6
轴向拉伸(压缩)的内力及强度计算一、判断题1.力是作用于杆件轴线上的外力。
()图 12.力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。
()3.图1所示沿杆轴线作用着三个集中力,其m—m截面上的轴力为 N=-F。
()4.在轴力不变的情况下,改变拉杆的长度,则拉杆的绝对变化发生变化,而拉杆的纵向线应变不发生变化。
()5.轴力是指杆件沿轴线方向的内力。
()6.内力图的叠加法是指内力图上对应坐标的代数相加。
()7.轴力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。
()8.两根等长的轴向拉杆,截面面积相同,截面形状和材料不同,在相同外力作用下它们相对应的截面上的内力不同()。
9.如图所示,杆件受力P作用,分别用N1、N2、N3和σ1、σ2、σ3表示截面I-I、II-II、III-III上的轴力和正应力,则有(1)轴力N1> N2> N3()(2)正应力σ1>σ2>σ 3 ()图 2 图 310.A、B两杆的材料、横截面面积和载荷p均相同,但L A > L B , 所以△L A>△L B(两杆均处于弹性范围内),因此有εA>εB。
()11.因E=σ/ε,因而当ε一定时,E随σ的增大而提高。
()12.已知碳钢的比例极限σp=200MPa,弹性模量E=200Pa,现有一碳钢试件,测得其纵向线应变ε=0.002,则由虎克定律得其应力σ=Eε=200×10×0.002=400Mpa。
()13.塑性材料的极限应力取强度极限,脆性材料的极限应力也取强度极限。
()14.现有低碳钢和铸铁两种材料,杆1选用铸铁,杆2选用低碳钢。
()图 415.一等直拉杆在两端承受拉力作用,若其一半段为钢,另一半段为铝,则两段的应力相同,变形相同。
()16.一圆截面轴向拉杆,若其直径增加一倍,则抗拉强度和刚度均是原来的2倍。
()17.铸铁的许用应力与杆件的受力状态(指拉伸或压缩)有关。
实用文档第1 章 绪论一、是非判断题1-1 材料力学是研究构件承载能力的一门学科。
( √ ) 1-2 材料力学的任务是尽可能使构件安全地工作。
( × ) 1-3 材料力学主要研究弹性范围内的小变形情况。
( √ )1-4 因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。
(×) 1-5 外力就是构件所承受的载荷。
( × )1-6 材料力学研究的内力是构件各部分间的相互作用力。
( × )1-7 用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。
( √ ) 1-8 压强是构件表面的正应力。
( × ) 1-9 应力是横截面上的平均内力。
( × )1-10 材料力学只研究因构件变形引起的位移。
( √ ) 1-11 线应变是构件中单位长度的变形量。
( × ) 1-12 构件内一点处各方向线应变均相等。
( × )1-13 切应变是变形后构件中任意两根微线段夹角的变化量。
( × ) 1-14 材料力学只限于研究等截面直杆。
( × )1-15 杆件的基本变形只是拉(压)、剪、扭和弯四种。
如果还有另一种变形,必定是这四种变形的某种组合。
( √ )第 2 章 轴向拉伸与压缩 一、是非判断题2-1 使杆件产生轴向拉压变形的外力必须是一对沿杆轴线的集中力。
(×) 2-2 拉杆伸长后,横向会缩短,这是因为杆有横向应力存在。
(×) 2-3 虎克定律适用于弹性变形范围内。
(×) 2-4 材料的延伸率与试件尺寸有关。
(√)2-5 只有超静定结构才可能有装配应力和温度应力。
(√) 二、填空题2-6 承受轴向拉压的杆件,只有在(加力端一定距离外)长度范围内变形才是均匀的。
2-7 根据强度条件][σσ≤可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。
2-8 低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。
⼯程⼒学历年真题全国⾼等教育⾃学考试真题集⼯程⼒学(⼆)强⼤的符易整理全国2012年4⽉⾼等教育⾃学考试⼯程⼒学(⼆)试题课程代码:02391⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其代码填写在题后的括号内。
错选、多选或未选均⽆分。
