第二章 第八节 函数与方程及应用
- 格式:doc
- 大小:447.50 KB
- 文档页数:15
课时作业18 导数与函数的零点问题1.设a为实数,函数f(x)=-x3+3x+a.(1)求f(x)的极值;(2)是否存在实数a,使得方程f(x)=0恰好有两个实数根?若存在,求出实数a的值;若不存在,请说明理由.解:(1)f′(x)=-3x2+3,令f′(x)=0,得x=-1或x=1.∵当x∈(-∞,-1)时,f′(x)〈0;当x∈(-1,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)〈0,∴f(x)在(-∞,-1),(1,+∞)上单调递减,在(-1,1)上单调递增.∴f(x)的极小值为f(-1)=a-2,极大值为f(1)=a+2。
(2)方程f(x)=0恰好有两个实数根,等价于直线y=a 与函数y=x3-3x的图象有两个交点.∵y=x3-3x,∴y′=3x2-3。
令y′〉0,解得x>1或x〈-1;令y′<0,解得-1<x<1。
∴y=x3-3x在(-1,1)上为减函数,在(1,+∞)和(-∞,-1)上为增函数.∴当x=-1时,y极大值=2;当x=1时,y极小值=-2.∴y=x3-3x的大致图象如图所示.y=a表示平行于x轴的一条直线,由图象知,当a=2或a =-2时,y=a与y=x3-3x有两个交点.故当a=2或a=-2时,方程f(x)=0恰好有两个实数根.2.已知函数f(x)=ln x+错误!,g(x)=错误!,a∈R。
(1)求函数f(x)的极小值;(2)求证:当-1≤a≤1时,f(x)>g(x).解:(1)f′(x)=错误!-错误!=错误!(x〉0),当a-1≤0,即a≤1时,f′(x)〉0,函数f(x)在(0,+∞)上单调递增,无极小值;当a-1>0,即a>1时,则当0〈x<a-1时,f′(x)<0,函数f(x)在(0,a-1)上单调递减,当x>a-1时,f′(x)>0,函数f(x)在(a-1,+∞)上单调递增,故f(x)极小值=f(a-1)=1+ln(a-1).综上所述,当a≤1时,f(x)无极小值;当a>1时,f(x)极小值=1+ln(a-1).(2)证明:令F(x)=f(x)-g(x)=ln x+错误!-错误!=错误!(x>0),当-1≤a≤1时,要证f(x)>g(x),即证F(x)〉0,即证x ln x-a sin x+1〉0。
2021届新高考版高考数学考点通关提升训练
第二章函数概念与基本初等函数Ⅰ
第八讲函数模型及其应用
1.[改编题]下列说法正确的是()
A.函数y=2x的函数值比y=x2的函数值大
B.不存在x0,使<log a x0
C.在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=x a(a>0)的增长速度
D.“指数爆炸”是对指数型函数y=a·b x+c(a≠0,b>0,b≠1)的增长速度越来越快的形象比喻
2.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()
x1.992345.156.126
y1.5174.041 87.51218.01
A.y=2x - 2
B.y=(x2 - 1)
C.y=log 2x
D.y=lo x
3.下列函数中,随着x的增大,y也增大,且增长速度最快的是()
A.y=0.001e x
B.y=1 000ln x
C.y=x1 000
D.y=1 000·2x
4.某商场销售A型商品,已知该商品的进价是每件3元,且销售单价与日均销售量的关系如下表所示:
销售单价/元45678910
日均销售量/件400360320280240200160
请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的销售单价应为()。
课时作业 A 组——基础对点练1.(2018·乌鲁木齐模拟)函数f (x )=e x +2x -3的零点所在的一个区间是( ) A .(-12,0) B .(0,12) C .(12,1) D .(1,32)解析:因为f (1)=e -1>0,所以零点在区间(12,1)上.答案:C2.函数f (x )=2x 6-x 4-1的零点个数是( ) A .4 B .2 C .1D .0 解析:函数f (x )=2x 6-x 4-1的零点个数,就是方程2x 6-x 4-1=0的实根的个数,变形为2x 6=x 4+1,显然x =0不是方程的根;当x ≠0时,等价于2x 2=1+1x 4,令g (x )=2x 2,h (x )=1+1x 4,作出函数g (x )和h (x )的图象如图所示,数形结合知函数g (x )和h (x )的图象有2个交点,即函数f (x )有2个零点.