高中数学-圆的标准方程教案
- 格式:doc
- 大小:145.94 KB
- 文档页数:3
高中数学圆的标准方程教案高中数学圆与方程教案三高中数学圆的标准方程教案高中数学圆与方程教案篇七一、具体目标:1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。
通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学……二、本学期要达到的教学目标1.双基要求:在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。
在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。
2.能力培养:能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。
3.思想教育:培养高一学生,学习数学的兴趣、信心和毅力及实事求是的科学态度,勇于探索创新的精神,及欣赏数学的美学价值,并懂的数学来源于实践又反作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。
高中数学圆的标准方程教案高中数学圆与方程教案篇八高一下学期数学教学计划精选本学期担任高一(9)(10)两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。
4.1 圆的方程4.1.1 圆的标准方程学习目标核心素养1.会用定义推导圆的标准方程;掌握圆的标准方程的特点.(重点) 2.会根据已知条件求圆的标准方程.(重点、难点)3.能准确判断点与圆的位置关系.(易错点) 通过对圆的标准方程的学习,提升直观想象、逻辑推理、数学运算的数学素养.1.圆的标准方程(1)圆的定义:平面内到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为圆的半径.(2)确定圆的基本要素是圆心和半径,如图所示.(3)圆的标准方程:圆心为A(a,b),半径长为r的圆的标准方程是(x-a)2+(y-b)2=r2.当a=b=0时,方程为x2+y2=r2,表示以圆点O为圆心、半径为r的圆.思考:平面内确定圆的要素是什么?[提示]圆心坐标和半径.2. 点与圆的位置关系设点P到圆心的距离为d,半径为r.d与r的大小点与圆的位置d<r 点P在圆内d=r 点P在圆上d>r 点P在圆外1.圆(x-2)2+(y+3)2=2的圆心和半径分别是( )A.(-2,3),1 B.(2,-3),3C.(-2,3), 2 D.(2,-3), 2D [由圆的标准方程可得圆心为(2,-3),半径为 2.] 2.以原点为圆心,2为半径的圆的标准方程是( ) A .x 2+y 2=2B .x 2+y 2=4 C .(x -2)2+(y -2)2=8D .x 2+y 2= 2B [以原点为圆心,2为半径的圆,其标准方程为x 2+y 2=4.] 3.点P(m,5)与圆x 2+y 2=24的位置关系是( ) A .在圆外 B .在圆内 C .在圆上D .不确定A [∵m 2+25>24,∴点P 在圆外.]4.点(1,1)在圆(x +2)2+y 2=m 上,则圆的方程是________.(x +2)2+y 2=10 [因为点(1,1)在圆(x +2)2+y 2=m 上,故(1+2)2+12=m,∴m =10.即圆的方程为(x +2)2+y 2=10.]求圆的标准方程【例1】 求过点A(1,-1),B(-1,1)且圆心在直线x +y -2=0上的圆的方程.思路探究:法一:利用待定系数法,设出圆的方程,根据条件建立关于参数方程组求解;法二:利用圆心在直线上,设出圆心坐标,根据条件建立方程组求圆心坐标和半径,从而求圆的方程;法三:借助圆的几何性质,确定圆心坐标和半径,从而求方程.[解] 法一:设所求圆的标准方程为 (x -a)2+(y -b)2=r 2,由已知条件知⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0,解此方程组,得⎩⎪⎨⎪⎧a =1,b =1,r 2=4.故所求圆的标准方程为(x -1)2+(y -1)2=4. 法二:设点C 为圆心,∵点C 在直线x +y -2=0上, ∴可设点C 的坐标为(a,2-a). 又∵该圆经过A,B 两点, ∴|CA|=|CB|.∴(a -1)2+(2-a +1)2=(a +1)2+(2-a -1)2, 解得a =1.