1.图⽰结构中,AD 杆D 端作⽤⽔平⼒F ,⽀座B 对折杆BC 的约束⼒⽅向应为( ) A.⽔平⽅向 B.沿BC 连线 C.铅垂⽅向D.沿BD 连线2.平⾯汇交⼒系如图所⽰,其合⼒应为 ( ) A.100NB.50NC.253ND.03.图⽰外伸梁C 端作⽤⼀个⼒偶,其⼒偶矩为m ,则B 处⽀座反⼒⼤⼩应为 ( ) A.m aB.23m aC.2m a D.3m a4.图⽰物块重量为Q ,⽔平拉⼒P=0.3Q ,若物块与⽔平⾯间摩擦系数f=0.35,则重物与⽔平⾯间的摩擦⼒应为 ( ) A.Q B.0.35Q C.0.3Q D.05.如图所⽰,铅垂⼒F 的作⽤点A 的坐标x A =a ,y A =b ,z A =0,⼒F 对三个坐标轴之矩⼤⼩应为 ( ) A.m x (F)=Fa ,m y =(F)=Fb ,m z (F)=0 B.m x (F)=0,m y =(F)=Fa ,m z (F)=Fb C.m x (F)=Fb ,m y (F)=Fa ,m z (F)=0D.m x (F)=Fa ,m y =(F)=Fb ,m z (F)=22F a b +6.图⽰结构为 ( ) A.静定结构B.⼀次超静定结构C.⼆次超静定结构D.三次超静定结构 7.材料的许⽤应⼒[]=unσσ(n 为安全系数),对于塑性材料,极限应⼒σn取材料的( )A.屈服极限B.弹性极限C.⽐例极限D.强度极限8.图⽰矩形截⾯对z 轴的静矩S z 为 ( )A.2bhB.312b hC.312bhD.22bh9.图⽰某纯弯曲梁横截⾯上A 点处的正应⼒为2MPa ,z 轴为中性轴,则B 点处的正应⼒为 ( ) A.2MPaB.4MPaC.6MPaD.8MPa10.图⽰梁跨中点C 处的竖向位移为( )A.33Fa EIB.0C.36Fa EI -D.33Fa EI-⼆、填空题(本⼤题共10⼩题,每⼩题2分,共20分)请在每⼩题的空格中填上正确答案。
拉伸与压缩一、 选择题 (如果题目有5个备选答案选出其中2—5个正确答案,有4个备选答案选出其中一个正确答案。
)1.若两等直杆的横截面面积为A ,长度为l ,两端所受轴向拉力均相同,但材料不同,那么下列结论正确的是( )。
A .两者轴力相同应力相同B .两者应变和仲长量不同C .两者变形相同D .两者强度相同E .两者刚度不同2.一圆截面直杆,两端承受拉力作用,若将其直径增大一倍,其它条件不变,则( )。
A .其轴力不变B .其应力将是原来的1/4C .其强度将是原来的4倍D .其伸长量将是原来的1/4E .其抗拉强度将是原来的4倍3.设ε和1ε分别表示拉压杆的轴向线应变和横向线应变,μ为材料的泊松比,则下列结论正确的是( )。
A .εεμ1=B .εεμ1-=C .εεμ1= D .εεμ1-= E .常数时,=≤μσσ p 4.钢材经过冷作硬化处理后,其性能的变化是( )。
A .比例极限提高 B .屈服极限提高C .弹性模量降低D .延伸率提高E .塑性变形能力降低5.低碳钢的拉伸σ-ε曲线如图1-19所示若加载至强化阶段的C 点,然后卸载,则应力回到零值的路径是( )。
A .曲线cbaoB .曲线cbf (bf ∥oa )C .直线ce (ce ∥oa )D .直线cd (cd ∥o σ轴)6.低碳钢的拉伸σ-ε曲线如图l —19,若加载至强化阶段的C 点时,试件的弹性应变 和塑性应变分别是( )。
A .弹性应变是ofB .弹性应变是oeC .弹性应变是edD .塑性应变是ofE .塑性应变是oe7.图l-2l 表示四种材料的应力—应变曲线,则: (1)弹性模量最大的材料是( );(2)强度最高的材料是( ); (3)塑性性能最好的材料是( )。
8.等截面直杆承受拉力,若选用三种不同的截面形状:圆形、正方形、空心圆,比较材料用量,则( )。
A .正方形截面最省料B .圆形截面最省料C .空心圆截面最省料D .三者用料相同9.若直杆在两外力作用下发生轴向拉伸(压缩)变形,则此两外力应满足的条件是 A .等值 B .反向 C .同向D .作用线与杆轴线重合E .作用线与轴线垂直 10.轴向受拉杆的变形特征是( )。
计 算 题( 第四章 )试作图示各杆的轴力图。
图题4. 1图示等截面混凝土的吊柱和立柱,已知横截面面积A 和长度a ,材料的重度γ,受力如图示,其中10F Aa γ=。
试按两种情况作轴力图,并求各段横截面上的应力,⑴不考虑柱的自重;⑵考虑柱的自重。
图题一起重架由100×100mm2 的木杆BC 和直径为30mm 的钢拉杆AB 组成,如图所示。
现起吊一重物WF =40kN 。
求杆AB 和BC 中的正应力。
图题图示钢制阶梯形直杆,各段横截面面积分别为21100mm A =,2280mm A =,23120mm A =,钢材的弹性模量GPa E 200=,试求:(1)各段的轴力,指出最大轴力发生在哪一段,最大应力发生在哪一段;(2)计算杆的总变形;图题4.5 图示短柱,上段为钢制,长200mm ,截面尺寸为100×100mm2;下段为铝制,长300mm ,截面尺寸为200×200mm 2。
当柱顶受F 力作用时,柱子总长度减少了0.4mm 。
试求F 值。
已知:(E 钢=200GPa ,E 铝=70GPa)。
4.6 图示等直杆AC ,材料的容重为ρg ,弹性模量为E ,横截面积为A 。
求直杆B 截面的位移ΔB 。
题图 题图两块钢板用四个铆钉连接,受力kN 4=F 作用,设每个铆钉承担4F 的力,铆钉的直径mm 5=d ,钢板的宽mm 50=b ,厚度mm 1=δ,连接按(a )、(b )两种形式进行,试分别作钢板的轴力图,并求最大应力max σ。