答案:B3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x .则函数g (x )=f (x )-x +3的零点的集合为( ) A .{1,3} B .{-3,-1,1,3} C .{2-7,1,3}D .{-2-7,1,3}解析:当x ≥0时,f (x )=x 2-3x , 令g (x )=x 2-3x -x +3=0, 得x 1=3,x 2=1.当x <0时,-x >0,∴f (-x )=(-x )2-3(-x ), ∴-f (x )=x 2+3x ,∴f (x )=-x 2-3x . 令g (x )=-x 2-3x -x +3=0, 得x 3=-2-7, x 4=-2+7>0(舍),∴函数g (x )=f (x )-x +3的零点的集合是{-2-7,1,3},故选D. 答案:D4.已知a ,b ,c ,d 都是常数,a >b ,c >d .若f (x )=2 017-(x -a )(x -b )的零点为c ,d ,则下列不等式正确的是( ) A .a >c >b >d B .a >b >c >d C .c >d >a >bD .c >a >b >d解析:f (x )=2 017-(x -a )(x -b )=-x 2+(a +b )x -ab +2017,又f (a )=f (b )=2 017,c ,d 为函数f (x )的零点,且a >b ,c >d ,所以可在平面直角坐标系中作出函数f (x )的大致图象,如图所示,由图可知c >a >b >d ,故选D. 答案:D5.(2018·德州模拟)已知函数y =f (x )是周期为2的周期函数,且当x ∈[-1,1]时,f (x )=2|x |-1,则函数F (x )=f (x )-|lg x |的零点个数是( ) A .9 B .10 C .11D .18解析:由F (x )=0得f (x )=|lg x |分别作f (x )与y =|lg x |的图象,如图,所以有10个零点,故选B. 答案:B6.已知函数f (x )=⎩⎨⎧e x+a ,x ≤0,3x -1,x >0(a ∈R),若函数f (x )在R 上有两个零点,则a 的取值范围是( )A .(-∞,-1)B .(-∞,0)C .(-1,0)D .[-1,0)解析:当x >0时,f (x )=3x -1有一个零点x =13,所以只需要当x ≤0时,e x +a =0有一个根即可,即e x =-a .当x ≤0时,e x ∈(0,1],所以-a ∈(0,1],即a ∈[-1,0),故选D. 答案:D7.(2018·长沙市模拟)对于满足0<b ≤3a 的任意实数a ,b ,函数f (x )=ax 2+bx +c 总有两个不同的零点,则a +b -ca 的取值范围是( )A .(1,74]B .(1,2]C .[1,+∞)D .(2,+∞)解析:依题意对方程ax 2+bx +c =0,有Δ=b 2-4ac >0,于是c <b 24a ,从而a +b -c a >a +b -b 24aa =1+b a -14(b a )2,对满足0<b ≤3a 的任意实数a ,b 恒成立.令t =ba ,因为0<b ≤3a ,所以0<t ≤3.因此-14t 2+t +1∈(1,2],故a +b -c a >2.选D. 答案:D8.已知函数f (x )=⎩⎪⎨⎪⎧|2x-1|,x <2, 3x -1,x ≥2,若方程f (x )-a =0有三个不同的实数根,则实数a 的取值范围为( ) A .(1,3) B .(0,3) C .(0,2)D .(0,1)解析:画出函数f (x )的图象如图所示,观察图象可知,若方程f (x )-a =0有三个不同的实数根,则函数y =f (x )的图象与直线y =a 有3个不同的交点,此时需满足0<a <1,故选D. 答案:D9.(2018·汕头模拟)设函数f (x )是定义在R 上的周期为2的函数,且对任意的实数x ,恒有f (x )-f (-x )=0,当x ∈[-1,0]时,f (x )=x 2,若g (x )=f (x )-log a x 在x ∈(0,+∞)上有三个零点,则a 的取值范围为( ) A .[3,5] B .[4,6] C .(3,5)D .(4,6)解析:∵f (x )-f (-x )=0,∴f (x )=f (-x ),∴f (x )是偶函数,根据函数的周期性和奇偶性作出函数f (x )的图象如图所示:∵g (x )=f (x )-log a x 在(0,+∞)上有三个零点, ∴y =f (x )和y =log a x 的图象在(0,+∞)上有三个交点, 作出函数y =log a x 的图象,如图,∴⎩⎨⎧log a 3<1 log a 5>1 a >1,解得3<a <5.故选C.答案:C10.