天津大学远程教育高等数学考试试题
- 格式:doc
- 大小:778.54 KB
- 文档页数:15
天津大学远程教育高等数学考试试题一、单选题(共80题)1. 极限().B.C.D.2. 函数的定义域为,则函数的定义域为().A.[0,1];B.;C.;D.3. 当时,与比较,则().A.是较高阶的无穷小;B.是与等价的无穷小;C.是与同阶但不等价的无穷小;D.是较低阶无穷小.4. ( )。
D.不存在5. 设, 则A.B.C.D.6. 当时,是().A.无穷小量;B.无穷大量;C.有界变量;D.无界变量.7. 函数是()函数.A.单调B.有界C.周期D.奇8. 设则常数( )。
9. 下列函数在区间上单调增加的是().A.B.C.D.10. 设函数,则的连续区间为()A.B.C.D.11. 当时,与比较,则().A.是较高阶的无穷小量;B.是较低阶的无穷小量;C.与是同阶无穷小量,但不是等价无穷小;D.与是等价无穷小量.12. 下列函数中()是奇函数A.B.C.D.13. 如果存在,则在处().A.一定有定义;B.一定无定义;C.可以有定义,也可以无定义;D.有定义且有14. ( )。
D.不存在15. 极限 ( )。
2 416. 设,则()A.B.C.D.17. 函数的复合过程为().A.B.C.D.18. ( ).B.C.D.19. 存在是在连续的().A.充分条件,但不是必要条件;B.必要条件,但不是充分条件;C.充分必要条件;D.既不是充分条件也不是必要条件.20. 已知,求().21. 函数是()函数.A.单调B.无界C.偶D.奇22. ( ).D.23. 下面各组函数中表示同一个函数的是()。
A.;B.;C.D.24. 函数是()函数.A.单调B.有界C.周期D.奇25. ()A.B.C.D.26. 设求的值为 ( ) A.B.C.D.27. 当时,与无穷小量等价的无穷小量是(). A.B.C.D.28. ( ).D.不存在29. 设,则( )A.B.C.D.30. 设,则( )A.B.C.D.31. 设,则A.B.C.32. 极限=()。
一、填空题1、子空间412341234{[,,,]R 0,0}W x x x x x x x x =∈+=+=的维数为__________________.2、设向量组12(I),αα和 123(II),,ααα的秩均为2, 向量组124(III),,ααα的秩为3, 则向量组1234,,23−αααα的秩为___.3、设3阶方阵A 的特征值为1,2, 则223______.−+=A A E4、设矩阵21222361a −=−− −A 与矩阵diag(2,2,4)=−B 相似, 则_______.a = 5、设3阶方阵A 的全部特征值为123,,λλλ, 且123,,λλλ互异, 对应的特征向量依次为1230111,,1110k===ααα, 则参数k 的取值范围是___________.二、选择题1、设矩阵A 与B 相似, 则下列结论中错误的是( ).(A) 2A 与2B 相似 (B) A+E 与B +E 相似 (C) T A 与T B 相似 (D) T A+A 与T B +B 相似2017 ~ 2018 学年第一学期期末考试试卷 《 线性代数及其应用 》 (A 卷 共4页)12、设向量β可由向量组12,,,m ααα线性表示, 但不可由121(I),,,m − ααα线性表示, 记121(II),,,,m − αααβ, 则( ). (A) 向量m α不可由向量组(I)线性表示, 也不可由向量组(II)线性表示 (B) 向量m α不可由向量组(I)线性表示, 但可由向量组(II)线性表示 (C) 向量m α可由向量组(I)线性表示, 也可由向量组(II)线性表示 (D) 向量m α可由向量组(I)线性表示, 但不可由向量组(II)线性表示3、设A 为m n ×矩阵, 非齐次线性方程组=βAX 有唯一解, 则( ). (A) 向量β可由矩阵A 的线性无关的列向量组线性表示 (B) 向量β可由矩阵A 的线性无关的行向量组线性表示 (C) 向量β可由矩阵A 的线性相关的列向量组线性表示 (D) 向量β可由矩阵A 的线性相关的行向量组线性表示4、设A 为n 阶实对称矩阵, 则−A E 正定矩阵当且仅当A 的特征值( ). (A) 全为正数 (B) 全小于1 (C) 全大于1 (D) 全为15、设实对称矩阵A 与120210002−=−B 合同, A *为A 的伴随矩阵, 则实二次型f X ()=X T A*X 的规范形为( ). 2(A) 222123y y y ++ (B) 222123y y y +− (C) 222123y y y −− (D) 222123y y y −−−三、1、求向量组123411210251,,,20131141− ==== − −αααα的秩和一个极大无关组, 并用该极大无关组线性表示其余向量. 2、设矩阵12212221a =A , 11b=α是1−A 的对应于特征值λ的特征向量, 求常数,a b 的值以及λ的值. 四、试问a 取何值时, 线性方程组1231231232,2(2),1x x x x a x x a x x ax a ++= ++−=−−+=− 有唯一解, 无解, 无穷多解?在有解时求其通解. 五、设123,,ααα是线性空间V 的一个基, 且11223323,,2==+=+βαβααβαα. (1) 证明123,,βββ也是V 的一个基;(2) 求由基123,,βββ到基123,,ααα的过渡矩阵; 123+2α+α3在基123(3) 求γα=ββ,,β下的坐标.六、设σ是线性空间R 3上的线性变换, 规定σ()=[,y z ,x ],T αα∀=[x ,,y z ]T 3∈R .