题图用钢索起吊一钢管如图所示,已知钢管重kN10=G F ,钢索的直径mm 40=d ,许用应力[]MPa 10=σ,试校核钢索的强度。
正方形截面的阶梯混凝土柱受力如图示。
设混凝土的320kN m γ=,载荷kN 100=F ,许用应力[]MPa 2=σ。
试根据强度选择截面尺寸a 和b 。
题图 题图图示构架,30=α,在A 点受载荷kN 350=F 作用,杆AB 由两根槽钢构成,杆AC 由一根工字钢构成,钢的许用拉应力[]MPa 160t =σ,许用压应力[]MPa 100c =σ,试为两杆选择型钢号码。
材料力学试卷1一、结构构件应该具有足够的 、 和 。
(本题3分) 二、低碳钢拉伸破坏经历了四个典型阶段: 阶段、 阶段、 阶段和 阶段。
衡量材料强度的指标是 、 。
(本题6分) 三、在其他条件不变的前提下,压杆的柔度越大,则临界应力越 、临界力越 ;材料的临界柔度只与 有关。
(本题3分) 四、两圆截面杆直径关系为:123D D =,则12Z Z I I =;12Z Z W W =;12P P I I =;12P P W W =; (本题8分)五、已知构件上危险点的应力状态,计算第一强度理论相当应力;第二强度理论相当应力;第三强度理论相当应力;第四强度理论相当应力。
泊松比3.0=μ。
(本题15分)六、等截面直杆受力如图,已知杆的横截面积为A=400mm 2, P =20kN 。
试作直杆的轴力图;计算杆内的最大正应力;材料的弹性模量E =200Gpa ,计算杆的轴向总变形。
(本题15分)七、矩形截面梁,截面高宽比h=2b ,l =4米,均布载荷q =30kN /m 许用应力[]MPa 100=σ, 1、画梁的剪力图、弯矩图 2、设计梁的截面 (本题20分)。
八、一圆木柱高l=6米,直径D=200mm ,两端铰支,承受轴向载荷F=50kN,校核柱子的稳定性。
已知木材的许用应力[]MPa10=σ,折减系数与柔度的关系为:23000λϕ=。
(本题15分)九、用能量法计算结构B点的转角和竖向位移,EI已知。
(本题15分)材料力学试卷2一、(5分)图(a )与图(b )所示两个矩形微体,虚线表示其变形后的情况,确定该二微体在A 处切应变b aγγ的大小。
二、(10分)计算图形的惯性矩yz I I 。
图中尺寸单位:毫米。
三、(15分)已知构件上危险点的应力状态,计算第三强度理论相当应力;第四强度理论相当应力。
四、(10分)画图示杆的轴力图;计算横截面上最大正应力;计算杆最大轴向应变ε。
已知杆的横截面积A =400 mm 2,E =200GPa 。
第二章 轴向拉伸和压缩2-1一圆截面直杆,其直径d =20mm,长L =40m ,材料的弹性模量E =200GPa ,容重γ=80kN/m 3,杆的上端固定,下端作用有拉力F =4KN ,试求此杆的:⑴最大正应力; ⑵最大线应变; ⑶最大切应力;⑷下端处横截面的位移∆。
解:首先作直杆的轴力图⑴最大的轴向拉力为232N,max 80100.024*********.8N 44d F V F L F ππγγ=+=+=⨯⨯⨯⨯+= 故最大正应力为:N,maxN,maxN,maxmax 222445004.8=15.94MPa 3.140.024F F F Addσππ⨯====⨯⑵最大线应变为:64maxmax915.94100.7971020010E σε-⨯===⨯⨯ ⑶当α(α为杆内斜截面与横截面的夹角)为45︒时,maxmax 7.97MPa 2ασττ===⑷取A 点为x 轴起点,2N (25.124000)N 4d F Vx F x F x πγγ=+=+=+故下端处横截面的位移为:240N 0025.1240001d d (12.564000)2.87mm LL F x x x x x EA EA EA+∆===⋅+=⎰⎰2-2试求垂直悬挂且仅受自重作用的等截面直杆的总伸长△L 。
已知杆横截面面积为A ,长度为L ,材料的容重为γ。
解:距离A 为x 处的轴力为 所以总伸长2N 00()L d d 2LL F x Ax L x x EA EA Eγγ∆===⎰⎰ 2-3图示结构,已知两杆的横截面面积均为A =200mm 2,材料的弹性模量E =200GPa 。
在结点A 处受荷载F 作用,今通过试验测得两杆的纵向线应变分别为ε1=4×10-4,ε2=2×10-4,试确定荷载P 及其方位角θ的大小。
解:由胡克定律得 相应杆上的轴力为取A 节点为研究对象,由力的平衡方程得解上述方程组得2-4图示杆受轴向荷载F 1、F 2作用,且F 1=F 2=F ,已知杆的横截面面积为A ,材料的应力-应变关系为ε=c σn,其中c 、n 为由试验测定的常数。
第二章杆件内力与内力图2-2(b)、(d)、(g)试作图示各杆的轴力图,并确定最大轴力| F N |max 。
2-3(b)试求图示桁架各指定杆件的轴力。
2-4(c)试作图示各杆的扭矩图,并确定最大扭矩| T |max 。
2-5图示一传动轴,转速n =200 r/min ,轮C为主动轮,输入功率P=60 kW ,轮A、B、D均为从动轮,输出功率为20 kW,15 kW,25 kW。