(2018·湖北七校联考)已知f (x )是奇函数且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( ) A.14 B.18 C .-78D .-38解析:令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ),因为f (x )是R 上的单调函数,所以2x 2+1=x -λ只有一个根,即2x 2-x +1+λ=0只有一个根,则Δ=1-8(1+λ)=0,解得λ=-78.故选C.答案:C11.已知定义在R 上的奇函数y =f (x )的图象关于直线x =1对称,当-1≤x <0时,则方程f (x )-12=0在(0,6)内的所有根之和为( )A .8B .10C .12D .16解析:∵奇函数f (x )的图象关于直线x =1对称,∴f (x )=f (2-x )=-f (-x ),即f (x )=-f (x +2)=f (x +4),∴f (x )是周期函数,其周期T =4.又当x ∈[-1,0)时,故f (x )在(0,6)上的函数图象如图所示.由图可知方程f (x )-12=0在(0,6)内的根共有4个,其和为x 1+x 2+x 3+x 4=2+10=12,故选C.答案:C12.已知函数f (x )=e |x |+|x |.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.解析:易知函数f (x )=e |x |+|x |为偶函数,故只需求函数f (x )在(0,+∞)上的图象与直线y =k 有唯一交点时k 的取值范围.当x ∈(0,+∞)时,f (x )=e x +x ,此时f ′(x )=e x +1>0,所以函数f (x )在(0,+∞)上单调递增,从而当x >0时,f (x )=e x +x >f (0)=1,所以要使函数f (x )在(0,+∞)上的图象与直线y =k 有唯一交点,只需k >1,故所求实数k 的取值范围是(1,+∞). 答案:(1,+∞)13.已知函数若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是________.解析:作出函数y =f (x )与y =k 的图象,如图所示:由图可知k ∈(0,1]. 答案:(0,1]14.函数f (x )=⎩⎨⎧ln x -x 2+2x ,x >0,4x +1,x ≤0的零点个数是________.解析:当x >0时,令ln x -x 2+2x =0, 得ln x =x 2-2x ,作y =ln x 和y =x 2-2x 图象,显然有两个交点. 当x ≤0时,令4x +1=0, ∴x =-14.综上共有3个零点. 答案:315.已知函数f (x )=|x -a |-2x +a ,a ∈R ,若方程f (x )=1有且只有三个不同的实数根,则实数a 的取值范围是________.解析:令g (x )=|x -a |+a ,h (x )=2x +1,作出函数h (x )=2x +1的图象,易知直线y =x 与函数h (x )=2x +1的图象的两交点坐标为(-1,-1)和(2,2),又函数g (x )=|x -a |+a 的图象是由函数y =|x |的图象的顶点在直线y =x 上移动得到的,且当函数h (x )=2x +1的图象和g (x )=|x -a |+a 的图象相切时,切点为(2,1+2),(-2,1-2),切线方程为y =-x +22+1或y =-x -22+1,又两切线与y =x 的交点分别为(1+222,1+222),(1-222,1-222),故a =1±222,结合图象可知a 的取值范围是(-∞,1-222)∪(1+222,2). 答案:(-∞,1-222)∪(1+222,2)B 组——能力提升练1.已知符号函数sgn(x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,设函数f (x )=sgn (1-x )+12·f 1(x )+sgn (x -1)+12·f 2(x ),其中f 1(x )=x 2+1,f 2(x )=-2x +4.若关于x 的方程[f (x )]2-3f (x )+m =0恒好有6个根,则实数m 的取值范围是( ) A .(-∞,94) B .(-∞,94] C .[2,94]D .(2,94)解析:①若x >1,则f (x )=-1+12·f 1(x )+1+12·f 2(x )=-2x +4.②若x =1,则f (x )=0+12·f 1(x )+0+12·f 2(x )=x 2-2x +52=2.③若x <1,则f (x )=1+12·f 1(x )+-1+12·f 2(x )=x 2+1. 