材料力学定律公式汇总完全版
- 格式:doc
- 大小:570.58 KB
- 文档页数:14
外力偶矩计算公式(P功率,n转速)弯矩、剪力和荷载集度之间的关系式轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力FN,横截面面积A,拉应力为正)轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)纵向线应变和横向线应变泊松比胡克定律受多个力作用的杆件纵向变形计算公式?承受轴向分布力或变截面的杆件,纵向变形计算公式轴向拉压杆的强度计算公式许用应力,脆性材料,塑性材料延伸率截面收缩率剪切胡克定律(切变模量G,切应变g )拉压弹性模量E、泊松比和切变模量G之间关系式圆截面对圆心的极惯性矩(a)实心圆(b)空心圆圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r )圆截面周边各点处最大切应力计算公式扭转截面系数,(a)实心圆(b)空心圆薄壁圆管(壁厚δ≤ R0 /10 ,R0 为圆管的平均半径)扭转切应力计算公式圆轴扭转角与扭矩T、杆长l、扭转刚度GHp的关系式同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或等直圆轴强度条件塑性材料;脆性材料扭转圆轴的刚度条件? 或受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,平面应力状态下斜截面应力的一般公式,平面应力状态的三个主应力,,主平面方位的计算公式面内最大切应力受扭圆轴表面某点的三个主应力,,三向应力状态最大与最小正应力,三向应力状态最大切应力广义胡克定律四种强度理论的相当应力一种常见的应力状态的强度条件,组合图形的形心坐标计算公式,任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式截面图形对轴z和轴y的惯性半径? ,平行移轴公式(形心轴zc与平行轴z1的距离为a,图形面积为A)纯弯曲梁的正应力计算公式横力弯曲最大正应力计算公式矩形、圆形、空心圆形的弯曲截面系数? ,,几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)矩形截面梁最大弯曲切应力发生在中性轴处工字形截面梁腹板上的弯曲切应力近似公式轧制工字钢梁最大弯曲切应力计算公式圆形截面梁最大弯曲切应力发生在中性轴处圆环形薄壁截面梁最大弯曲切应力发生在中性轴处弯曲正应力强度条件几种常见截面梁的弯曲切应力强度条件弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,梁的挠曲线近似微分方程梁的转角方程梁的挠曲线方程?轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式偏心拉伸(压缩)弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为圆截面杆横截面上有两个弯矩和同时作用时强度计算公式弯拉扭或弯压扭组合作用时强度计算公式剪切实用计算的强度条件挤压实用计算的强度条件等截面细长压杆在四种杆端约束情况下的临界力计算公式压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.5压杆的长细比或柔度计算公式,细长压杆临界应力的欧拉公式欧拉公式的适用范围压杆稳定性计算的安全系数法压杆稳定性计算的折减系数法关系需查表求得3 截面的几何参数4 应力和应变5 应力状态分析2 内力和内力图6 强度计算7 刚度校核8 压杆稳定性校核10 动荷载9 能量法和简单超静定问题材料力学公式汇总一、应力与强度条件 1、拉压 []σσ≤=maxmax AN2、剪切 []ττ≤=AQ max挤压 []挤压挤压挤压σσ≤=AP3、圆轴扭转 []ττ≤=W tTmax 4、平面弯曲 ①[]σσ≤=maxz max W M②[]max t max t maxmax σσ≤=y I M z t max c max maxy I Mzc =σ[]cnax σ≤③[]ττ≤⋅=bI S Q z *max z max max5、斜弯曲 []σσ≤+=maxyyz z max W M W M6、拉(压)弯组合 []σσ≤+=maxmax zW M A N[]t max t z max t σσ≤+=y I M A N z []c max c z z max c σσ≤-=ANy I M 注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z 