(1)试绘该轴的扭矩图。
(2)若将轮C与轮D对调,试分析对轴的受力是否有利。
2-8(a)、(c)、(e)、(g)、(h)试列出图示各梁的剪力方程和弯矩方程。
作剪力图和弯矩图,并确定|F s |max及|M |max值。
2-9(a)、(c)、(d)、(f)、(g)、(i)、(k)、(l)、(m)试用简易法作图示各梁的剪力图和弯矩图,并确定|F s |max及|M |max值,并用微分关系对图形进行校核。
2-10设梁的剪力图如图(a)(d)所示(见教材p39)。
试作弯矩图和荷载图。
已知梁上无集中力偶。
2-11(b)试用叠加法绘出图示梁的弯矩图。
2-6一钻探机的功率为10 kW,转速n =180 r/min。
钻杆钻入土层的深度l= 40m。
若土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度m,并作钻杆的扭矩图。
2-14图示起重机横梁AB承受的最大吊重F P=12kN,试绘出横梁AB的内力图。
第三章轴向拉压杆件的强度与变形计算3-1图示圆截面阶梯杆,承受轴向荷载F1=50kN与F2的作用,AB与BC段的直径分别为d1=20mm与d2=30mm,如欲使AB与BC段横截面上的正应力相同,试求荷载F2之值。
3-5变截面直杆如图所示。
已知A1=8cm2,A2=4cm2,E=200GPa 。
求杆的总伸长量。
3-7图示结构中,AB为水平放置的刚性杆,1、2、3杆材料相同,其弹性模量E=210GPa ,已知l =1m,A1=A2=100mm2,A3=150mm2,F P=20kN 。
第二章轴向拉(压变形[习题2-1]试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(b)解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(c)解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(d)解:(1)求指定截面上的轴力(2)作轴力图中间段的轴力方程为:轴力图如图所示。
[习题2-2]试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力[习题2-4] 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EC横截面上的应力。
解:(1)求支座反力由结构的对称性可知:(2)求AE和EG杆的轴力①用假想的垂直截面把C铰和EG杆同时切断,取左部分为研究对象,其受力图如图所示。
由平衡条件可知:②以C节点为研究对象,其受力图如图所示。
由平平衡条件可得:(3)求拉杆AE和EG横截面上的应力查型钢表得单个等边角钢的面积为:[习题2-5] 石砌桥墩的墩身高,其横截面面尺寸如图所示。
荷载,材料的密度,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:墩身底面积:因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
[习题2-6]图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当时各斜截面上的正应力和切应力,并用图表示其方向。
解:斜截面上的正应力与切应力的公式为:式中,,把的数值代入以上二式得:轴向拉/压杆斜截面上的应力计算题目编号10000 100 0 100 100.0 0.0 习题2-6100 30 100 75.0 43.310000100 45 100 50.0 50.010000100 60 100 25.0 43.310000100 90 100 0.0 0.010000[习题2-7]一根等直杆受力如图所示。
材料⼒学试卷及答案7套汇总材料⼒学试卷1⼀、绘制该梁的剪⼒、弯矩图。
(15分)⼆、梁的受⼒如图,截⾯为T 字型,材料的许⽤拉应⼒[σ+]=40MPa ,许⽤压应⼒[σ-]=100MPa 。
试按正应⼒强度条件校核梁的强度。
(20分)m8m2m230170302002m3m1mM三、求图⽰单元体的主应⼒及其⽅位,画出主单元体和应⼒圆。
(15分)30四、图⽰偏⼼受压柱,已知截⾯为矩形,荷载的作⽤位置在A点,试计算截⾯上的最⼤压应⼒并标出其在截⾯上的位置,画出截⾯核⼼的形状。
(15分)五、结构⽤低碳钢A 3制成,A 端固定,B 、C 为球型铰⽀,求:允许荷载[P]。
已知:E=205GPa ,σs =275MPa ,σcr=338-1.12λ,,λp =90,λs =50,强度安全系数n=2,稳定安全系数n st =3,AB 梁为N 016⼯字钢,I z =1130cm 4,W z =141cm 3,BC 杆为圆形截⾯,直径d=60mm 。
(20分)六、结构如图所⽰。
已知各杆的EI 相同,不考虑剪⼒和轴⼒的影响,试求:D 截⾯的线位移和⾓位移。