(1) 求σ在标准基123=[1,0,0],εε=T [0,1,0],=[TT ε0,0,1]下的矩阵A ;3七、求一个正交线性替换, 将实二次型222123123121323(,,)710744f x x x x x x x x x x x x =++−−+化为标准形, 并写出其标准形. 八、设 ,αβ分别是长度为1,2 的3 元列向量, 且α 与β 正交, 记A =αβ + 4βαT T . 证明(1) r A ()≤ 2;(2) 矩阵A 可对角化.填空题: 1、2. 2、3. 3、6. 4、3. 5、2k ≠. 选择题: DBACC三、1、秩为3, 41232=+−αααα. 2、2,2,1a b λ==−=−或152,1,a b λ===.四、0,1a a ≠≠−, 唯一解[]T11123,,,1,1a a x x x =− ; 0a =, 无解; 1a =−, 无穷多解T T [3,5,0][2,3,1]k =−+−X . 五、过渡矩阵为100021011 −− ; 坐标111. 六、(1) 010001100; (2) 490241120− −. 七、123λ=λ=6,λ=12. (2) 求σ在标准基123=[1,α0,0],=T [2,α1,0],=T [α0,2,1]T 下的矩阵B .4答案。
模拟试题2一、填空题(每小题3分,共15分)1. 向量组[][][][,,,,,,,,215,4,3,24,3,2,11111TT T 1-====432αααα T1]2-,的秩为_____,一个极大无关组为______________.2. 设2/1||33=⨯A ,则______|)(2)3(|2*12=--A A .3. 设n 阶方阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1111111A ,则||A 的所有代数余子式之和为_____. 4. 设A ,B 均为n 阶方阵,n λλλ,,, 21为B 的n 个特征值,且存在可逆矩阵P ,使E PAPAP P B +-=--11,则_____1=∑=ni i λ.5. 设二次型31212322213212224)(x x x tx x x x x x x f --++=,,是正定的,则t 的 取值范围为___________.二、选择题(每小题3分,共15分)1. 设矩阵A 与⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=31130000110011B 相似,则=-+-+)2()()(E A E A A r r r ( ). (A) 7 (B) 8 (C) 9 (D) 102. 设0||=A ,21αα,是AX 0=的一个基础解系,0≠=33ααA ,则( )不是A 的特征向量.(A) 21αα+ (B) 212αα- (C) 313αα+ (D) 32α3. 设A ,B 均为n 阶方阵,且2)(2)(n/r n/r <<B A ,,则齐次线性方程组0=AX 与0=BX ().(A) 没有相同的非零解 (B) 同解(C) 只有相同零解 (D) 有相同的非零解 4. 设n n ⨯∈R A ,n m )r(<=A ,则下列说法不正确的是( ). (A) A 可经过初等行变换化为][O E m ,(B) 对任意m 为列向量β,方程组β=AX 必有无穷多解 (C) 若m 阶矩阵B ,满足O BA =,则O B = (D) T AA 为正定矩阵5. 设矩阵A 与)(diag 21n d d d ,,, 相合,则必有( ). (A) n r =)(A (B) A 是正定矩阵(C) n d d d ,,, 21是A 的特征值(D) 二次型AX X T 有标准形2222211n n y d y d y d +++三、(10分) 设齐次线性方程组⎪⎩⎪⎨⎧=+-+=+-+=++02)1(4022)2(02321321321x x a x x x x a x ax x ,,有非零解,且三阶矩阵A 的三个特征值为224,,-,对应的特征向量为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112121321321a a a a a a X X X ,,. 试确定参数a ,并求矩阵A .四、(8分) 设][3214αααα,,,=A ,非齐次线性方程组β=AX 的通解为[][]TT201-11111,,,,,,k +,其中k 为任意常数.1. 1α能否由432ααα,,线性表示?说明理由.2. 3α能否由421ααα,,线性表示?说明理由.五、(8分)已知[][][]4T3T2T111153113201αααα,,,,,,,,,,,,a -=== [][]TT5116421,,,,,,,b a =+=β,问a ,b 取何值时,1. β不能由4αααα,,,321线性表示;2. β可由4αααα,,,321线性表示,并写出该表达式.六、(8分)设实线性空间V 的一个基为(Ⅰ):xx x x e e e e 24231====αααα,,,x x 2.定义V 的线性变换σ:V x f x f x f ∈∀=)()('))((,σ.1. 求σ在基(Ⅰ)下的矩阵A ;2. 问是否存在V 的基,使得σ在该基下的矩阵为对角矩阵?并说明理由.七、(16分)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=242221baa A 实对称,2为A 的特征值. 1. 求a ,b 的值;2. 