2n2w 2n 2w r34W M M②第四强度理论 []στσσ≤+=+=z2n2w 2n2wr475.03W M M二、变形及刚度条件 1、拉压 ∑⎰===∆LEAxx N EAL N EANLL d )(ii 2、扭转 ()⎰=∑==Φp p i i p GI dx x T GI L T GI TL πφ0180⋅=Φ=p GI T L (m / ) 3、弯曲(1)积分法:)()(''x M x EIy = C x x M x EI x EIy +==⎰d )()()('θ D Cx x x x M x EIy ++=⎰⎰d ]d )([)( (2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)EI ML B =θ EI PL B 22=θ EIqL B 63=θ EIML f B 22=EI PL f B 33= EI qL f B 84=EI ML B 3=θ,EI ML A 6=θ EI PL A B 162==θθ EIqL A B 243==θθEI ML f c 162= EI PL f c 483= EIqL f c 3844=(4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)EIL M U 22==i i i EI L M 22∑=()⎰EI dxx M 22 (5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)=∂∂=∆i i P U()()⎰∂∂∑dx P x M EI x M iPAB MAB A BqL LLLL三、应力状态与强度理论 1、二向应力状态斜截面应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=2、二向应力状态极值正应力及所在截面方位角22min max )2(2xyy x y x τσσσσσσ+-±+= y x xy σστα--=22tg 0 3、二向应力状态的极值剪应力22max )2(xy yx τσστ+-=注:极值正应力所在截面与极值剪应力所在截面夹角为4504、三向应力状态的主应力:321σσσ≥≥最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变))(1y x x E μσσε-= )(1x y y E μσσε-= )(y x z E σσμε+-= Gxy xy τγ=(2)、表达形式之二(用应变表示应力))(12y x x E μεεμσ+-=)(12x y y E μεεμσ+-=0=z σ xy xy G γτ=6、三向应力状态的广义胡克定律()[]z y x x E σσμσε+-=1()z y x ,, Gxy xy τγ= ()zx yz xy ,,7、强度理论(1)[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤ []bbn σσ=(2)[]σσσσ≤-=313r ()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []s s n σσ=8、平面应力状态下的应变分析 (1)αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫ ⎝⎛---++=xyyx yx +-=⎪⎭⎫ ⎝⎛-αεεγα2sin 22y x αγ2cos 2⎪⎪⎭⎫⎝⎛-xy (2)22min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x y x γεεεεεεyx xyεεγα-=02tg 四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)①细长受压杆 p λλ≥ ()2min 2cr L EI P μπ= 22cr λπσE=②中长受压杆 s p λλλ≥≥ λσb a -=cr ③短粗受压杆 s λλ≤ “cr σ”=s σ 或b σ2、关于柔度的几个公式 i Lμλ= p 2p σπλE= ba s s σλ-=3、惯性半径公式A I i z =(圆截面 4di z =,矩形截面12min b i =(b 为短边长度))五、动载荷(只给出冲击问题的有关公式) 能量方程 U V T ∆=∆+∆冲击系数 std 211∆++=hK (自由落体冲击) st20d ∆=g v K (水平冲击) 六、截面几何性质1、 惯性矩(以下只给出公式,不注明截面的形状)⎰=dA I P 2ρ=324d π()44132απ-D D d=α⎰==6442d dA y I z π ()44164απ-D 123bh 123hb 323max d y I W z z π== ()43132απ-D62bh 62hb 2、惯性矩平移轴公式A a I I 2zc z +=。