(15分)材料⼒学2⼀、回答下列各题(共4题,每题4分,共16分)1、已知低碳钢拉伸试件,标距mm l 1000=,直径mm d 10=,拉断后标距的长度变为mm l 1251=,断⼝处的直径为mm d 0.61=,试计算其延伸率和断⾯收缩率。
2、试画出图⽰截⾯弯曲中⼼的位置。
3、梁弯曲剪应⼒的计算公式zzQS =τ,若要计算图⽰矩形截⾯A 点的剪应⼒,试计算z S 。
aa4/h4、试定性画出图⽰截⾯截⾯核⼼的形状(不⽤计算)。
⼆、绘制该梁的剪⼒、弯矩图。
(15分)三、图⽰⽊梁的右端由钢拉杆⽀承。
已知梁的横截⾯为边长等于0.20m 的正⽅形,q=4OKN/m,弹性模量E 1=10GPa ;钢拉杆的横截⾯⾯积A 2=250mm 2,弹性模量E 2=210GPa 。
试求拉杆的伸长l ?及梁中点沿铅垂⽅向的位移?。
材料⼒学习题及答案材料⼒学习题⼀⼀、计算题1.(12分)图⽰⽔平放置圆截⾯直⾓钢杆(2ABC π=∠),直径mm 100d =,m l 2=,m N k 1q =,[]MPa 160=σ,试校核该杆的强度。
2.(12分)悬臂梁受⼒如图,试作出其剪⼒图与弯矩图。
3.(10分)图⽰三⾓架受⼒P 作⽤,杆的截⾯积为A ,弹性模量为E ,试求杆的内⼒和A 点的铅垂位移Ay δ。
4.(15分)图⽰结构中CD 为刚性杆,C ,D 处为铰接,AB 与DE 梁的EI 相同,试求E 端约束反⼒。
5. (15分) 作⽤于图⽰矩形截⾯悬臂⽊梁上的载荷为:在⽔平平⾯内P 1=800N ,在垂直平⾯内P 2=1650N 。
⽊材的许⽤应⼒[σ]=10MPa 。
若矩形截⾯h/b=2,试确定其尺⼨。
三.填空题(23分)1.(4分)设单元体的主应⼒为321σσσ、、,则单元体只有体积改变⽽⽆形状改变的条件是__________;单元体只有形状改变⽽⽆体积改变的条件是__________________________。
2.(6分)杆件的基本变形⼀般有______、________、_________、________四种;⽽应变只有________、________两种。
3.(6分)影响实际构件持久极限的因素通常有_________、_________、_________,它们分别⽤__________、_____________、______________来加以修正。
4.(5分)平⾯弯曲的定义为______________________________________。
5.(2分)低碳钢圆截⾯试件受扭时,沿____________截⾯破坏;铸铁圆截⾯试件受扭时,沿____________⾯破坏。
四、选择题(共2题,9分)2.(5分)图⽰四根压杆的材料与横截⾯均相同,试判断哪⼀根最容易失稳。
答案:()材料⼒学习题⼆⼆、选择题:(每⼩题3分,共24分)1、危险截⾯是______所在的截⾯。
1. 图为一阶梯杆,两段的横截面面积为A1=2cm2,A2=4cm2。
杆端的荷载P1=4kN,C截面的荷载P2=10kN,材料的弹性模量E=2×105 MPa,试求杆端B的水平位移ΔB 。
解端截面B的水平位移实际上就是AB杆长度的变化量ΔL,由于杆的横截面不是常数,杆件的轴力AC段N AC = 6kN (拉),CB段N CB =4kN(压),故应分三段(AC段、CD段、DB段)来计算杆的变形,然后取其代数和。
设DB段的变形为ΔL1,则ΔL1 =N DB L1/EA1= -4×103×0.5/2×1111×2×10-4 = -0.05×10-3 m (缩短)设CD段的变形为ΔL2,则ΔL2 =N CD L2/EA2= -4×103×0.5/2×1111×4×10-4 = -0.025×10-3 m (缩短)设AC段的变形为ΔL3,则ΔL3 =N AC L3/EA3= 6×103×0.5/2×1111×4×10-4 = -0.0375×10-3 m (伸长)因此,杆件总变形为:ΔB=ΔL1+ΔL2+ΔL3 = -0.0375 mm (缩短)2. 求悬挂的等直杆由于自重引起的最大正应力和总伸长。
设杆件长度L,容重γ,弹性模量E。
解1. 计算杆件内的最大正应力在距离下端点x处截取m - m横截面,取杆件x段为脱离体,则此截面上的轴力为:Nx=γAx根据方程绘制轴力图。
轴力沿杆长按直线变化,最大值发生在上端截面,x=L,其大小为:Nmax =γALm - m横截面上的正应力为:σx=N x/A =γAx /A =γx由此式可知,正应力沿杆长直线变化,最大正应力也发生在上端截面上,其值为σx =γAL2. 计算杆件的伸长由于各截面上的轴力是不等的,故计算整个杆件的伸长时,应先计算dx微段的伸长。
计 算 题( 第四章 )4.1 试作图示各杆的轴力图。
图题4. 14.2 图示等截面混凝土的吊柱和立柱,已知横截面面积A 和长度a ,材料的重度γ,受力如图示,其中10F Aa γ=。
试按两种情况作轴力图,并求各段横截面上的应力,⑴不考虑柱的自重;⑵考虑柱的自重。
图题4.24.3 一起重架由100×100mm2 的木杆BC 和 直径为30mm 的钢拉杆AB 组成,如图所示。
现起吊一重物WF =40kN 。