综上,f (x )=⎩⎨⎧x 2+1,x <1,2,x =1,-2x +4,x >1,作出其图象如图所示.若要使方程[f (x )]2-3f (x )+m =0恒好有6个根,令t =f (x ),则关于t 的方程t 2-3t +m =0需有两个不相等的实数根,故Δ=9-4m >0,得m <94.数形结合知1<f (x )<2,所以函数g (t )=t 2-3t +m 在(1,2)上有两个不同的零点,又函数g (t )图象的对称轴为t =32∈(1,2),所以需⎩⎨⎧ g (1)>0, g (2)>0,即⎩⎨⎧1-3+m >0, 22-3×2+m >0,得2<m <94,故选D.答案:D2.(2018·湘中名校联考)已知函数f (x )=-13x 3+ax 2+bx +c 有两个极值点x 1,x 2,若x 1<f (x 1)<x 2,则关于x 方程[f (x )]2-2af (x )-b =0的实数根的个数不可能为( ) A .2 B .3 C .4D .5解析:由题意,得f ′(x )=-x 2+2ax +b .因为x 1,x 2是函数f (x )的两个极值点,所以x 1,x 2是方程-x 2+2ax +b =0的两个实数根,所以由[f (x )]2-2af (x )-b =0,可得f (x )=x 1或f (x )=x 2.由题意,知函数f (x )在(-∞,x 1),(x 2,+∞)上单调递减,在(x 1,x 2)上单调递增,又x 1<f (x 1)<x 2,依题意作出简图,如图所示,结合图形可知,方程[f (x )]2-2af (x )-b =0的实根个数不可能为5,故选D.答案:D3.(2018·合肥市质检)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x <0 |12x 2-2x +1|,x ≥0.方程[f (x )]2-af (x )+b=0(b ≠0)有6个不同的实数解,则3a +b 的取值范围是( ) A .[6,11] B .[3,11] C .(6,11)D .(3,11)解析:首先作出函数f (x )的图象(如图),对于方程[f (x )]2-af (x )+b =0,可令f (x )=t ,那么方程根的个数就是f (x )=t 1与f (x )=t 2的根的个数之和,结合图象可知,要使总共有6个根,需要一个方程有4个根,另一个方程有2个根,从而可知关于t 的方程t 2-at +b =0有2个根,分别位于区间(0,1)与(1,2)内,进一步由根的分布得出约束条件⎩⎨⎧b >01-a +b <04-2a +b >0,画出可行域(图略),计算出目标函数z =3a +b 的取值范围为(3,11).答案:D4.(2018·洛阳统考)已知x 1,x 2是函数f (x )=e -x -|ln x |的两个零点,则( ) A.1e <x 1x 2<1 B .1<x 1x 2<e C .1<x 1x 2<10D .e <x 1x 2<10解析:在同一直角坐标系中画出函数y =e -x 与y =|ln x |的图象(图略),结合图象不难看出,在x 1,x 2中,其中一个属于区间(0,1),另一个属于区间(1,+∞).不妨设x 1∈(0,1),x 2∈(1,+∞),则有e -x 1=|ln x 1|=-ln x 1∈(e -1,1),e -x 2=|ln x 2|=ln x 2∈(0,e -1),e -x 2-e -x 1=ln x 2+ln x 1=ln(x 1x 2)∈(-1,0),于是有e -1<x 1x 2<e 0,即1e <x 1x 2<1,故选A. 答案:A5.设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0解析:∵f (x )=e x +x -2, ∴f ′(x )=e x +1>0, 则f (x )在R 上为增函数,且f (0)=e 0-2<0,f (1)=e -1>0, 又f (a )=0,∴0<a <1. ∵g (x )=ln x +x 2-3, ∴g ′(x )=1x +2x .当x ∈(0,+∞)时,g ′(x )>0, 得g (x )在(0,+∞)上为增函数, 又g (1)=ln 1-2=-2<0, g (2)=ln 2+1>0,且g (b )=0, ∴1<b <2,即a <b ,∴{ f (b )>f (a )=0, g (a )<g (b )=0.故选A. 答案:A6.对于函数f (x )和g (x ),设α∈{x |f (x )=0},β∈{x |g (x )=0},若存在α,β,使得|α-β|≤1,则称f (x )与g (x )互为“零点相邻函数”.若函数f (x )=e x -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”,则实数a 的取值范围是( ) A .