材料力学公式完全版材料力学是研究材料在外力作用下的力学性质和变形行为的一门学科。
在材料力学中,有很多的公式被广泛应用于计算和分析材料的力学行为。
下面是一些常见的材料力学公式:1. 应力(Stress):应力是单位面积上的力,通常用σ 表示,计算公式为:σ = F / A,其中 F 是力的大小,A 是面积。
2. 应变(Strain):应变是物体在受力作用下发生变形的程度,通常用ε 表示,计算公式为:ε = ΔL / L,其中ΔL 是长度的变化量,L 是初始长度。
3. 弹性模量(Young's modulus):弹性模量是衡量材料抵抗变形的能力的物理量,通常用 E 表示,计算公式为:E = σ / ε。
4. 剪切应力(Shear stress):剪切应力是垂直方向上的切应力,通常用τ 表示,计算公式为:τ = F / A,其中 F 是切力的大小,A 是垂直于切力方向的面积。
5. 剪切应变(Shear strain):剪切应变是物体在受剪切力作用下的变形程度,通常用γ 表示,计算公式为:γ = tanθ,其中θ 是切变角度。
6. 泊松比(Poisson's ratio):泊松比是衡量材料横向收缩相对于纵向伸长的程度的物理量,通常用ν 表示,计算公式为:ν = -ε横 /ε纵。
7. 屈服强度(Yield strength):屈服强度是材料开始产生塑性变形的临界点,通常用σy 表示。
8. 极限强度(Ultimate strength):极限强度是材料在破坏前能承受的最大应力,通常用σu 表示。
9. 可延性(Elonagation):可延性是材料在断裂前的拉伸变形量,通常用δ 表示,计算公式为:δ = (L - L0) / L0。
10. 硬度(Hardness):硬度是材料抵抗划伤或压痕的能力,常用的硬度测量方法有布氏硬度、维氏硬度等。
11. 柯尔摩根关系(Hooke's law):柯尔摩根关系是描述弹性固体在小应变下的力学行为的线性关系,计算公式为:σ = Eε,其中 E 是杨氏模量,σ 是应力,ε 是应变。
材料力学常用公式1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力 ,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法72.压杆稳定性计算的折减系数法73.关系需查表求得。
材料力学公式大全一、轴向拉伸与压缩。
1. 内力 - 轴力(N)- 截面法:N = ∑ F_外(外力沿杆件轴线方向的代数和)2. 应力 - 正应力(σ)- σ=(N)/(A),其中A为杆件的横截面面积。
3. 变形 - 轴向变形(Δ l)- 胡克定律:Δ l=(NL)/(EA),其中L为杆件的原长,E为材料的弹性模量。
4. 应变 - 线应变(varepsilon)- varepsilon=(Δ l)/(l)二、剪切。
1. 内力 - 剪力(V)- 截面法:V=∑ F_外(垂直于杆件轴线方向外力的代数和)2. 应力 - 切应力(τ)- τ=(V)/(A)(A为剪切面面积)3. 剪切胡克定律。
- τ = Gγ,其中G为材料的切变模量,γ为切应变。
三、扭转。
1. 内力 - 扭矩(T)- 截面法:T=∑ M_外(外力偶矩的代数和)2. 应力 - 切应力(τ)- 对于圆轴扭转:τ=(Tρ)/(I_p),在圆轴表面ρ = R时,τ_max=(TR)/(I_p),其中R为圆轴半径,I_p=(π D^4)/(32)(对于实心圆轴,D为直径),I_p=(π(D^4 - d^4))/(32)(对于空心圆轴,d为内径)。
3. 变形 - 扭转角(φ)- φ=(TL)/(GI_p)(单位为弧度)四、弯曲内力。
1. 剪力(V)和弯矩(M)- 截面法:V=∑ F_外(垂直于梁轴线方向外力的代数和),M=∑ M_外(外力对所求截面形心的力矩代数和)- 剪力图和弯矩图的绘制规则:- 无荷载段:V为常数,M为一次函数(斜直线)。
- 均布荷载段:V为一次函数(斜直线),M为二次函数(抛物线)。
- 集中力作用处:V图有突变(突变值等于集中力大小),M图有折角。
- 集中力偶作用处:V图无变化,M图有突变(突变值等于集中力偶大小)。
五、弯曲应力。
1. 正应力(σ)- 对于梁的纯弯曲:σ=(My)/(I_z),其中y为所求点到中性轴的距离,I_z为截面对中性轴z的惯性矩。