求正交矩阵S 及对角矩阵Λ,使得ΛAS S =T ;3. 二次型X A X X 2T )(=f 是否为正定二次型?八、(1题6分,2题5分,3题5分,共16分)1. 设A ,B 均为n 阶正交方阵,n 为奇数,求证B A +与B A -至少有一个不可逆;2. 设n E AB =,求证A 的行向量组线性无关;3. 设n n B A ⨯∈R ,对称,A 的特征值全大于a ,B 的特征值全大于b ,求证B A +的特征值全大于b a +.模拟试题2答案一、填空题1. 3,421ααα,,(或431ααα,,,或432ααα,,);2. 541-;3. 1;4. n ;5. )22(,-.二、选择题1. (C);2. (C);3. (D);4. (A);5. (D).三、33⨯齐次线性方程组有非零解,则系数行列式为0,即0)1)(2(21422212=+--=--+a a a a a , 得2=a 或1-.若2=a ,则21X X =,与21X X ,是A 的属于不同特征值的特征向量矛盾!故1-=a . 当1-=a 时,][][]T3T2T1101012321,,,,,,,,=-=-=X X X ,显然32X X ,线性无关,从而321X X X ,,线性无关.令][321X X X S ,,=,则S 可逆,且)224diag(1,,-=-AS S ,因此⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-163222123)224d i a g (1S S A ,,. 四、由题设,知[]T201-1,,,是齐次线性方程组0=AX 的基础解系,则314)(=-=A r ,且0=+-4212ααα.1. 432120αααα-+=,则1α可由432ααα,,线性表示.2. 设3α可由421ααα,,线性表示,则)()(34214321ααααααα,,,,,r r ==,因此421ααα,,线性无关.与0=+-4212ααα矛盾!故3α不能由421ααα,,线性表示.五、令44332211ααααβx x x x +++=,即⎪⎪⎩⎪⎪⎨⎧=++++=+++=+-=+++.5)6(53432121432143214324321x a x x x b x ax x x x x x x x x x ,,,对其增广矩阵作初等行变换,可得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-=01301001211011111561534321211011111~a b a a b a A . 当1=a 且3≠b 时,)~(32)(A A r r =<=,则方程组无解,此时β不能由1α ,4ααα,,32 线性表示.当1≠a 时,4)~()(==A A r r ,则方程组有唯一解,此时β可由,,,321ααα4α线性表示,且表示法唯一.1)3(2141301234---=--+=--==a b x a b a x a b x x ,,,4321013141)3(2ααααβ+--+--++---=a b a b a a b当1=a 且3=b 时,42)~()(<==A A r r ,方程组有无穷多解,此时β可由4αααα,,,321 线性表示,但表示法不唯一.431432221x x x x x x +-=-+=, 其中43x x ,任意取值,则4231221121)21()2(ααααβk k k k k k ++-+++-=,其中21k k ,任意常数.六、1. 由σ的定义,有,,,,424322311122)(22)()()(αααααααααα==+=+=+=+===xxx2xx2xe σe x x σxee σe σe从而σ在基(Ⅰ)下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=20010*********A . 2. A 的全部特征值为214321====λλλλ,.对于三重特征值1,有-43134)(≠=-=-E A r ,因此A 不能对角化,从而σ不能对角化,即不存在V 的基,使得σ在该基下的矩阵为对角矩阵.七、1.由A 对称,知4=b .又2是A 的特征值,则0)2(44444221|2|2=-=-----=-a aaE A , 得2=a .2. A 的特征多项式为)7()2(242422221||2+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---+--=-λλλλλλA E ,则72321===λλλ,.A 的对应于特征值722,,的特征向量为[][][].22,11,22212T3T2T1-=-==,,,,,,X X X将321X X X ,,单位化,得正交矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=21222112231S ,且 ΛAS S =-=)722diag(T ,,八、 1. 由B A ,正交,知E B B E AA ==T T ,,则⎪⎩⎪⎨⎧--=-=-+=+=+BB A A B AA B AB B A B B A A B AA B AB B A T T T TT T )()(于是||||||||)1(||||22B A B A B A B A B A n -+-=-+(n 为奇数),即0||||)||||1(22=-++B A B A B A因此0||||=-+B A B A ,故0||=+B A 或0||=-B A ,从而B A +与B A -至少有一个不可逆.2. 由n E AB =,知}m i n {)()(s n r n r ,≤≤=A AB (s为A 的列数),因此)(A rn =,故A 的行向量组线性无关.3. 实对称矩阵E A a -,E B b -的特征值全为正,则E A a -,E B b -均正定,因此E B A E B E A )()()(b a b a +-+=-+-也正定,故B A +的特征值全大于b a +.。