求杆AB 和BC 中的正应力。
图题4.34.4 图示钢制阶梯形直杆,各段横截面面积分别为21100mm A =,2280mm A =,23120mm A =,钢材的弹性模量GPa E 200=,试求:(1)各段的轴力,指出最大轴力发生在哪一段,最大应力发生在哪一段;(2)计算杆的总变形;图题4.44.5 图示短柱,上段为钢制,长200mm ,截面尺寸为100×100mm2;下段为 铝制,长300mm ,截面尺寸 为200×200mm 2。
当柱顶受F 力作 用时,柱子总长度减少了0.4mm 。
试求F 值。
已知:(E 钢=200GPa ,E 铝=70GPa)。
4.6 图示等直杆AC ,材料的容重为ρg , 弹性模量为E ,横截面积为A 。
求直杆B 截面的位移ΔB 。
题4.5图 题4.6图4.7 两块钢板用四个铆钉连接,受力kN 4=F 作用,设每个铆钉承担4F 的力,铆钉的直径mm 5=d ,钢板的宽mm 50=b ,厚度mm 1=δ,连接按(a )、(b )两种形式进行,试分别作钢板的轴力图,并求最大应力m axσ。
题4.7图4.8 用钢索起吊一钢管如图所示,已知钢管重kN10=G F ,钢索的直径mm 40=d ,许用应力[]MPa 10=σ,试校核钢索的强度。
4.9 正方形截面的阶梯混凝土柱受力如图示。
设混凝土的320kN m γ=,载荷kN 100=F ,许用应力[]MPa 2=σ。
轴向拉伸(压缩)的内力及强度计算一、判断题1.力是作用于杆件轴线上的外力。
()图 12.力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。
()3.图1所示沿杆轴线作用着三个集中力,其m—m截面上的轴力为 N=-F。
()4.在轴力不变的情况下,改变拉杆的长度,则拉杆的绝对变化发生变化,而拉杆的纵向线应变不发生变化。
()5.轴力是指杆件沿轴线方向的内力。
()6.内力图的叠加法是指内力图上对应坐标的代数相加。
()7.轴力越大,杆件越容易被拉断,因此轴力的大小可以用来判断杆件的强度。
()8.两根等长的轴向拉杆,截面面积相同,截面形状和材料不同,在相同外力作用下它们相对应的截面上的内力不同()。
9.如图所示,杆件受力P作用,分别用N1、N2、N3和σ1、σ2、σ3表示截面I-I、II-II、III-III上的轴力和正应力,则有(1)轴力N1> N2> N3()(2)正应力σ1>σ2>σ 3 ()图 2 图 310.A、B两杆的材料、横截面面积和载荷p均相同,但L A > L B , 所以△L A>△L B(两杆均处于弹性范围内),因此有εA>εB。
()11.因E=σ/ε,因而当ε一定时,E随σ的增大而提高。
()12.已知碳钢的比例极限σp=200MPa,弹性模量E=200Pa,现有一碳钢试件,测得其纵向线应变ε=0.002,则由虎克定律得其应力σ=Eε=200×10×0.002=400Mpa。
()13.塑性材料的极限应力取强度极限,脆性材料的极限应力也取强度极限。
()14.现有低碳钢和铸铁两种材料,杆1选用铸铁,杆2选用低碳钢。
()图 415.一等直拉杆在两端承受拉力作用,若其一半段为钢,另一半段为铝,则两段的应力相同,变形相同。
()16.一圆截面轴向拉杆,若其直径增加一倍,则抗拉强度和刚度均是原来的2倍。
()17.铸铁的许用应力与杆件的受力状态(指拉伸或压缩)有关。
判断虎克定律1、杆件在拉伸变形后,横向尺寸会缩短,是因为杆内有横向应力存在。
答案此说法错误答疑杆件内没有横向应力存在,是由于纵向应力使杆件产生横向变形。
2、虎克定律适用于弹性变形范围内。
答案此说法错误答疑虎克定律适用于线弹性变形范围,当应力超过比例极限后,应力-应变关系不再呈线性关系3、“拉压变形时杆件的横向变形ε’和轴向应变ε之间的关系为ε’=-με”错误答疑当变形处于弹性范围内时,杆件的横向变形ε’和轴向应变ε之间的关系为ε’=-με选择题虎克定律CADCC BCDAB1、均匀拉伸的板条表面上画两个正方形,如图所示。
受力后会成形状。
A:a正方形、b正方形;B:a正方形、b菱形;C:a矩形、b菱形D:a矩形、b正方形答疑正方形a的左右两对边之间的纵向纤维的原长相等,在均匀拉力作用下伸长量相等;上下两对边之间的横向纤维尺寸变小,且缩短量相等,固变形后成为矩形。
正方形b的任意两条纵向纤维之间的原长不等,受力后的伸长量也不相等,中间纤维的伸长量最大,向上、向下依次变形量减小,固变形后成为菱形。
2、受轴向拉伸的圆截面杆件的横截面上画两个圆,拉伸后会变成什么形状?A:a圆、b圆;B:a圆、b椭圆;C:a椭圆、b圆;D:a椭圆、b椭圆;答疑横截面上只存在与横截面垂直的正应力且正应力在横截面上均匀分布,沿径向无应力存在。
由于横截面上拉应力的存在使得两圆的半径减小,但形状不变。
3、低碳钢圆截面在拉伸破坏时,标距由100毫米变成130毫米。
直径由10毫米变为7毫米,则Poisson’s ratio(泊松比) ε为:A:μ=(10-7)/(130-100)=0.1 B:μ=ε’/ε=-0.3/0.3=-1 C:μ=|ε’/ε|=1 D:以上答案都错。