∴圆心坐标为C(1,1),半径长r =|CA|=2. 故所求圆的标准方程为(x -1)2+(y -1)2=4. 法三:由已知可得线段AB 的中点坐标为(0,0), k AB =1-(-1)-1-1=-1,所以弦AB 的垂直平分线的斜率为k =1,所以AB 的垂直平分线的方程为y -0=1·(x-0), 即y =x.则圆心是直线y =x 与x +y -2=0的交点,由⎩⎪⎨⎪⎧y =x ,x +y -2=0,得⎩⎪⎨⎪⎧x =1,y =1, 即圆心为(1,1),圆的半径为(1-1)2+[1-(-1)]2=2, 故所求圆的标准方程为(x -1)2+(y -1)2=4.确定圆的方程的方法:确定圆的标准方程就是设法确定圆心C(a,b)及半径r,其求解的方法:一是待定系数法,如法一,建立关于a,b,r 的方程组,进而求得圆的方程;二是借助圆的几何性质直接求得圆心坐标和半径,如法二、法三.一般地,在解决有关圆的问题时,有时利用圆的几何性质作转化较为简捷.1.求下列圆的标准方程: (1)圆心是(4,0),且过点(2,2);(2)圆心在y 轴上,半径为5,且过点(3,-4);(3)过点P(2,-1)和直线x -y =1相切,并且圆心在直线y =-2x 上. [解] (1)r 2=(2-4)2+(2-0)2=8, ∴圆的标准方程为(x -4)2+y 2=8.(2)设圆心为C(0,b),则(3-0)2+(-4-b)2=52, ∴b =0或b =-8,∴圆心为(0,0)或(0,-8),又r =5, ∴圆的标准方程为x 2+y 2=25或x 2+(y +8)2=25. (3)∵圆心在y =-2x 上,设圆心为(a,-2a), 设圆心到直线x -y -1=0的距离为r. ∴r =|a +2a -1|2,① 又圆过点P(2,-1),∴r 2=(2-a)2+(-1+2a)2,②由①②得⎩⎨⎧a =1,r =2或⎩⎨⎧a =9,r =132,∴圆的标准方程为(x -1)2+(y +2)2=2或(x -9)2+(y +18)2=338.点与圆的位置关系【例2】 已知圆心为点C(-3,-4),且经过原点,求该圆的标准方程,并判断点P 1(-1,0),P 2(1,-1),P 3(3,-4)和圆的位置关系.[解] 因为圆心是C(-3,-4),且经过原点, 所以圆的半径r =(-3-0)2+(-4-0)2=5, 所以圆的标准方程是(x +3)2+(y +4)2=25.因为|P 1C|=(-1+3)2+(0+4)2=4+16=25<5, 所以P 1(-1,0)在圆内;因为|P 2C|=(1+3)2+(-1+4)2=5, 所以P 2(1,-1)在圆上;因为|P 3C|=(3+3)2+(-4+4)2=6>5, 所以P 3(3,-4)在圆外.1.判断点与圆的位置关系的方法(1)只需计算该点与圆的圆心距离,与半径作比较即可;(2)把点的坐标代入圆的标准方程,判断式子两边的符号,并作出判断. 2.灵活运用若已知点与圆的位置关系,也可利用以上两种方法列出不等式或方程,求解参数范围.2.已知点A(1,2)不在圆C :(x -a)2+(y +a)2=2a 2的内部,求实数a 的取值范围. [解] 由题意,点A 在圆C 上或圆C 的外部, ∴(1-a)2+(2+a)2≥2a 2, ∴2a +5≥0,∴a ≥-52.∵a≠0,∴a 的取值范围为⎣⎢⎡⎭⎪⎫-52, 0∪(0,+∞).与圆有关的最值问题[探究问题]1.怎样求圆外一点到圆的最大距离和最小距离?[提示] 可采用几何法,先求出该点到圆心的距离,再加上或减去圆的半径,即可得距离的最大值和最小值.2.若点P(x, y)是圆C :(x -2)2+(y +2)2=1上的任一点,如何求点P 到直线x -y =0的距离的最大值和最小值?[提示] 可先求出圆心(2,-2)到直线x -y =0的距离,再将该距离加上或减去圆的半径1,即可得距离的最大值和最小值.【例3】 已知x 和y 满足(x +1)2+y 2=14,试求x 2+y 2的最值.思路探究:首先观察x 、y 满足的条件,其次观察所求式子的几何意义,求出其最值.[解] 由题意知x 2+y 2表示圆上的点到坐标原点距离的平方,显然当圆上的点与坐标原点的距离取最大值和最小值时,其平方也相应取得最大值和最小值.原点O(0,0)到圆心C(-1,0)的距离d =1,故圆上的点到坐标原点的最大距离为1+12=32,最小距离为1-12=12.因此x 2+y 2的最大值和最小值分别为94和14.1.