2020-2021学年第一学期 高等数学期末考试天津大学2020年第1学期高等数学期末考试试卷2020-2021学年第1 学期 考试科目:高等数学A Ⅰ考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.0sin 5lim 2x xx →= 。
2.曲线2x xe e y -+=在点(0,1)处的曲率是 。
3.设()f x 可导,[]ln ()y f x =,则dy = 。
4.不定积分⎰=。
5.反常积分60x e dx +∞-⎰= 。
二、单项选择题(本大题共5小题,每小题3分,共15分)1.设2,01(),,12x x f x x x ⎧<≤=⎨<<⎩在点1x =处必定 () A .连续但不可导 B .连续且可导C .不连续但可导D .不连续,故不可导2.曲线y =4x =处的切线方程是 ( )A .114y x =- B .112y x =+C .114y x =+ D .124y x =+3.下列函数在区间[1,1]-上满足罗尔定理条件的是 ( )A .21x B .3x C .x D .211x +4.设()f x 为连续函数,则下列等式中正确的是 ( )A .()()f x dx f x '=⎰B .()()df x dx f x C dx =+⎰C .()()d f x dx f x =⎰D .()()d f x dx f x dx =⎰5.已知()0232ax x dx -=⎰,则a = ( )A .1-B .0C .12 D .1三、计算题(本大题共7小题,每小题7分,共49分)1. 求函数 的极值与拐点.解:函数的定义域(-∞,+∞)。
2. 设抛物线上有两点,,在弧A B 上,求一点使的面积最大.3. 已知()x f 的一个原函数为2ln x ,则试求:()⎰'xf x dx . 确定2x y e =2(x -2)的单调区间.4.设方程2290y xy -+=确定隐函数()y y x =,求d d yx 。
高等数学(专)-1 《高等数学(专)-1》在线作业二一,单选题1. 题面见图片A. AB. BC. CD. D?正确答案:A2. 题面见图片A. AB. BC. CD. D?正确答案:B3. 题面见图片A. AB. BC. CD. D?正确答案:B4. 题面见图片A. AB. BC. CD. D?正确答案:C5. 题面见图片A. AB. BC. CD. D?正确答案:D6. 题面见图片A. AB. BC. CD. D?正确答案:C7. 题面见图片A. AB. BC. CD. D?正确答案:D8. 题面见图片A. AB. BC. CD. D?正确答案:D9. 题面见图片A. AB. BC. CD. D?正确答案:B10. 题面见图片A. AB. BC. CD. D?正确答案:A11. 题面见图片A. AB. BC. CD. D?正确答案:A12. 题面见图片A. AB. BC. CD. D?正确答案:A13. 题面见图片A. AB. BC. CD. D?正确答案:B14. 题面见图片A. AB. BC. CD. D?正确答案:B15. 题面见图片A. AB. BC. CD. D?正确答案:D16. 题面见图片A. AB. BC. CD. D?正确答案:A17. 题面见图片A. AB. BC. CD. D?正确答案:C18. 题面见图片A. AB. BC. CD. D?正确答案:A19. 题面见图片A. AB. BC. CD. D?正确答案:D20. 题面见图片A. AB. BC. CD. D?正确答案:A====================================================================== ======================================================================。
高等数学天大教材答案高等数学是大学数学课程中的一门重要学科,它包含了微积分、线性代数、概率统计等内容。
对于天大(天津大学)的学生们来说,掌握高等数学的知识是非常重要的。
然而,由于课程内容繁杂,有时候学生在学习过程中可能会遇到一些困难,需要参考教材答案来帮助自己理解和解决问题。
以下是《高等数学》天大教材中的一些习题的答案,供学生们参考和学习。
1. 微积分1.1. 极限与连续1.1.1. 习题一:(1) 设函数\[f(x) = \begin{cases} x^2+1, & x<0 \\ 2x+3, & x \geq 0\end{cases}\],求极限\[\lim_{x \to 0} f(x)\]的值。
答案:由于\[x \to 0^- \]时,函数\[f(x) = x^2+1 \];而\[x \to 0^+ \]时,函数\[f(x) = 2x+3 \]。
因此,\[\lim_{x \to 0^-} f(x) = 0^2+1 = 1 \],\[\lim_{x \to 0^+} f(x) = 2 \cdot 0 + 3 = 3 \]。
由左右极限相等,则\[\lim_{x \to 0} f(x) = 1 = 3 \]。
1.1.2. 习题二:(1) 已知函数\[f(x) = \frac{x^2-x}{x-1} \],求\[\lim_{x \to 1} f(x)\]的值。