答疑ε’=-με的适用范围是线弹性。
此时试件已经被拉伸破坏,不是在弹性范围内,固此公式不能适用。
4、钢材的弹性模量E=200GPa,比例极限σp=200MPa,轴向线应变ε=0.0015,则横截面上的正应力σ= 。
word格式文档学号姓名2-1求下列结构中指定杆内的应力。
已知(a)图中杆的横截面面积A1=A2=1150mm2。
2-2求下列各杆内的最大正应力。
(3)图(c)为变截面拉杆,上段AB的横截面积为40mm2,下段BC的横截面积为30mm2,杆材料的ρg=78kN/m3。
AECDB2-4一直径为15mm,标距为200mm 的合金钢杆,比例极限内进行拉伸试验,当轴向荷载从零缓慢地增加58.4kN 时,杆伸长了0.9mm,直径缩小了0.022mm,确定材料的弹性模量E、泊松比ν。
2-6图示短柱,上段为钢制,长200mm,截面尺寸为100×100mm2;下段为铝制,长300mm,截面尺寸为200×200mm2。
当柱顶受F力作用时,柱子总长度减少了0.4mm,试求F值。
已知E钢=200GPa,E铝=70GPa。
2-7图示等直杆AC,材料的容重为ρg,弹性模量为E,横截面积为A。
求直杆B截面的位移ΔB。
word格式文档学号姓名2-8图示结构中,AB可视为刚性杆,AD为钢杆,面积A1=500mm2,弹性模量E1=200GPa;CG 为铜杆,面积A2=1500mm2,弹性模量E2=100GPa;BE为木杆,面积A3=3000mm2,弹性模量E=10GPa。
当G点处作用有F=60kN时,求该点的竖直位移ΔG。
32-11图示一挡水墙示意图,其中AB杆支承着挡水墙,各部分尺寸均已示于图中。
若AB 杆为圆截面,材料为松木,其容许应力[σ]=11MPa,试求AB杆所需的直径。
2-12图示结构中的CD杆为刚性杆,AB杆为钢杆,直径d=30mm,容许应力[σ]=160MPa,弹性模量E=2.0×105MPa。
试求结构的容许荷载F。
2-14图示AB为刚性杆,长为3a。
A端铰接于墙壁上,在C、B两处分别用同材料、同面积的①、②两杆拉住,使AB杆保持水平。
在D点作用荷载F后,求两杆内产生的应力。
设弹性模量为E,横截面面积为A。
材料力学复习题(答案在最后面)绪论1。
各向同性假设认为,材料内部各点的()是相同的。
(A)力学性质;(B)外力;(C)变形;(D)位移。
2。
根据小变形条件,可以认为()。
(A)构件不变形; (B)构件不变形;(C)构件仅发生弹性变形; (D)构件的变形远小于其原始尺寸.3.在一截面的任意点处,正应力σ与切应力τ的夹角().(A)α=900;(B)α=450;(C)α=00;(D)α为任意角。
4.根据材料的主要性能作如下三个基本假设___________、___________、___________。
5.材料在使用过程中提出三个方面的性能要求,即___________、___________、___________。
6。
构件的强度、刚度和稳定性()。
(A)只与材料的力学性质有关;(B)只与构件的形状尺寸关(C)与二者都有关; (D)与二者都无关。
7。
用截面法求一水平杆某截面的内力时,是对()建立平衡方程求解的。
(A) 该截面左段;(B) 该截面右段;(C)该截面左段或右段;(D)整个杆。
8.如图所示,设虚线表示单元体变形后的形状,则该单元体的剪应变为()。
(A)α; (B)π/2—α;(C) 2α;(D)π/2—2α。
答案1(A)2(D)3(A)4 均匀性假设,连续性假设及各向同性假设。
5 强度、刚度和稳定性。
6(A)7(C)8(C)拉压1。
轴向拉伸杆,正应力最大的截面和切应力最大的截面().(A)分别是横截面、45°斜截面; (B)都是横截面,(C)分别是45°斜截面、横截面; (D)都是45°斜截面。
2。
轴向拉压杆,在与其轴线平行的纵向截面上( ).(A)正应力为零,切应力不为零;(B)正应力不为零,切应力为零;(C)正应力和切应力均不为零;(D)正应力和切应力均为零。
3.应力-应变曲线的纵、横坐标分别为σ=F N /A,ε=△L / L,其中().(A)A和L均为初始值; (B)A和L均为瞬时值;(C)A为初始值,L为瞬时值; (D)A为瞬时值,L均为初始值。
162 第十一能量法
授课学时:8学时
一、 内容提要
1. 杆件的变形能表达式
轴向拉压
扭转
弯曲
组合变形
说明:
(1)变形能是广义力或广义位移的二次函数,不能简单叠加。
(2)变形能仅与外力的最终值有关,而与加力次序无关。
(3)当杆件的各段截面不相同或内力由不同函数表示时,应分段计算变形能。
(4)杆件是满足虎克定律的线弹性体,如对非线弹性体变形能将变为
2. 卡氏定理
弹性系统的总变形能 是由所有作用于弹性系统的广义力
引起的。
令在 的作用点沿 方向引起的广义位移为 ,根据卡氏定理,按下式计算广义位移
说明:
(1)广义力与广义位移须相对应。
(2)当所求位移的截面处没有相应的集中力或集中力偶时,可采用附加力 的方法。
二、 基本要求