本例条件不变,试求yx的取值范围.[解] 设k =y x ,变形为k =y -0x -0,此式表示圆上一点(x, y)与点(0, 0)连线的斜率,由k =y x ,可得y =kx,此直线与圆有公共点,圆心到直线的距离d≤r ,即|-k|k 2+1≤12,解得-33≤k≤33.即y x 的取值范围是⎣⎢⎡⎦⎥⎤-33,33. 2.本例条件不变,试求x +y 的最值.[解] 令y +x =b 并将其变形为y =-x +b,问题转化为斜率为-1的直线在经过圆上的点时在y 轴上的截距的最值.当直线和圆相切时在y 轴上的截距取得最大值和最小值,此时有|-1-b|2=12,解得b =±22-1,即最大值为22-1,最小值为-22-1.与圆有关的最值问题的常见类型及解法:(1)形如u =y -bx -a 形式的最值问题,可转化为过点(x, y)和(a, b)的动直线斜率的最值问题.(2)形如l =ax +by 形式的最值问题,可转化为动直线y =-a b x +lb截距的最值问题.(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点(x, y)到定点(a, b)的距离的平方的最值问题.1.确定圆的方程主要方法是待定系数法,即列出关于a,b,r的方程组求a,b,r或直接求出圆心(a,b)和半径r.另依据题意适时运用圆的几何性质解题可以化繁为简,提高解题效率.2.讨论点与圆的位置关系可以从代数特征(点的坐标是否满足圆的方程)或几何特征(点到圆心的距离与半径的关系)去考虑,其中利用几何特征较为直观、简捷.3.与圆有关的最值问题,常借助于所求式的几何意义,利用数形结合的思想解题,渗透着直观形象的数学素养.1.圆心为(0,4),且过点(3,0)的圆的方程为( )A.x2+(y-4)2=25 B.x2+(y+4)2=25C.(x-4)2+y2=25 D.(x+4)2+y2=25A[由题意,圆的半径r=(0-3)2+(4-0)2=5,则圆的方程为x2+(y-4)2=25.]2.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为( ) A.6 B.4 C.3 D.2B[由题意,知 |PQ|的最小值即为圆心到直线x=-3的距离减去半径长,即|PQ|的最小值为6-2=4,故选B.]3.经过原点,圆心在x轴的负半轴上,半径为2的圆的方程是________.(x+2)2+y2=4 [由题意知,圆心是(-2,0),半径是2,所以圆的方程是(x+2)2+y2=4.]4.点(5a+1,a)在圆(x-1)2+y2=26的内部,则a的取值范围是________.[0,1)[由于点在圆的内部,所以(5a+1-1)2+(a)2<26,即26a<26,又a≥0,解得0≤a<1.] 5.△ABC的三个顶点的坐标分别为A(1,0),B(3,0),C(3,4),求△ABC的外接圆方程.[解]易知△ABC是直角三角形,∠B=90°,所以圆心是斜边AC的中点(2,2),半径是斜边长的一半,即r=5,所以外接圆的方程为(x-2)2+(y-2)2=5.。
4.1圆的方程4.1.1圆的标准方程(熊用兵)一、教学目标(一)核心素养通过本节课的学习,掌握圆的定义,并根据此定义得出圆的标准方程.(二)学习目标掌握圆的定义及圆的标准方程,会利用条件求圆的标准方程.(三)学习重点利用各种条件求圆的标准方程.(四)学习难点根据圆的定义推导圆的标准方程以及求圆的标准方程.二、教学设计(一)课前设计1.预习任务读一读:阅读教材第118页到119页,填空:确定一个圆的最基本的要素是圆心和半径;圆心为点(,)a b ,半径为r 的圆的标准方程为222()()x a y b r -+-=.2.预习自测(1)圆心在点(1,2),半径为5的圆的标准方程为( )A.22(1)(2)5x y +++=B.22(1)(2)25x y +++=C.22(1)(2)5x y -+-=D.22(1)(2)25x y -+-=【知识点】圆的标准方程.【解题过程】由条件知1,2,5a b r ===,代入标准方程得:22(1)(2)25x y -+-=【思路点拨】熟记圆的标准方程,明确各字母的具体含义.【答案】D(2)若点(15,)M a a +在圆22(1)26x y -+=上,则实数a =( )A.1B. 1±C.2D.【知识点】点与圆的位置关系.