答案:将函数\[f(x) = \frac{x^2 - x}{x - 1} \]进行因式分解,得\[f(x)= \frac{x(x-1)}{x-1} = x \]。
因此,\[\lim_{x \to 1} f(x) = \lim_{x \to 1} x= 1 \]。
1.2. 导数与微分1.2.1. 习题一:(1) 求函数\[f(x) = x^3 - 3x^2 + 2x - 1 \]的导函数。
答案:对函数\[f(x) = x^3 - 3x^2 + 2x - 1 \]逐项求导,得\[f'(x) = 3x^2 - 6x + 2 \]。
天津大学网络教育学院天津大学网络教育学院天津大学网络教育学院是教育部直属国家重点大学,其前身为北洋大学,始建于1895年,是中国第一所现代大学,素以“实事求是”的校训、“严谨治学”的校风和“爱国奉献”的传统享誉海内外。
1951年经国家院系调整定名为天津大学,是1959年中共中央首批确定的16所国家重点大学之一,“211工程”、“985 工程”首批重点建设的大学,至今已走过120年的光辉历程。
一、天津大学网络教育学院招生对象专科:具有普通高中、职业高中、中等专业学校、中等职业技术学校毕业证书或具有同等教育学历者。
专升本:具有国民教育系列高等专科或专科以上毕业证书者。
二、天津大学网络教育学院招生层次、专业专科:计算机网络技术、机械制造与自动化、电气自动化技术、工商企业管理、物流管理、电子商务、财务管理、会计、旅游管理、房地产经营与估价、工程造价、建筑工程技术、应用英语、企业资源计划管理、法律事务、市场营销专升本:计算机科学与技术、信息管理与信息系统、机械设计制造及其自动化、工商管理、财务管理、物流工程、土木工程、电子商务、法学、公共事业管理、工程管理、电气工程及其自动化、金融学、工业工程三、天津大学网络教育学院学习期限、学费学习期限:专科、专升本学习期限为2.5至4.5年。
学费:专科、专升本学费:总学费8000元,在第一、三学期分两次缴齐,每次4000元;注:学费按最低学习期限收取。
收费标准个别地区有上浮或下调,具体情况请向当地学习中心查询。
专科:英语、数学(应用英语考试科目:英语、语文)专升本:大学英语、高等数学(大学语文)考前辅导:各层次入学考试模拟题可从学院网站下载。
具体考试时间、地点详见准考证。
五、天津大学网络教育学院入学方式1.考试入学:参加我校自主组织的入学考试,学校将根据考试成绩择优录取。
2.免试入学:具有国民教育系列大学专科、本科以上毕业证书者可免试进入同层次学习。
3.本院应届、历届专科毕业生在校期间的平均成绩达到70分及以上者,可以申请免入学测试费报读本院专升本(仅缴纳报名费)。
高等数学试卷B1一、一选择题1.点是函数的极值点.A.正确B.不正确答案:B2.函数的定义域为.A.正确B.不正确答案:B3.点是函数的间断点.A.正确B.不正确答案:A4.由曲线,直线,轴及所围成的平面图形的面积为.A.正确B.不正确答案:A二、二选择题5.设函数,,则函数.A.正确B.不正确答案:A6.设函数,则.A.正确B.不正确答案:B7..A.正确B.不正确答案:A8.函数是微分方程的解.A.正确B.不正确答案:B9.设函数,则.A.正确B.不正确答案:A10.不定积分,其中为任意常数.A.正确B.不正确答案:B三、三选择题11.函数的图形如图示,则函数的单调减少区间为( ).A.B.C.D.答案:D12.极限().A.B.C.D.答案:C13.设函数,则().A.B.C.D.答案:A14.设函数,则().A.B.C.D.答案:C15.定积分().A.B.C.D.答案:A16.不定积分().A.B.C.D.答案:D四、四选择题17.设为上的连续函数,且,则定积分().A.B.C.D.答案:D18.设,不定积分(1)(2)(3)则上述解法中().A.第(1)步开始出错B.第(2)步开始出错C.第(3)步出错D.全部正确答案:A19.函数的单调增加区间是().A.B.C.D.答案:B20.微分方程满足的特解是().A.B.C.D.答案:C高等数学试卷B2 一、一选择题1.设函数,则.A.正确B.不正确答案:A2.函数在点处连续.A.正确B.不正确答案:A3.设函数,则导数.A.正确B.不正确答案:B4.定积分.A.正确B.不正确答案:B二、二选择题5.极限.A.正确B.不正确答案:A6.设,则.A.正确B.不正确答案:A7.不定积分.A.正确B.不正确答案:B8.设,则微分.A.正确B.不正确答案:B9.是微分方程.A.正确B.不正确答案:A10.是偶函数.A.正确B.不正确答案:B三、三选择题11.( ).A.B.C.D.答案:D12.设函数,则().A.B.C.D.答案:B13.设函数,则().A.B.C.D.答案:A14.不定积分( ).A.B.C.D.答案:C15.().A.B.C.D.答案:C16.函数的图形如图示,则是函数的( ).A.极小值点也是最小值点B.极小值点但非最小值点C.最大值点D.极大值点答案:A四、四选择题17.不定积分().A.B.C.D.答案:C18.函数的单调减少区间是().A.B.C.D.答案:D19.微分方程的通解是().A.B.C.D.答案:A20.极限().A.B.C.D.答案:B高等数学试卷B3 一、一选择题1.定积分.A.正确B.不正确答案:B2.不是函数的极值点.A.正确B.不正确答案:B3.函数的定义域为.A.正确B.不正确答案:A4.极限.A.正确B.不正确答案:A二、二选择题5.设,则.A.正确B.不正确答案:B6.是偶函数.A.正确B.不正确答案:B7.是微分方程.A.正确B.不正确答案:B8..A.正确B.