卡氏第一定理
- 格式:docx
- 大小:36.72 KB
- 文档页数:1
2001年招收攻读硕士研究生入学考试自命题试题考试科目及代码:工程力学真题(841)1.请画出图示结构的弯矩图。
(10分)2.请画出图示结构的大致弯矩图。
(10分)3.请求出图示桁架结构中杆1、杆2的轴力。
(10分)4.请求出图示结构C点的竖向位移。
(10分)5.请求出图示结构D点的竖向位移。
(10分)6.请用力法画出图式结构的弯矩图。
(10分)7.请用位移法计算图示结构并画出弯矩图。
(10分)8.请求出图示结构、的影响线。
(10分)9.请求出图示结构的等效荷载列阵。
(10分)10.请求出图示结构的整体刚度矩阵。
(10分)2002年招收攻读硕士研究生入学考试自命题试题考试科目及代码:工程力学真题(841)第一部分:材料力学(150分)一、填空题。
(每小题4分,共20分。
)1.两端受拉力P的等直杆,截面积为A,长为L,弹性模量为E,其应变能为_______。
2.长为L、抗弯刚度为EI的两端铰支的等截面细长中心受压直杆临界力的欧拉公式为______。
3.某点处的三个主应力分别为、和,材料的弹性模量和泊松比分别为E和,则该点处的体积应变为_________。
4.受扭矩T的薄壁圆筒(壁厚为t,平均半径为),其横截面上的应力为__________。
5.外径为2d,内径为d的圆环的横面惯性矩为_____________。
二、简答题。
(每小题4分,共20分)。
1.何谓温度应力?何种情形下会产生温度应力?2.试述弯曲的概念。
何谓对称轴弯曲?3试述剪应力互等定理。
4.为什么脆性材料的安全系数取值比塑料性材料的安全系数取值大?5.试述第三强度理论。
三计算题。
(4小题,共80分)。
1.(15分)试求长为L,截面积为A的杆在拉力P作用下的余能。
材料在单轴拉伸时的应力——应变关系为σ=K√。
2.(15分)矩形基础长为L,宽为B,受单向偏心荷载P作用,作用点在矩形的长轴线上,偏心距为e,试求基础对地基土的最大压力和最小压力(忽略基础及其上土重)。
§11-1概述1.变形功与变形能弹性杆受拉力P作用(图11-1),当P从零开始到终值缓慢加载时,力P在其作用方向上的相应位移也由零增至而做功,称为变形功。
(11-1)与此同时弹性杆被拉长而具有做功的能力,表明杆件内储存了变形能。
单位体积储存的应变能称为应变比能(11-2)整个杆件的变形能为(11-3)如果略去拉伸过程中的动能及其它能量的变化与损失,由能量守恒原理,杆件的变形能U在数值上应等于外力做的功W,即有U=W (11-4)这是一个对变形体都适用的普遍原理称为功能原理,弹性固体变形是可逆的,即当外力解除后,弹性体将恢复其原来形状,释放出变形能而做功。
但当超出了弹性范围,具有塑性变形的固体,变形能不能全部转变为功,因为变形体产生塑性变形时要消耗一部分能量,留下残余变形。
2.应变余功与余能变形体受外力作用时的余功定义为其中P1是外力从零增加到的终值,仿照功与变形能相等的关系,将余功相应的能称为余能,用U c表示。
余功与余能相等,即可仿照前面,定义单位体积余应变能(或应变余能),称为余应变比能由此整个结构余应变能可写成应指出:余功、余应变能、余应变比能具有功的量纲,是变形体的另一能量参数,但都没有具体的物理概念,只是常力所做的功减去变力所做功余下的那部分功。
3.能量原理固体力学中运用功与能有关的基本原理统称为能量原理,由此发展出来的方法称为能量法。
能量原理是在总体上从功与能的角度考察变形体系统的受力、应力与变形的原理与方法,是进一步学习固体力学的基础,也是当今应用甚广的有限元法求解力学问题的重要基础。
4.本章内容本章只涉及能量原理在材料力学中常用的部分内容,如:变形能、互等定理、卡氏定理、虚功原理、单位载荷法及图乘法,更为深入的,如最小势能原理,最小余能原理等变分原理,可参考其它专著。
§11-2 杆件变形能计算杆件不同受力情况下的变形能。
1.轴向拉伸或压缩线弹性杆件(图11-3)拉、压杆应变比能则整个杆的变形能或(11-5)(11-6)其中,N是内力(轴力),A是截面面积,l是杆长。
卡氏第一定理
卡氏第一定理,也叫罗素-卡氏定理,是把代数学中不可被表示为一阶多项式
的定秩多项式表示成一个特殊的乘积式的定理。
这个定理曾几经变动,不断进行化简、完善,追求更高的表达效率,最终在1882年由英国数学家罗素以及卡氏完善
成现在的形式。
卡氏第一定理以一种解释数学定理的抽象表达方式对多项式进行定义。
就是说,把给定的不可被表示为一阶多项式的定秩多项式表示带出a≠0,当且仅当这个多项式可以被表示成由数学定义的相互互斥的两个多项式的乘积形式。
这个定义帮助数学家们利用特殊的乘积表示形式,给了表达多项式的整体性优势,显著的提高了表达效率和对多项式的理解。
卡氏第一定理是高等代数数学学科中不可缺少的重要定理,理论上可用来证明几乎所有高等代数里的多项式,无论是什么次元多项式,高次元多项式,几乎都能够利用卡氏第一定理做出某种形式的简写和成分分解。
此外,卡氏第一定理还是许多数学定理的出发点和依据,如罗素-卡氏定理的复形式,图灵的模糊式和厄尔森
中的统计学断言等等,它们源于或建立在这一定理之上。
由此可见,卡氏第一定理不仅是数学的一门经典定理,对后人的数学研究有着重要的影响和意义,更是科学研究中不可或缺的重要理论工具之一。