【解题过程】由条件,将点M 的坐标代入圆的方程得21a =,故1a =±【思路点拨】点000(,)M x y 与圆C :222()()x a y b r -+-=的位置关系:(1)点0M 在圆C 上⇔22200()()x a y b r -+-=;(2)点0M 在圆C 内⇔22200()()x a y b r -+-<;(3)点0M 在圆C 外⇔22200()()x a y b r -+->;【答案】B(3)已知点(1,1),(1,1)A B --,则以线段AB 为直径的圆的标准方程为( )A.221x y +=B. 22x y +=C. 222x y +=D. 224x y +=【知识点】圆的标准方程.【解题过程】由线段AB 为直径,所以圆心为(0,0),半径r 圆的标准方程为222x y +=【思路点拨】求圆的标准方程就是要找出圆心坐标和半径.【答案】C(二)课堂设计1.知识回顾:(1)在直角坐标平面中确定一条直线的方法有哪些?两点可以确定一条直线;一点和倾斜角可以确定一条直线;横、纵截距可以确定一条直线等等.(2)直角坐标平面中两点间的距离公式:设点1122(,)(,)A x y B x y 、,则这两点间2.问题探究探究一 圆的定义•活动① 在直角坐标平面中,如何确定一个圆?显然,当圆心位置和半径大小确定后,这个圆也就唯一确定了.因此,确定一。
人教版高中数学教案圆的标准方程教学目标:1. 理解圆的标准方程的概念和意义。
2. 学会利用圆的标准方程解决实际问题。
3. 掌握圆的标准方程的推导和应用方法。
教学内容:1. 圆的标准方程的定义和意义。
2. 圆的标准方程的推导过程。
3. 圆的标准方程的应用实例。
教学步骤:第一章:圆的标准方程的概念和意义1.1 引入圆的概念:引导学生回顾初中阶段学习的圆的概念,复习圆的性质和特点。
1.2 圆的标准方程的定义:介绍圆的标准方程的定义,解释圆的标准方程的意义。
1.3 圆的标准方程的意义:引导学生理解圆的标准方程在数学中的重要作用,以及它在实际问题中的应用。
第二章:圆的标准方程的推导过程2.1 圆的参数方程:介绍圆的参数方程的概念,引导学生理解参数方程与圆的标准方程的关系。
2.2 圆的标准方程的推导:引导学生通过转化思想,将圆的参数方程转化为标准方程。
2.3 圆的标准方程的简化:引导学生学会简化圆的标准方程,理解圆的标准方程的不同形式。
第三章:圆的标准方程的应用实例3.1 圆的方程与圆的性质:引导学生利用圆的标准方程研究圆的性质,如半径、直径等。
3.2 圆的方程与圆的位置关系:引导学生利用圆的标准方程研究圆与圆的位置关系,如相离、相切等。
3.3 圆的方程与圆的面积:引导学生利用圆的标准方程计算圆的面积,理解圆的面积与半径的关系。
教学评价:1. 通过课堂讲解和练习,评价学生对圆的标准方程的概念和意义的理解程度。
2. 通过课后作业和练习题,评价学生对圆的标准方程的推导和应用能力。
3. 通过小组讨论和问题解答,评价学生对圆的标准方程的实际应用和创新能力。
教学资源:1. 教学PPT:制作精美的教学PPT,展示圆的标准方程的概念和意义,以及推导和应用过程。
2. 练习题库:准备丰富的练习题库,包括不同难度和类型的题目,以供学生课后练习和巩固知识。
3. 教学案例:提供一些与圆的标准方程相关的实际案例,引导学生将理论知识应用于实际问题中。
教学设计4.1.1圆的标准方程整体设计一、教学背景分析1.教材结构分析圆是学生比较熟悉的一类曲线,而且是一种对称、和谐的图形,具有很多优美的几何性质.本节内容首先通过圆的定义,求解圆的标准方程,进而变化出圆的一般方程,其次运用代数的方法探讨直线与圆,圆与圆的位置关系,进一步提高学生对解析几何问题研究方法的深入理解.2.教材地位与作用圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.本节内容安排在学生学习直线方程之后,旨在更加深刻的体会曲线和方程的关系,为后继学习做好准备.同时有关圆的问题,特别是圆和直线的位置关系问题,是解析几何的基本问题.这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.圆的方程也属于解析几何学的基础知识,是研究二次曲线的开始,对后继直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有积极的意义.所以本节内容在解析几何中起着承前启后的作用.3.学情分析学生在初中已经学习了圆的概念和基本性质,在高中又掌握了求直线方程的一般方法,但由于学生以往注重从几何的角度理解圆的性质,而且学习解析几何的时间还不长、学习程度较浅,尚未建立牢固的数形结合的思想,对于解析法运用还不够熟练,在学习过程中难免会出现困难.