不正确答案:A9.设,则.A.正确B.不正确答案:A10.不定积分.A.正确B.不正确答案:A三、三选择题11.( ).A.B.C.D.答案:B12.().A.B.C.D.答案:B13.设函数,则().A.B.C.D.答案:C14.函数的图形如图示,则是函数的( ).A.最大值点B.极大值点C.极小值点也是最小值点D.极小值点但非最小值点答案:C15.不定积分( ).A.B.C.D.答案:A16.设函数,则().A.B.C.D.答案:D四、四选择题17.设,则=().A.B.C.D.答案:C18.曲线在点处切线的方程为().A.B.C.D.答案:D19.不定积分( ).A.B.C.D.答案:B20.微分方程的通解是().A.B.C.D.答案:A高等数学试卷B4 一、一选择题1.定积分.A.正确B.不正确答案:B2.设函数,则导数.A.正确B.不正确答案:B3.函数在点处连续.A.正确B.不正确答案:A4.函数的定义域为.A.正确B.不正确答案:A二、二选择题5..A.正确B.不正确答案:B6.是偶函数.A.正确B.不正确答案:A7.设,则.A.正确B.不正确答案:B8.不定积分.A.正确B.不正确答案:A9.设,则.A.正确B.不正确答案:B10.是微分方程.A.正确B.不正确答案:A三、三选择题11.函数的图形如图示,则函数( ).A.有四个极大值B.有两个极大值C.有一个极大值D.没有极大值答案:C12.不定积分( ).A.B.C.D.答案:A13.( ).A.B.C.D.答案:B14.设函数,则().A.B.C.D.答案:B15.设函数,则().A.B.C.D.答案:D16.().A.B.C.D.答案:C四、四选择题17.设,则=().A.B.C.D.答案:D18.不定积分.A.B.C.D.答案:B19.曲线在点处切线的方程为().A.B.C.D.答案:A20.微分方程的通解是().A.B.C.D.高等数学试卷B5 一、一选择题1.定积分.A.正确B.不正确答案:A2.函数的定义域为.A.正确B.不正确答案:B3.函数的导数.A.正确B.不正确答案:B4.函数在点处连续.A.正确B.不正确答案:A二、二选择题5.设,则.A.正确B.不正确答案:B6.是偶函数.A.正确B.不正确答案:A7..A.正确B.不正确8.是微分方程.A.正确B.不正确答案:A9.设,则.A.正确B.不正确答案:A10.不定积分.A.正确B.不正确答案:B三、三选择题11.( ).A.B.C.D.答案:D12.函数的图形如图示,则函数( ).A.有一个极大值B.有两个极大值C.有四个极大值D.没有极大值答案:A13.设函数,则().A.B.C.D.答案:D14.设函数,则().A.B.C.D.答案:C15.().A.B.C.D.答案:B16.不定积分( ).A.B.C.D.答案:A四、四选择题17.曲线在点处切线的方程为().A.B.C.D.答案:C18.设,则=().A.B.C.D.答案:D19.微分方程的通解是().A.B.C.D.答案:B20.不定积分.A.B.C.D.答案:A21。
高等数学考试题库(附答案)1. 解析:求函数 f(x) = x^2 在区间 [0, 2] 上的定积分。
2. 解析:求函数 f(x) = e^x 在区间 [1, 1] 上的定积分。
3. 解析:求函数 f(x) = sin(x) 在区间[0, π] 上的定积分。
4. 解析:求函数 f(x) = cos(x) 在区间[0, π/2] 上的定积分。
5. 解析:求函数 f(x) = ln(x) 在区间 [1, e] 上的定积分。
6. 解析:求函数 f(x) = x^3 在区间 [1, 1] 上的定积分。
7. 解析:求函数f(x) = √x 在区间 [0, 4] 上的定积分。
8. 解析:求函数 f(x) = 1/x 在区间 [1, 2] 上的定积分。
9. 解析:求函数 f(x) = tan(x) 在区间[0, π/4] 上的定积分。
10. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [0, 1] 上的定积分。
11. 解析:求函数 f(x) = x^2 + 1 在区间 [0, 1] 上的定积分。
12. 解析:求函数 f(x) = e^(x) 在区间 [0, 2] 上的定积分。
13. 解析:求函数 f(x) = sin^2(x) 在区间[0, π] 上的定积分。
14. 解析:求函数 f(x) = cos^2(x) 在区间[0, π/2] 上的定积分。
15. 解析:求函数 f(x) = 1/(1 + x^2) 在区间 [1, 1] 上的定积分。
16. 解析:求函数f(x) = √(1 x^2) 在区间 [1, 1] 上的定积分。
17. 解析:求函数 f(x) = x^3 3x^2 + 2x 在区间 [0, 2] 上的定积分。
18. 解析:求函数 f(x) = e^(2x) 在区间 [1, 1] 上的定积分。
19. 解析:求函数 f(x) = ln(x) 在区间 [1, e^2] 上的定积分。
20. 解析:求函数 f(x) = sin(x)cos(x) 在区间[0, π/2] 上的定积分。