材料⼒学公式⼤全(值得收藏)
1、轴向拉伸与压缩强度条件
2、切应⼒强度条件
3、泊松⽐
4、轴向拉伸和压缩的胡克定律
5、挤压强度条件
6、外⼒偶矩
7、薄壁圆筒横截⾯上的切应⼒
8、剪切胡克定律
9、弹性模量、泊松⽐、剪切弹性模量的关系
10、圆轴扭转的切应⼒
Ip为极惯性矩
11、圆轴扭转的最⼤切应⼒(Wt抗扭截⾯系数)
12、扭转强度条件
13、圆轴扭转时的变形及刚度计算
14、载荷集度、剪⼒和弯矩关系
15、弯曲正应⼒公式
Iz为惯性矩(常⽤型钢查表可得)
16、最⼤弯曲正应⼒
Wz为抗弯截⾯模量。
17、常见截⾯的I Z 和WZ
18、梁在弯曲变形下的微分⽅程
19、⼴义胡克定律的⼀般形式
20、最⼤拉应⼒理论(第⼀强度理论)
21、最⼤伸长线应变理论(第⼆强度理论)
22、最⼤切应⼒理论(第三强度理论)
23、畸变能密度理论(第四强度理论)
24、欧拉公式的普遍形式(适⽤于细长杆)
临界应⼒
25、细长杆稳定的临界压⼒
26、压杆柔度
27、中⼩柔度杆临界应⼒经验公式(系数a、b查表)
28、平⾯图形形⼼坐标
29、静矩
30、惯性积
31、平⾏移轴公式
32、转轴公式
33、主惯性矩公式。
材料力学公式大全pdf
材料力学公式大全pdf
本文主要介绍材料力学中的相关公式,方便学习和应用。
以下是材料力学公式大全pdf:
1. 应力公式:
应力(σ)=受力(F)/截面积(A)
2. 应变公式:
应变(ε)=变形(ΔL)/初始长度(L)
3. 餘弦定理:
c² = a² + b² - 2ab cosC
4. 正弦定理:
a / sinA =
b / sinB =
c / sinC
其中A,B,C为三角形的内角。
5. 费马原理:
任何在保持稳定的条件下遵循最短路线的点在路线最短。
6. 钢材强度公式:
σs = Fs / A
其中,σs表示钢材的强度,Fs表示钢材的极限拉力,A表示截面积。
7. 钢材弹性模量公式:
Es = σs / εs
其中,Es表示钢材的弹性模量,σs表示钢材的强度,εs表示钢材的应变。
8. 抗弯公式:
M = σ x I / y
其中,M表示悬臂梁的弯矩,σ表示应力,I表示截面惯性矩,y 为距截面中性轴的距离。
9. 泊松比公式:
ν = -ε₂ / ε₁
其中,ν为泊松比,ε₁为轴向应变,ε₂为横向应变。
10. 拉力公式:
F = A x ε x E
其中,F表示拉力,A表示截面积,ε表示应变,E为材料的弹性模量。
以上就是材料力学公式大全pdf。
希望能对大家学习和应用材料力学有所帮助。
材料力学公式总结完美版材料力学是研究物体变形和破坏行为的一门学科,它涉及材料的弹性、塑性、破坏等方面。
在材料力学中,有许多重要的公式用于描述物体的变形行为和力学特性。
以下是材料力学中一些重要的公式的总结。
1.应变-应力关系在弹性区域内,应变与应力之间存在线性关系,可以用胡克定律来描述:σ=Eε其中,σ是应力,E是弹性模量,ε是应变。
2.应力-应变能力关系材料的应力和应变能力之间存在线性关系,该关系可以用杨氏模量来描述:ε=σ/E其中,ε是应变能力,σ是应力,E是杨氏模量。
3.拉伸变形在拉伸变形中,变形后的长度L和原始长度L0之间存在线性关系,可以用拉伸应变来表示:ε=(L-L0)/L0其中,ε是拉伸应变,L是变形后的长度,L0是原始长度。
4.柯西应力张量柯西应力张量用于描述材料内部的应力状态,它可以用以下公式表示:σ = [σx σxy σxzσyx σy σyzσzx σzy σz]其中,σ是柯西应力张量,σx,σy,σz是应力分量,σxy,σxz,σyx,σyz,σzx,σzy是剪切应力分量。
5.简单剪切应力简单剪切应力是指与横截面积A垂直的平面上的剪切力F和横截面积A之间的比值,可以用以下公式表示:τ=F/A其中,τ是简单剪切应力,F是剪切力,A是横截面积。
6.剪切变形剪切变形是指物体内各处的剪切角度。
在小角度下,剪切变形可以用剪切应变来表示:γ=θL/h其中,γ是剪切应变,θ是变形前后的剪切角度,L是变形前后的长度,h是变形前后的厚度。
7.杨氏模量杨氏模量是描述材料刚度的一项重要指标,可以用以下公式表示:E=σ/ε其中,E是杨氏模量,σ是应力,ε是应变能力。
8.泊松比泊松比是描述材料纵向和横向变形关系的参数,可以用以下公式表示:ν=-εy/εx其中,ν是泊松比,εy是纵向应变,εx是横向应变。
9.体积模量体积模量是描述材料体积变化的一项重要指标,可以用以下公式表示:K=-P/ΔV/V其中,K是体积模量,P是外部施加的压力,ΔV是体积的变化量,V是初始体积。