另外学生在探索问题的能力,合作交流的意识等方面有待加强.4.教学目标(1)知识目标:①在平面直角坐标系中,探索并掌握圆的标准方程;②会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.(2)能力目标:①进一步培养学生用解析法研究几何问题的能力;②使学生加深对数形结合思想和待定系数法的理解;③增强学生用数学的意识.(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.5.教学重点、难点(1)教学重点:圆的标准方程的求法及其应用.(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰当的坐标系解决与圆有关的实际问题.二、教法分析高一学生,在教师的引导下,已经具备一定探究与研究问题的能力.所以在设计问题时应考虑全面性和灵活性,采用对比、启发、探究等方式,师生共同探讨,共同参与、共同研究,让学生积极思考,主动学习.在教学过程中采取小组讨论法,向学生提供具备启发性和思考性的问题.因此,要求学生在课堂上小组讨论,然后小组汇报讨论成果,提高学生的探究、推理、想象、表达、分析和总结归纳等方面的能力.因为本节课是在学生对圆的基本性质认识的基础上,再对圆进行代数研究.针对学生的学习过程、认知水平,在遵循参与式教学的基础上,调动全班学生积极参与,认真思考,努力体现学生学习的主体性地位.在学习过程中让学生积极思考,动手计算,不仅在“思维中参与”而且在“行动中参与”,养成主动性的学习习惯.三、学法分析为了重点培养学生分析问题、解决问题的能力.因此,要求学生在学习中遇到问题时,不要急于求成,而是通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过推导圆的标准方程,加深用解析法求轨迹方程的理解.还要会根据问题提供的信息回忆所学知识,采用转化思想、数形结合的思想,选择最佳方案解决.四、教学基本流程及其说明结合教材与新课程标准本节课采用以下流程(一)、教师在理解教材的编写意图的基础上,应发挥主观能动性,对教材资源进行再加工、再创造,这样教学方法更有利于学生的认知结构,也有利于学生从深层次理解和掌握圆的标准方程.(二)、在整个教学过程中,主要着眼于“引”,启发学生“探”,把“引”和“探”有机结合起来,教师的每项措施都是力求给学生创造一种思维情境,动手、动脑、动口并且主动参与学习的机会,激发学生求知欲望,促使学生在不知不觉中掌握知识,解决问题.(三)、培养思维,提高能力,激励创新在问题的设计中,利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生注意,使能力与知识的形成相伴而行.五、教学情境设计圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意识.另外,为了培养学生的理性思维,设计了由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成.本节课设计了六个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想.应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维、提高了能力、培养了兴趣、增强了信心.。
4.1.1圆的标准方程教学设计1.内容和内容解析:内容:圆的标准方程。
内容解析:解析几何是17世纪数学发展的重大成果之一,其本质是用代数方法研究图形的几何性质,体现数形结合的重要思想方法。
其中圆的标准方程的教学目标主要是:一是经历通过平面直角坐标系建立圆的代数方程的过程,在这个过程中进一步体会坐标法研究几何问题的思想和步骤;二是用两种方法求解圆的方程。
圆是解析几何中一类重要的曲线,在学生学习了直线与方程的基础知识之后,知道了在直角坐标系中通过建立方程可以达到研究图形性质,圆的标准方程正是这一知识运用的延续,处于直线与方程和点,直线与圆的关系的结合点和交汇点上。
学好圆的方程可以为圆锥曲线的学习奠定基础,有利于学生进一步体会数形结合的思想,形成用代数法解决几何问题的能力。
也是培养学生运用能力和运算能力的重要素材。
从知识的结构和内容上都起到相当重要的作用。