现代远程教育入学考试《高等数学》模拟试题(专科起点本科)1、设函数的定义域为,则函数的定义域为(A ).A. B.C. D.2、下列极限中结果等于的是(B ).A. B.C. D.3、函数,则等于(B ).A. 1B. 0C. D. 不存在4、函数在下列区间上不满足拉格朗日定理条件的是(B ).A. B.C. D.5、设是函数的一个原函数,且,则为(B ).A. B.C. D.6、积分(B ).A. B.C. D.7、已知,,则(A ).A. B.C. D.8、由方程所确定的隐函数,则(B ).A. B.C. D.9、若级数收敛,那么下列级数中发散的是(B ).A. B.C. D.10、设一阶线性微分方程(是已知的连续函数),则它的通解为(D ).A.B.C.D.11、函数是(C ).A. 以为周期的周期函数,且是偶函数B. 以为周期的周期函数,且是偶函数C. 以为周期的周期函数,且是奇函数D. 以为周期的周期函数,且是奇函数12、极限等于(C ).A. B. 1C. D. 213、设函数在点处可导,则的值依次为(A ).A. B.C. D.14、函数在区间内单调增加,则应满足(B ).A. B. 为任意实数C. D.为任意实数15、若,则(D ).A. B.C. D.16、极限(D ).A. 1B. 0C. D.17、二次曲面,表示(C ).A. 球面B. 椭圆锥面C. 椭球面D. 椭圆抛物面18、设,则(C ).A. 是的驻点,但非极值点B. 是的极大值点C. 是的极小值点D. 无驻点19、级数的和为(A ).A. B.C. D.20、齐次方程的通解为(A ).A. B.C. D.21、设,则(D ).A. 函数在的任意去心邻域内都有界B. 函数在的某个邻域内有定义C. 函数在处无定义D. 函数,其中是时的无穷小22、设函数在点可导,则极限为(D ).A. B.C. 不存在D.23、设函数,则等于(C ).A. B.C. D.24、对曲线,下列结论正确的是(D ).A. 有4个极值点B. 有3个拐点C. 有2个极值点D. 有1个拐点25、下列积分可直接使用牛顿-莱布尼兹公式的是(A ).A. B.C. D.26、设曲线及直线围成的平面图形的面积为,则下列四个式子中不正确的是(A ).A. B.C. D.A、AB、BC、CD、D27、过点且与平面平行的平面方程为(B ).A. B.C. D.28、二次积分(D ).A. B.C. D.29、设幂级数的收敛半径为,则的收敛半径为(A ).A. B.C. D.30、微分方程的通解为(B ).A. B.C. D.31、函数,在点处有(B ).A. 连续B. 不连续,但右连续C. 不连续,但左连续D. 左、右都不连续32、若曲线和在点处相切(其中为常数),则的值为(A ).A. B.C. D.33、函数的定义域为(B ).A. B.C. D.34、若函数可导,且,则有等于(B ).A. B.C. D.35、下面结论正确的是(C ).A. B.C. D.36、函数在区间上的最小值是(C ).A. 1B.C. 0D.37、积分(C ).A. 2B.C. 4D.38、设,则(A ).A. 6B. 3C. 2D. 039、下列函数在给定区间上满足罗尔定理条件的是(A ).A. B.C. D.40、曲线在区间上的曲边梯形的面积为(A ).A. B.C. 10D.41、若,则(D ).A. B.C. D.42、二元函数的两个偏导数存在,且,,则(D ).A. 当保持不变时,是随x的减少而单调增加的B. 当保持不变时,是随y的增加而单调增加的C. 当保持不变时,是随x的增加而单调减少的D. 当保持不变时,是随y的增加而单调减少的43、二重积分,是由所围成的区域,则二重积分的值为(B ).A. B.C. D.44、函数展开为的幂级数为(B ).A.B.C.D.45、微分方程的满足初始条件的特解为(C ).A. B.C. D.46、积分(A ).A. 1B. 2C. 3D. 447、已知,,则(D ).A. 0B. 1C. 2D. 348、方程确定隐函数,则(A ).A. B.C. D.49、级数(为常数)收敛的充分条件是(A ).A. B.C. D.50、设可微函数满足,且,则的值为(B ).A. B.C. 1D. 251、设,那么的定义域是(C ).A. B.C. D.52、极限(C ).A. 0B.C. 1D.53、,则(A ).A. B.C. D.54、下列极限中不能使用洛必达法则的是(A ).A. B.C. D.55、已知,且时,,则(C ).A. B.C. D.56、积分(C ).A. B.C. D.57、函数是(D ).A. 奇函数,非偶函数B. 偶函数,非奇函数C. 既非奇函数,又非偶函数D. 既是奇函数,又是偶函数58、已知向量,,,则(A ).A. B.C. D.59、极限(B ).A. B. 0C. 3D.60、由方程所确定的隐函数为,则(A ).A. B.C. D.高等数学模拟试题答案:1、A2、B3、B4、B5、B6、B7、A8、B9、B 10、D 11、C 12、C 13、A 14、B 15、D 16、D 17、C 18、C 19、A 20、A 21、D 22、D 23、C 24、D 25、A 26、A 27、B 28、D 29、A 30、B 31、B 32、A 33、B 34、B 35、C 36、C 37、C 38、A 39、A 40、A 41、D 42、D 43、B 44、B 45、C 46、A 47、D 48、A 49、A 50、B 51、C 52、C 53、A 54、A 55、C 56、C 57、D 58、A 59、B 60、A。
天津大学远程教育高等数学考试试题
一、单选题(共80题)
1. 极限().
A.1
B.
C.
D.
2. 函数的定义域为,则函数的定义域为().
A.[0,1];
B.;
C.;
D.
3. 当时,与比较,则().
A.是较高阶的无穷小;
B.是与等价的无穷小;
C.是与同阶但不等价的无穷小;
D.是较低阶无穷小.
4. ( )。
A.-1
B.0
C.1
D.不存在
5. 设, 则
A.
B.
C.
D.
6. 当时,是().