材料力学常用公式1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力, 脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E 、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件?或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径?,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A )42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0。
材料力学常用公式1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)ﻫ5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变ﻫ7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E 、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤R0/10,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GHp的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件?或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力, ,33.三向应力状态最大与最小正应力,34.三向应力状态最大切应力35.广义胡克定律ﻫ36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径?,41.平行移轴公式(形心轴zc与平行轴z 1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=lﻫ(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法72.压杆稳定性计算的折减系数法73.关系需查表求得。
- 1 - 材料力学常用公式1、胡克定律:EA l F l N ⋅=∆或εσ⋅=E 2、杆件轴向拉、压强度条件:[]σσ≤=⋅AFN nax max 3、剪切强度条件:[]ττ≤=AF S;挤压强度条件:[]bc bc bc bc F A σσ=≤4、外力偶矩计算公式:min/||||9550||r kWm N n P M =⋅5、圆轴扭转切应力:pI T ρτρ⋅=;扭转强度条件:[]max max t T W ττ=≤6、圆轴扭转变形:p I G lT ⋅⋅=ϕ;扭转刚度条件:[]θπθ≤⋅=0max max 180p GI T7、极惯性矩:Dd,)1(32;32444=-==ααππD I D I p p 空心实心; 扭转截面系数:)1(16;16433αππ-==D W D W p p 空心实心8、梁弯曲正应力:z I yM ⋅=σ;弯曲正应力强度条件:[]σσ≤=zW M max max 9、惯性矩:1212;)1(64;6433444hb I bh I D I D I y z z z ==-==或矩形空心圆实心圆αππ 10、弯曲截面系数:66)1(32;3222433hb W bh W ;D W D W y z z z ==-==或矩形空心圆实心圆αππ11、拉压-弯曲组合变形强度条件:[]][,max max ,max max ,c zN c t z N t W M A F W M A F σσσσ≤-=≤+=12、圆轴弯扭组合变形强度条件:[][]σσσσ≤+=≤+=zr z r W T M W T M 22422375.0或13、压杆临界应力公式:欧拉公式()2222;cr cr EI EF L ππσλμ==;直线公式λσb a cr -= 14、柔度i l μλ=;惯性半径:AI i = 15、压杆的稳定条件:[]cr cr st st A Fn n F F σ==≥ 16、平面应力状态下斜截面应力的一般公式 cos 2sin 222sin 2cos 22x y x yαxy x y xy σσσσσσσαατατατα+-⎧=+-⎪⎪⎨-⎪=+⎪⎩- 2 -17、最大最小正应力:18、主平面方位计算公式:19、面内最大切应力: 20、20、三向应力状态最大切应力:21、胡克定律:21四大强度理论:max 13()2τσσ=-max min 2x y σσσσ+⎫=±⎬⎭132σσσ⎫=±⎬⎭()11231E εσμσσ=-+⎡⎤⎣⎦()22311E εσμσσ=-+⎡⎤⎣⎦()33121Eεσμσσ=-+⎡⎤⎣⎦,11[]r σσσ=≤,313[]r σσσσ=-≤,2123()[]r σσμσσσ=-+≤,4[]r σσ=≤。