2.教学目标:知识与技能(1)在平面直角坐标系中,探索并掌握圆的标准方程;(2)能根据圆心坐标、半径及其特殊情况熟练地写出圆的标准方程;(3)会根据条件选择并求出圆的方程;过程与方法(1)通过平面直角坐标系建立圆的代数方程的过程,让学生进一步体会坐标法在研究几何问题的思想和步骤;(2)通过类比直线方程的学习,发现并理解圆的方程与直线方程学习中相同的知识结构,进一步体会类比的思想;(3)通过求解圆标准的方程,进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想;情感态度与价值观通过与直线方程的对比,体会类比思想的应用,让学生学会用联系的观点分析问题,认识事物之间的相互联系与转化;3.教学重难点:重点:(1)类比直线方程的学习,掌握圆的标准方程;难点:(1)圆的代数方程的建立过程;(2)圆的标准方程的灵活应用;落实的途径:(1)通过表格,建立直线与方程,圆与方程的结构图,在复习旧知的同时帮助学生经历坐标法建立圆的代数方程的如下过程:首先将几何问题代数化,用代数语言描述几何要素及其关系,进而将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题。
高中数学《圆的方程》教案作为一位默默奉献的教育工作者,常常会需要准备好教案,通过教案准备可以更好地根据具体情形对教学进程做适当的必要的调剂。
优秀的教案都具有一些什么特点呢?这里给大家分享一些关于高中数学圆的方程教案,方便大家学习。
高中数学《圆的方程》教案1、教学目标(1)知识目标:1、在平面直角坐标系中,探索并掌控圆的标准方程;2、会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程;3、利用圆的方程解决与圆有关的实际问题。
(2)能力目标:1、进一步培养学生用解析法研究几何问题的能力;2、使学生加深对数形结合思想和待定系数法的知道;3、增强学生用数学的意识。
(3)情感目标:培养学生主动探究知识、合作交换的意识,在体验数学美的进程中激发学生的学习爱好。
2、教学重点、难点(1)教学重点:圆的标准方程的求法及其运用。
(2)教学难点:①会根据不同的已知条件,利用待定系数法求圆的标准方程②挑选恰当的坐标系解决与圆有关的实际问题。
3、教学进程(一)创设情境(启发思维)问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。
7m,高为3m的货车能不能驶入这个隧道?[引导]:画图建系[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2+y2=16(y≥0)将x=2。
7代入,得即在离隧道中心线2。
7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知)问题二:1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?答:x2+y2=r22、如果圆心在,半径为时又如何呢?[学生活动]:探究圆的方程。
[教师预设]:方法一:坐标法如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={M||MC|=r}由两点间的距离公式,点M合适的条件可表示为①把①式两边平方,得(x―a)2+(y―b)2=r2方法二:图形变换法方法三:向量平移法(三)运用举例(巩固提高)I.直接运用(内化新知)问题三:1、写出下列各圆的方程(课本P77练习1)(1)圆心在原点,半径为3;(2)圆心在,半径为(3)经过点,圆心在点2、根据圆的方程写出圆心和半径II.灵活运用(提升能力)问题四:1、求以为圆心,并且和直线相切的圆的方程。
第1课时圆的标准方程课时教学设计(一)教学内容1.建立圆的标准方程;2.运用坐标法判断点与圆的位置关系;3.利用待定系数法及结合图形几何性质确定圆的标准方程.(二)教学目标1.通过掌握圆的标准方程及其推导过程,发展学生直观想象、数学抽象和数学逻辑推理的学科素养.2.通过掌握点与圆的位置关系的判定方法,进一步发展学生利用坐标法解决问题的能力,加深对数形结合思想的理解.3.通过求圆的标准方程并应用,发展学生数学建模和数学运算的学科素养. (三)教学重点及难点1.教学重点:圆的标准方程及其推导过程;2.教学难点:确定圆的标准方程.(四)教学过程设计问题1:在直线与方程的学习中,我们运用的研究方法是什么?在直线与方程的学习中,我们运用的研究方法是坐标法.