A.无穷小量;
B.无穷大量;
C.有界变量;
D.无界变量.
7. 函数是()函数.
A.单调
B.有界
C.周期
D.奇
8. 设则常数( )。
A.0
B.-1
C.-2
D.-3
9. 下列函数在区间上单调增加的是().
A.
B.
C.
D.
10. 设函数,则的连续区间为()
A.
B.
C.
D.
11. 当时,与比较,则().
A.是较高阶的无穷小量;
B.是较低阶的无穷小量;
C.与是同阶无穷小量,但不是等价无穷小;
D.与是等价无穷小量.
12. 下列函数中()是奇函数
A.
B.
C.
D.
13. 如果存在,则在处().
A.一定有定义;
B.一定无定义;
C.可以有定义,也可以无定义;
D.有定义且有
14. ( )。
A.0
B.1
C.2
D.不存在
15. 极限 ( )。
A.1/2
B.1
C.0
D.1/4
16. 设,则()
A.
B.
C.
D.
17. 函数的复合过程为().
A.
B.
C.
D.
18. ( ).
A.1
B.
C.
D.
19. 存在是在连续的().
A.充分条件,但不是必要条件;
B.必要条件,但不是充分条件;
C.充分必要条件;
D.既不是充分条件也不是必要条件.
20. 已知,求().
A.3
B.2
C.1
D.0
21. 函数是()函数.
A.单调
B.无界
C.偶
D.奇
22. ( ).
A.0
B.1
C.2
D.
23. 下面各组函数中表示同一个函数的是()。
A.;
B.;
C.
D.
24. 函数是()函数.
A.单调
B.有界
C.周期
D.奇
25. ()
A.
B.
C.
D.
26. 设求的值为 ( )
A.
B.
C.
D.
27. 当时,与无穷小量等价的无穷小量是().
A.
B.
C.
D.
28. ( ).
A.-1
B.0
C.1
D.不存在
29. 设,则( )
A.
B.
C.
D.
30. 设,则( )
A.
B.
C.
D.
31. 设,则
A.
B.
C.
D.1
32. 极限=()。
A.1
B.
C.
D.
33. 设是可微函数,则?/span( )
A.
B.
C.
D.?/span
34. 设?/span则等于()
A.
B.
C.
D.
35. 极限?/span( ).
A.1/2
B.1/3
C.1/6
D.0
36. 极限
A.
B.
C.
D.
37. ()
A.1
B.2
C.0
D.3
38. 已知,则( )。
A.2
B.
C.
D.
39. 设,且,则=()。
A.
B.
C.e
D.1
40. 设,其中b为常数,f存在二阶导数,则是()
A.
B.
C.
D.
41. 若,则()
A.0
B.1
C.-ln2
D.1/ln2
42. 若则 ( )。
A.-1
B.1
C.2
D.-2
43. 函数单调增加区间是()
A.(-∞,-1)
B.( -1,1)
C.(1,+∞)
D.(-∞,-1)和(1,+∞)
44. 为()时与相切。
A.
B.
C.
D.
45. 函数的单调减的范围是()。
A.
B.
C.
D.
46. 下列等式中,不正确的是()。
A.
B.
C.
D.
47. 设则
A.1
B.
C.
D.
48. 函数在上的最小值是( ).
A.1
B.2
C.
D.
49. 若在区间内恒有,,则函数的曲线为()
A.上凹且上升
B.上凹且下降
C.下凹且上升
D.下凹且下降
50. 极限=()。
A.1;
B.2;
C.3;
D.4.
51. ,函数的微分是()
A.
B.
C.
D.
52. 若,则 ( )
A.
B.
C.
D.0
.
53. 函数的极大值为()。
A.
B.
C.
D.
54. 曲线在(1,1)处的切线方程为().
A.
B.
C.
D.
55. 若由方程确定,则( ).
A.
B.
C.
D.
.
56. 函数在区间的最大值与最小值分别是()
A.15,4
B.13,2
C.15,2
D.13,4
57. 定积分(?)
A.
B.
C.
D.0
58. 求的不定积分()
A.
B.
C.
D.
59. 若函数,则(?)
A.
B.
C.
D.
.
60. (?)
A.
B.
C.
D.
61. 设函数,则(?)
A.
B.
C.
D.
62. (?)
A.
B.
C.
D.
63.
A.
B.
C.
D.
64. (?)
A.0
B.1
C.
D.
65.
A.
B.
C.0
D.
66. (?)
A.
B.
C.
D.
67. ()
A.
B.0
C.
D.
68. (?)
A.
B.
C.
D.
69. ()
A.
B.
C.
D.
70. 若,则()
A.
B.
C.
D.
.
71. (?)
A.
B.
C.
D.
72.
A.
B.
C.
D.
73.
A.
B.
C.
D.
.
74. 已知,则(?)
A.
B.
C.
D.
75. 极限()
A.-1
B.0
C.1
D.2
76. ()
A.
B.
C.
D.
77. 设函数,则(?).
A.; -3
B.
C.
D.
78. 设,则(?).
A.
B.
C.
D.
79. 设,则()
A.1
B.0
C.2
D.3
80. 设,则二阶偏导数().
A.
B.
C.0
D.。