材料力学公式完全版材料力学是研究材料内部力学性能的一门学科。
它是工程学中的一个重要分支,广泛应用于机械、土木、航空航天等领域。
在材料力学中,有一些重要的公式和方程式,下面是材料力学公式的完全版,共包含了应力、应变、变形、强度和刚度等方面的内容。
1.应力方面应力(σ):表示单位面积上的内力。
常用的单位是Pa(帕斯卡)。
σ=F/A其中,F为受力,A为受力面积。
2.应变方面线性弹性应变(ε):表示材料由于受力而发生的形变。
ε=ΔL/L其中,ΔL为长度变化,L为初始长度。
3.变形方面胀缩变形(ΔL):表示材料由于受热导致的体积变化。
ΔL=α×L×ΔT其中,α为热膨胀系数,ΔT为温度变化。
4.应力-应变关系钢材的Hooke定律:描述材料的线性弹性行为。
σ=E×ε其中,E为弹性模量。
5.弯曲方面梁的弯曲应变(ε):表示材料在弯曲时发生的形变。
ε=M/(E×I)其中,M为弯矩,E为弹性模量,I为截面转动惯量。
6.胀缩方面热膨胀(ΔL):表示材料在受热时的线膨胀。
ΔL=α×L×ΔT其中,α为热膨胀系数,L为初始长度,ΔT为温度变化。
7.强度方面拉伸强度(σt):表示材料在拉伸过程中能承受的最大应力。
σt=F/A其中,F为拉伸力,A为受力面积。
8.刚度方面弹性模量(E):表示材料在受力后发生弹性变形的能力。
E=σ/ε其中,σ为应力,ε为应变。
9.复合材料方面拉伸强度(σt):表示复合材料在拉伸过程中能承受的最大应力。
σt=F/A其中,F为拉伸力,A为受力面积。
10.断裂方面断裂强度(σf):表示材料在断裂前能承受的最大应力。
σf=F/A其中,F为断裂力,A为受力面积。
11.龙骨方面龙骨截面面积(A):表示材料的截面面积。
A=b×h其中,b为龙骨宽度,h为龙骨高度。
12.塑性方面屈服强度(σy):表示材料开始产生塑性变形的最大应力。
σy=F/A其中,F为受力,A为受力面积。
材料力学公式大全材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性的学科。
在工程设计和分析中,材料力学公式起着至关重要的作用。
下面为大家详细介绍一些常见的材料力学公式。
一、应力与应变1、正应力公式:轴向拉伸与压缩时,正应力$\sigma =\frac{F}{A}$,其中$F$ 是轴力,$A$ 是横截面面积。
圆轴扭转时,横截面上的切应力$\tau =\frac{T}{Ip}$,$T$ 是扭矩,$Ip$ 是极惯性矩。
2、线应变公式:轴向拉伸与压缩时,线应变$\epsilon =\frac{\Delta L}{L}$,$\Delta L$ 是长度的改变量,$L$ 是原长。
3、切应变公式:圆轴扭转时,切应变$\gamma =\frac{r\theta}{L}$,$r$ 是半径,$\theta$ 是扭转角,$L$ 是轴的长度。
二、胡克定律1、轴向拉伸与压缩时:$\sigma = E\epsilon$ ,其中$E$ 是弹性模量。
2、剪切胡克定律:$\tau = G\gamma$ ,$G$ 是剪切模量。
三、杆件的内力1、轴力$F_N$ :通过截面法求解,沿杆件轴线方向的内力。
2、扭矩$T$ :外力偶矩对杆件产生的内力。
3、剪力$F_Q$ 和弯矩$M$ :在梁的弯曲分析中,通过截面法求解。
四、梁的弯曲应力1、纯弯曲时的正应力:$\sigma =\frac{M y}{I_z}$,$y$ 是所求应力点到中性轴的距离,$I_z$ 是横截面对于中性轴的惯性矩。
2、横力弯曲时的正应力:需要考虑切应力的影响,进行修正。
五、梁的弯曲变形1、挠度$y$ 和转角$\theta$ 的计算公式:通过积分法或叠加法求解。
2、挠曲线近似微分方程:$EIz''= M(x)$。
六、组合变形1、拉(压)弯组合:分别计算拉伸(压缩)应力和弯曲应力,然后叠加。
2、弯扭组合:先计算弯曲应力和扭转切应力,然后根据强度理论进行强度校核。
材料力学的基本计算定律公式材料力学是研究材料在外力作用下的力学性质和变形规律的科学,其中包含了许多基本的计算定律和公式。
以下是材料力学中一些重要的计算定律和公式。
1. 胡克定律(Hooke's Law):胡克定律是描述弹性固体在小变形范围内的应力-应变关系的一种基本定律。
根据胡克定律,弹性固体在弹性变形时应变与应力是线性相关的。
数学表达式为:σ=Eε其中,σ是材料的应力,E是材料的弹性模量,ε是材料的应变。