追问1:建立直线的方程后,我们可以运用它研究多边形这些“直线形”图形,解决了哪些问题?解决边所在直线的平行或垂直、边与边的交点以及点到线段所在直线的距离等问题.追问2:多边形和圆是平面几何中的两类基本图形.那么类比直线方程的研究过程,我们如何研究圆的方程呢?类似地,为了研究圆的有关性质,解决与圆有关的问题,我们首先需要建立圆的方程.追问3:类比直线方程的研究过程,我们如何研究圆的方程呢?师生活动:教师层层设问,学生积极思考回答问题.设计意图:通过类比直线方程的建立,以及研究方法与研究思路,使学生明确本单元教学内容,对所学知识有整体性与连贯性.问题2:在平面直角坐标系中,如何确定一个圆呢?追问1:在初中,圆的定义是什么?圆是平面上到定点的距离等于定长的点的集合.追问2:确定圆需要几个要素?在平面直角坐标系中,需要圆心坐标和半径.师生活动:教师层层设问,学生积极思考回答问题.设计意图:通过回顾圆的定义,使学生明确确定圆的两个基本要素,对在平面直角坐标系中建立圆的标准方程做了铺垫.问题3:设圆心A的坐标是(a,b),半径为r,如何建立圆的方程?追问1:设M(x,y)为圆上任意一点,M满足的条件是什么?⊙A就是以下点的集合P={M||MA|=r}.根据两点间的距离公式,点M的坐标(x,y)满足的条件可以表示为√(x−a)2+(y−b)2=r,两边平方,得:(x−a)2+(y−b)2=r2.追问2:方程(x−a)2+(y−b)2=r2一定表示圆的方程吗?我们从哪个角度分析?若点M(x,y)在⊙A上,点M的坐标就满足方程;反过来,若点M的坐标(x,y)满足方程,就说明点M与圆心A间的距离为r,点M就在⊙A上.这时,我们就把方程称为圆心为A(a,b),半径为r的圆的标准方程.师生活动:学生以小组交流,讨论,师生共同研究,学生讲解,教师点拨.设计意图:通过设点M的坐标,利用两点间距离公式,写出M的坐标(x,y)满足的方程,进而写出圆的标准方程,培养学生的数学建模和数学运算的核心素养.问题4:与直线方程相比,圆的标准方程有什么特点?你能写出圆心在原点,半径为r的圆的标准方程是什么?直线方程圆的标准方程二元一次方程二元二次方程三个参数:定点坐标(a,b)和斜率k 三个参数:圆心(a,b)和半径r圆心在原点,半径为r的圆的标准方程x2+y2=r2.师生活动:学生以小组回答.设计意图:通过与直线方程的对比,使学生对于圆的标准方程形式更加明确,对于后续使用待定系数法确定圆的标准方程做好铺垫.例1.求圆心为A(2,-3),半径为5的圆的标准方程,并判断点M1(5,-7),M2(-2,-1)是否在这个圆上.分析:根据点的坐标与圆的方程的关系,只要判断一个点的坐标是否满足圆的方程,就可以得到这个点是否在圆上.解:圆心为A(2,-3),半径为5的圆的标准方程是(x−2)2+(y+3)2=25.把点M1(5,-7)的坐标代入方程(x−2)2+(y+3)2=25的左边,得(5-2)2+(-7+3)2=25,左右两边相等,点M1坐标满足圆的方程,所以点M1这个圆上.把点M2(-2-1)的坐标代人方程(x−2)2+(y+3)2=25的左边,得(一2-2)2+(-1+3)2=20,左右两边不相等,点M2的坐标不满足圆的方程,所以点M2不在这个圆上.探究:点M0(x0,y0)在圆x2+y2=r2内的条件是什么?在圆x2+y2=r2外的条件又是什么?如果点M。
高中圆的标准方程教案文档一、教学目标1. 知识与技能:(1)理解圆的定义及相关概念;(2)掌握圆的标准方程及其推导过程;(3)能够运用圆的标准方程解决实际问题。
2. 过程与方法:(1)通过观察、分析、推理等方法,探究圆的标准方程的形成;(2)运用数学符号、图形等工具,表示圆的位置和大小;(3)培养学生的逻辑思维能力和几何直观能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的精神;(3)培养学生合作交流的能力。
二、教学内容1. 圆的定义及相关概念:(1)圆的定义;(2)圆心、半径、直径等概念;(3)圆的性质。
2. 圆的标准方程:(1)圆的标准方程的推导;(2)圆的标准方程的形式;(3)圆的标准方程的应用。
三、教学重点与难点1. 教学重点:(1)圆的定义及相关概念的理解;(2)圆的标准方程的推导和应用。
2. 教学难点:(1)圆的标准方程的推导过程;(2)圆的标准方程在实际问题中的应用。
四、教学方法与手段1. 教学方法:(1)采用问题驱动法,引导学生主动探究;(2)运用分组讨论法,培养学生的合作能力;(3)采用案例分析法,让学生感受数学与生活的联系。