[2,4] B.⎣⎢⎡⎦⎥⎤2,73 C.⎣⎢⎡⎦⎥⎤73,3 D .[2,3]解析:函数f (x )=e x -1+x -2的零点为x =1,设g (x )=x 2-ax -a +3的零点为b ,若函数f (x )=e x -1+x -2与g (x )=x 2-ax -a +3互为“零点相邻函数”,则|1-b |≤1,∴0≤b ≤2.由于g (x )=x 2-ax -a +3的图象过点(-1,4),∴要使其零点在区间[0,2]上,则g ⎝ ⎛⎭⎪⎫a 2≤0,即⎝ ⎛⎭⎪⎫a 22-a ·a 2-a +3≤0,解得a ≥2或a ≤-6(舍去),易知g (0)≥0,即a ≤3,此时2≤a ≤3,满足题意. 答案:D7.设x 0为函数f (x )=sin πx 的零点,且满足|x 0|+f ⎝ ⎛⎭⎪⎫x 0+12<33,则这样的零点有( ) A .61个 B .63个 C .65个D .67个解析:依题意,由f (x 0)=sin πx 0=0得,πx 0=k π,k ∈Z ,即x 0=k ,k ∈Z.当k 是奇数时,f ⎝ ⎛⎭⎪⎫x 0+12=sin π⎝ ⎛⎭⎪⎫k +12=sin ⎝ ⎛⎭⎪⎫k π+π2=-1,|x 0|+f ⎝ ⎛⎭⎪⎫x 0+12=|k |-1<33,|k |<34,满足这样条件的奇数k 共有34个;当k 是偶数时,f ⎝ ⎛⎭⎪⎫x 0+12=sin π⎝ ⎛⎭⎪⎫k +12=sin ⎝ ⎛⎭⎪⎫k π+π2=1,|x 0|+f ⎝ ⎛⎭⎪⎫x 0+12=|k |+1<33,|k |<32,满足这样条件的偶数k 共有31个.综上所述,满足题意的零点共有34+31=65(个),选C. 答案:C8.设函数f (x )=⎩⎪⎨⎪⎧x ,0≤x <1 1x +1-1,-1<x <0,设函数g (x )=f (x )-4mx -m ,其中m ≠0.若函数g (x )在区间(-1,1)上有且仅有一个零点,则实数m 的取值范围是( ) A .m ≥14或m =-1 B .m ≥14 C .m ≥15或m =-1D .m ≥15解析:f (x )=⎩⎪⎨⎪⎧x , 0≤x <1, 1x +1-1, -1<x <0.作函数y =f (x )的图象,如图所示.函数g (x )零点的个数⇔函数y =f (x )的图象与直线y =4mx +m 交点的个数. 当直线y =4mx +m 过点(1,1)时,m =15; 当直线y =4mx +m 与曲线y =1x +1-1(-1<x <0)相切时,可求得m =-1. 根据图象可知,当m ≥15或m =-1时,函数g (x )在区间(-1,1)上有且仅有一个零点.答案:C9.已知f (x )是定义在R 上的奇函数,且x >0时,f (x )=ln x -x +1,则函数g (x )=f (x )-e x (e 为自然对数的底数)的零点个数是( ) A .0 B .1 C .2D .3解析:当x >0时,f (x )=ln x -x +1,f ′(x )=1x -1=1-x x ,所以x ∈(0,1)时,f ′(x )>0,此时f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,此时f (x )单调递减.因此,当x >0时,f (x )max =f (1)=ln 1-1+1=0.根据函数f (x )是定义在R 上的奇函数作出函数y =f (x )与y =e x 的大致图象,如图,观察到函数y =f (x )与y =e x 的图象有两个交点,所以函数g (x )=f (x )-e x (e 为自然对数的底数)有2个零点.故选C.答案:C10.已知函数f (x )=ln x -ax 2+x 有两个零点,则实数a 的取值范围是( ) A .(-∞,1) B .(0,1) C.⎝⎛⎭⎪⎫-∞,1+e e 2D.⎝⎛⎭⎪⎫0,1+e e 2解析:依题意,关于x 的方程ax -1=ln x x 有两个不等的正根.记g (x )=ln xx ,则g ′(x )=1-ln xx 2,当0<x <e 时,g ′(x )>0,g (x )在区间(0,e)上单调递增;当x >e时,g ′(x )<0,g (x )在区间(e ,+∞)上单调递减,且g (e)=1e ,当0<x <1时,g (x )<0.设直线y =a 1x -1与函数g (x )的图象相切于点(x 0,y 0),则有⎩⎪⎨⎪⎧a 1=1-ln x 0x 20a 1x 0-1=ln x 0x 0,由此解得x 0=1,a 1=1.在坐标平面内画出直线y =ax -1(该直线过点(0,-1)、斜率为a )与函数g (x )的大致图象,结合图象可知,要使直线y =ax -1与函数g (x )的图象有两个不同的交点,则a 的取值范围是(0,1),选B. 