2.应力-应变关系:除了胡克定律之外,还有一些其他的应力-应变关系,如材料的压缩应力-应变关系、材料的剪切应力-应变关系等。
这些关系可以用不同的数学公式表示,例如材料的体积弹性模量、剪切弹性模量、泊松比等参数。
3.应力:应力是指单位面积内的力,通常用σ表示。
常见的应力有拉应力、压应力和剪应力等。
数学表达式为:σ=F/A其中,F是作用在材料上的力,A是力作用的面积。
4.应变:应变是材料单位长度变化的量,可表示为物体的变形程度。
应变分为线性应变和非线性应变两种情况。
线性应变通常用ε表示。
数学表达式为:ε=δL/L其中,δL是材料长度的变化量,L是材料的初始长度。
5.材料的延性和脆性:材料的延性和脆性是表示材料的破坏形式的两个概念。
延性材料在受力作用下会发生一定程度的塑性变形,能够吸收较大的能量,如钢材。
脆性材料在受力作用下会发生突然的断裂,能量吸收能力较差,如陶瓷材料。
6.餘弦定律:余弦定律是描述力的分解情况的定律之一,适用于平面力系统。
根据余弦定律,力的合力可以通过分解成两个分力在水平和垂直方向上来计算。
数学表达式为:F² = F₁² + F₂² - 2F₁F₂cosθ其中,F₁和F₂是力的分力,θ是两个力之间的夹角。
7.力的平衡:力的平衡是指在静止状态下,物体上的合力和合力矩均为零的状态。
根据力的平衡,我们可以得到一些重要的公式,如受力条件和杆件的力平衡等。
**2001.2.,3.,4.Me=9.55(),:,:/min 5.=,(26.=,T bs bs bs bs Nll EAl l T F A A P KN m P KW n r nT A r r A t Fs Fs Aααστπτ∆=∆=∆=⨯=胡克定律:温度应力:为材料的线膨胀系数挤压应力:其中为挤压面的面积,取承压面在直径平面上的投影面积。
传动轴上的外力偶矩:薄壁圆筒扭转时的截面上的切应力:为圆筒的平均半径)剪切应力:为剪切面上的剪力,A 为剪43434423433447.=G 8.G 2(1)32169.(1)(1)321661210.,6432()(16432p t p t z z z z z z Ed d I W D D I W bh bh W I d d I W D I D d W τγνππππααππππ+⎧⎧==⎪⎪⎪⎪⎨⎨⎪⎪=-=-⎪⎪⎩⎩⎧==⎪⎪⎪==⎨⎪⎪=-=-⎪⎩切面的面积,以实际受力的面的个数为准剪切胡克定律:=极惯性矩(对应扭转):;抗扭截面系数:惯性矩:抗弯截面系数:43max max *)3611.=,18012.=13.=14.=115.=16.=,17.=z p tp pzz z s z zs bh I T T I W T GI d G dx Tl GI M EI My M I W F S bI F b ραρττθπϕτρϕρσστ⎧⎪⎪⎪⎨⎪⎪⎪⎩==⨯=三角形的极惯性矩:圆轴扭转的应力:单位长度的扭转角:切应力在斜截面上的分布的表达式:两截面之间的相对扭转角:中性层曲率:弯曲正应力:弯曲切应力:为横截面上的剪力,**z z I S 为矩形截面宽度,为惯性矩,为截面上距中性层为y 的横截面以外部分的面积A 对中性层的静距。
max max max 018.342=23()1()119.""20.cos 2sin 222sin 2cos 22221.tan 222.2s s s x y x y xy x yxy xy x y x y F F F A A AM x M x EI EI αατττωωρρσσσσσατασστατατασσσσ=====+-=+--=+=--+±切应力的近似公式:矩形:;圆形:;圆环:挠曲线近似微分方程:;;任意截面上的应力:主平面:主应力:max minmax 112123.,(224.1()1()1(),,25...(x x y z y y x z z z x y xyyz xzxy yz xz r rEEE GG Ga b σστεσνσσεσνσσεσνσστττγγγσσσσν-=⎡⎤=-+⎣⎦⎡⎤=-+⎣⎦⎡⎤=-+⎣⎦=====-这里最大值、最小值指的是主应力中的最大最小值)广义胡克定律:四个强度理论:最大拉应力理论: (铸铁)最大线伸长理论:[][]2331344342..26.,:27.r r r r r cr c d W EI F σσσσσσσσσσσπ+=-====≤==≤=) (石料)最大切应力理论: (低碳钢)畸变能理论:(钢、铁、铝)当应力单元体只受单向正应力和切应力时,弯扭组合强度校核:抗弯截面系数细长杆压杆欧拉公式:()2228.4l I d i i i A μ===惯性半径:,圆截面:,正方形、长方形:(勿忘单位)[][][][]0max max max max 29.=30.:(),,31.32.33.y y p cr y z y z y Nz y z Nl y iF a b A a b M M W W M F M AW W F A μλλλλλλσσσσσσσσ<<=-=+≤=≤=++≤=≤∆压杆柔度:,其中表示沿方向,i 表示绕y 轴的,两者相互垂直。