2. 教学手段:(1)利用多媒体课件,直观展示圆的定义和性质;(2)运用几何画板,动态演示圆的标准方程的形成;(3)提供实际问题,引导学生运用圆的标准方程解决。
五、教学过程1. 导入新课:(1)复习相关概念:点、线、角等;(2)引入圆的定义,引导学生观察生活中的圆;(3)提出问题:如何用数学语言表示圆的位置和大小?2. 探究圆的标准方程:(1)引导学生通过观察、分析、推理等方法,探究圆的标准方程的形成;(2)讲解圆的标准方程的推导过程,引导学生理解并掌握;(3)让学生运用圆的标准方程,解决实际问题。
3. 巩固练习:(1)提供一些有关圆的标准方程的练习题,让学生独立完成;(2)组织学生进行小组讨论,共同解答练习题;(3)教师对学生的解答进行点评和指导。
4.1.1 圆的标准方程教案
教学目标:
知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。
2、会用待定系数法求圆的标准方程。
过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆
的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。
情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情
和兴趣。
教学重点:圆的标准方程
教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。
教学过程:
1、情境设置:
在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究:
2、探索研究:
确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。
(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条
件r = ①
化简可得:222
()()x a y b r -+-= ②
引导学生自己证明222
()()x a y b r -+-=为圆的方程,得出结论。
方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。
3.练习
1、圆心为
,半径长等于5的圆的方程为( )B A (x – 2 )2+(y – 3 )2=25 B (x – 2 )2+(y + 3 )2=25
C (x – 2 )2+(y + 3 )2=5
D (x + 2 )2+(y – 3 )2=5
2、圆 (x -2)2+ y 2=2的圆心C 的坐标及半径r 分别为( )D
A C (2,0) r = 2
B
C ( – 2,0) r = 2
C C (0,2) r =
D C (2,0) r = 3、已知 和圆 (x – 2 )2+(y + 3 )2=25 ,则点M 在( )B
A 圆内
B 圆上
C 圆外
D 无法确定 4. 典型例题
例1 AB C ∆的三个顶点的坐标分别A (5,1), B (7,-3),C (2, -8),求它的外接圆的方程.
解:设所求圆的方程是 (1) 因为A (5,1), B (7,-3),C (2, -8) 都在圆上,所以它们的坐标都满足方程(1).于是
所求圆的方程为 例2 AB C ∆的三个顶点的坐标分别A (5,1), B (7,-3),C (2, -8),求它的外接圆的方程.
解:设圆方程代数求解方程可得
P121练习3 解:设点C (a ,b )为直径的中点,则 所以圆心坐标为(5,6)
圆的方程为 )3,2(-A 22
)7,5(-M 2
22)()(r b y a x =-+-⎪⎩⎪⎨⎧=--+-=--+-=-+-222222222)8()2()3()7()1()5(r b a r b a r b a 235a b r =⎧⎪⇒=-⎨⎪=⎩22(2)(3)25
x y -++=5264=+=a 6239=+=b 1
22459610
r CP ==-+-=()()10
6522=-+-)()(y x
因此点M 在圆上,点N 在圆外,点Q 在圆内。
提炼小结:
1、 圆的标准方程。
2、 点与圆的位置关系的判断方法。
3、 根据已知条件求圆的标准方程的方法。
作业:P120 练习 1、2、3、4, 习题A 组1、2
10=CM 1013>=CN 103<=CQ。