1. 理解功能原理,掌握杆件变形能的计算方法。
2. 掌握用卡氏定理求结构位移的方法。
3.理解并掌握用能量法解超静定问题的方法。
三、 典型例题分析
例1 钢架ABCD 承受一对P 力作用(如图1),其抗弯刚度EI 、抗拉刚度EA 以dx
EA x N U l ⎰=2)
(2dx
EI
x M U l ⎰=2)(2
dx
GI x M U l p n ⎰=2)
(2
),,,(21n P P P U U ⋅⋅⋅=),,2,1(n i P i ⋅⋅⋅=i P i δi
i P U
∂∂=δi P 0,
=P l l a D
A -δ⎰+⎰+⎰=i l p n l EI x M dx GI x M dx EA x N U 2)(2)(2)(2
2
2
⎰+⎰⎰+∆=l l l n Md d M l Nd U θ
φ)(
163
及 、 均已知,试利用功能原理求截面A 、D 之间的相对水平位移 。
图1 解:(1)内力分量 AB (CD )段: BC 段: (2)变形能计算
(3) 的计算
由
得
例2 杆件受力如图2,抗弯刚度EI ,试用卡氏定理计算B 截面的竖直位移 。
Pa
x M =)(Px x M =)(P
x N =)(CD
BC AB U U U U ++=⎰+⎰+⎰=l l a EA dx P EI dx Pa EI dx Px 02020222)(2)(2EA l P EI l a P EI a P 2232
2232+
+=D A -δD A P W U -==δ2
1
EA Pl EI l Pa EI Pa D A ++=-2
332δBy δx
P
P
P
P
164 图2
解法一 为了区分梁上的两个力,可将作用于B 截面的力标为 BC 段
AC 段
令 则
解法二:在截面上施加一附加力
BC 段
AC 段
令 则
例3 图3a 中,各杆长均为 ,抗拉压刚度均为 ,求铅垂力作用时各杆的内力
1P 212202111011
)()()()(dx P x M EI x M dx P x M EI x M P U a a By ∂∂⎰+∂∂⎰=∂∂=δ2
12)(x P x M =∂∂)2(2a x a ≤≤1
11)(x P x M =11
1)
(x P x M =∂∂)0(1a x ≤≤)()(2212a x P x P x M --=[]2
202
22110111)(dx EI x a x P x P dx EI x x P a a ⎰⋅--+⎰⋅=P P =1)(6113
↑=
EI
Pa
By δ2
1
2)
(x P x M =∂∂)
2(2a x a ≤≤0
,
=y P 1
,
111)(x P x P x M y +=1
11)
(x P x M =∂∂)0(1a x ≤≤)()(22,
212a x P x P x P x M y --+=212202111011
)
()()()(dx P x M EI x M dx P x M EI x M P U a a By
∂∂⎰+∂∂⎰=∂∂=
δ[
]
2
20222,
2110
11,
11)()(dx EI
x a x P x P x P dx EI x x P x P a y a y ⎰⋅--++⎰⋅+=0,=y P )(6113
↑=EI
Pa By δl EA
165
图3a
解:此为一次超静定结构,采用解除内力约束的方法。
在3杆任意截面处切开,多余未知力为 。
(图3b )
由静力学条件
则系统的变形能
由卡氏定理
两斜杆所受轴向压力
说明:此题也可解除外约束,如解除B 支座铅垂方向的约束, 如图3c 所示,多余未
知力为约束反力 ,变形协调条件为B 点的铅垂位移等于0 。
四、 作业题
1 圆截面直杆的横截面面积为A ,长度为 ,弹性模量为E 。
上端
固定,下端受中心拉力P 作用,设直杆自重为P 答案:
EA
l
P U 672
=
3N 2/)(321N P N N -==[]
EA
l
N P EA l N U 22/)(22232
3-⋅
+=0)(333=--=∂∂EA l N P EA l N N U 23P N =P N N 4
22
1==3X l 3
X
166
2 试求图2悬臂梁B 截面的挠度及转角。
设EI 为常数。
图2
答案: (向下) (顺时针方向)
3 图3悬臂梁受集中力偶矩 的作用。
若 均为已知,试利用功能原理
求自由端C 截面的转角 。
答案: (顺时针)
图3
4
等截面直杆AB 和BC 组成的构架受力如图4。
若两杆的抗拉(压)刚度均为EA , 设
P 、 、E 、A 都已知。
试利用功能原理求B 的竖直位移。
答案: (向下)
图4
EI qa
y B 2474=EI qa B 63
=θ0M l EI 、c θEI l
M c 430=θl EA Pl
B 9.1=
δB
P
167
5 抗弯刚度为EI 的刚架受力如图5,试求刚架A 截面的水平位移 、竖直
位移 、转角 。
答案: ( )
图5
Ax δAy δA θ)(22
→=EI Pbh Ax δ)(↑-=EI
Pabh Ay
δEI Pbh A =θ。