材料力学常用公式1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.6.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)7.8.纵向线应变和横向线应变9.10.泊松比11.胡克定律12.受多个力作用的杆件纵向变形计算公式?13.承受轴向分布力或变截面的杆件,纵向变形计算公式14.轴向拉压杆的强度计算公式15.许用应力,脆性材料,塑性材料16.延伸率17.截面收缩率18.剪切胡克定律(切变模量G,切应变g )19.拉压弹性模量E、泊松比和切变模量G之间关系式20.圆截面对圆心的极惯性矩(a)实心圆21.(b)空心圆22.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)23.圆截面周边各点处最大切应力计算公式24.扭转截面系数,(a)实心圆25.(b)空心圆26.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式27.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式28.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或29.等直圆轴强度条件30.塑性材料;脆性材料31.扭转圆轴的刚度条件?或32.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,33.平面应力状态下斜截面应力的一般公式,34.平面应力状态的三个主应力,,35.主平面方位的计算公式36.面内最大切应力37.受扭圆轴表面某点的三个主应力,, 38.三向应力状态最大与最小正应力,39.三向应力状态最大切应力40. 广义胡克定律41.42.43.四种强度理论的相当应力44.一种常见的应力状态的强度条件,45.组合图形的形心坐标计算公式,46.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式47.截面图形对轴z 和轴y 的惯性半径?,48.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A )49.纯弯曲梁的正应力计算公式50.横力弯曲最大正应力计算公式51.矩形、圆形、空心圆形的弯曲截面系数?,,52.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)53.矩形截面梁最大弯曲切应力发生在中性轴处54.工字形截面梁腹板上的弯曲切应力近似公式55.轧制工字钢梁最大弯曲切应力计算公式56.圆形截面梁最大弯曲切应力发生在中性轴处57.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处58.弯曲正应力强度条件59.几种常见截面梁的弯曲切应力强度条件60.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,61.梁的挠曲线近似微分方程62.梁的转角方程63.梁的挠曲线方程?64.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式65.偏心拉伸(压缩)66.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,67.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为68.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式69.弯拉扭或弯压扭组合作用时强度计算公式70.剪切实用计算的强度条件71.挤压实用计算的强度条件72.等截面细长压杆在四种杆端约束情况下的临界力计算公式73. 压杆的约束条件:(a )两端铰支 μ=l74.(b )一端固定、一端自由 μ=2(c )一端固定、一端铰支 μ=0.7 (d )两端固定 μ=0.575.压杆的长细比或柔度计算公式,76.细长压杆临界应力的欧拉公式77.欧拉公式的适用范围78.压杆稳定性计算的安全系数法79.压杆稳定性计算的折减系数法80.关系需查表求得。