答案:B11.已知f ′(x )为函数f (x )的导函数,且f (x )=12x 2-f (0)x +f ′(1)e x -1,g (x )=f (x )-12x 2+x ,若方程g ⎝ ⎛⎭⎪⎫x 2a -x -x =0在(0,+∞)上有且仅有一个根,则实数a 的取值范围是( )A .(-∞,0)∪{1}B .(-∞,-1]C .(0,1]D .[1,+∞)解析:∵f (x )=12x 2-f (0)x +f ′(1)e x -1,∴f (0)=f ′(1)e -1,f ′(x )=x -f (0)+f ′(1)e x -1,∴f ′(1)=1-f ′(1)e -1+f ′(1)e 1-1,∴f ′(1)=e ,∴f (0)=f ′(1)e -1=1,∴f (x )=12x 2-x +e x ,∴g (x )=f (x )-12x 2+x =12x 2-x +e x -12x 2+x =e x,∵g ⎝ ⎛⎭⎪⎫x 2a -x -x =0,∴g ⎝ ⎛⎭⎪⎫x 2a -x =x =g (ln x ),∴x 2a -x =ln x ,∴x 2a =x +ln x .当a >0时,只有y =x 2a (x >0)和y =x +ln x 的图象相切时,满足题意,作出图象如图所示,由图象可知,a =1,当a <0时,显然满足题意,∴a =1或a <0,故选A. 答案:A12.已知函数y =f (x )是定义域为R 的偶函数.当x ≥0时,f (x )=⎩⎪⎨⎪⎧54sin ⎝ ⎛⎭⎪⎫π2x (0≤x ≤1) ⎝ ⎛⎭⎪⎫14x +1(x >1),若关于x 的方程5[f (x )]2-(5a +6)f (x )+6a =0(a ∈R)有且仅有6个不同的实数根,则实数a 的取值范围是( )A .(0,1)∪⎩⎨⎧⎭⎬⎫54B .[0,1]∪⎩⎨⎧⎭⎬⎫54C .(0,1]∪⎩⎨⎧⎭⎬⎫54D.⎝ ⎛⎦⎥⎤1,54∪{0} 解析:作出f (x )=⎩⎪⎨⎪⎧54sin ⎝ ⎛⎭⎪⎫π2x (0≤x ≤1) ⎝ ⎛⎭⎪⎫14x+1(x >1)的大致图象如图所示,又函数y =f (x )是定义域为R 的偶函数,且关于x 的方程5[f (x )]2-(5a +6)f (x )+6a =0(a ∈R)有且仅有6个不同的实数根,等价于f (x )=65和f (x )=a (a ∈R)有且仅有6个不同的实数根.由图可知方程f (x )=65有4个不同的实数根,所以必须且只需方程f (x )=a (a∈R)有且仅有2个不同的实数根,由图可知0<a ≤1或a =54.故选C.答案:C13.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________.解析:若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则方程2a =|x -a |-1只有一解,即方程|x -a |=2a +1只有一解,故2a +1=0,所以a =-12. 答案:-1214.函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|+2cos πx (-4≤x ≤6)的所有零点之和为________.解析:问题可转化为y =⎝ ⎛⎭⎪⎫12|x -1|与y =-2cos πx 在-4≤x ≤6的交点的横坐标的和,因为两个函数图象均关于x =1对称,所以x =1两侧的交点对称,那么两对应交点的横坐标的和为2,分别画出两个函数的图象(图略),易知x =1两侧分别有5个交点,所以所求和为5×2=10. 答案:1015.已知函数f (x )=⎩⎨⎧1-|x +1|,x <1x 2-4x +2,x ≥1,则函数g (x )=2|x |f (x )-2的零点个数为________.解析:由g (x )=2|x |f (x )-2=0得,f (x )=⎝ ⎛⎭⎪⎫12|x |-1,作出y =f (x ),y =⎝ ⎛⎭⎪⎫12|x |-1的图象,由图象可知共有2个交点,故函数的零点个数为2.答案:216.已知函数f (x )=⎩⎨⎧2x -1(x ≥2)2(1≤x <2),若方程f (x )=ax +1恰有一个解,则实数a 的取值范围是________.解析:如图,当直线y =ax +1过点B (2,2)时,a =12,满足方程有两个解;当直线y =ax +1与f (x )=2x -1(x ≥2)的图象相切时,a =-1+52,满足方程有两个解;当直线y =ax +1过点A (1,2)时,a =1,满足方程恰有一个解.故实数a 的取值范围为⎝ ⎛⎭⎪⎫0,12∪⎝ ⎛⎦⎥⎤-1+52,1.答案:⎝ ⎛⎭⎪⎫0,12∪⎝ ⎛⎦⎥⎤-1+52,1。