轴承内圈压应力计算公式
- 格式:xlsx
- 大小:8.67 KB
- 文档页数:1
基于ABAQUS的轴承过盈配合接触应力分析*高晓果,孔德龙,赵聪,刘文龙【摘要】摘要:航空发动机主轴轴承内圈一般采用过盈配合的安装形式,通过一定的过盈量防止轴承内圈与轴发生相对转动,并对轴承内圈定位。
建立了基于ABAQUS软件的轴承内圈过盈接触问题的仿真分析方法,使用该方法分析了某型航空发动机低压转子推力球轴承的内圈过盈配合接触应力,分析了该轴承内圈在装配压紧时发生转动的根本原因。
建立的过盈配合接触应力分析方法可为航空发动机主轴轴承过盈配合的设计和校核计算提供理论依据。
【期刊名称】机械研究与应用【年(卷),期】2015(000)002【总页数】3【关键词】关键词:轴承;航空发动机;过盈;接触应力0 引言航空发动机转子系统通过滚动轴承支承到承力机匣上,轴承内圈与转子轴采用过盈配合的安装形式,通过一定的过盈量防止轴承内圈与轴的相对转动,并对轴承内圈进行定位。
从力学角度看,过盈配合是接触问题的一种[1],属于边界条件高度非线性的复杂问题,配合面呈现出很复杂的接触状态和应力状态。
常用的过盈配合设计是以拉美(Lame)方程为基础,并在俄罗斯学者加道林院士提出的组合圆筒理论基础上进行的。
基于拉美方程和厚壁圆筒原理的传统方法存在着一定的局限性,不能很好的适用于复杂结构的过盈配合设计。
在航空发动机中,主轴轴承过盈量的设计和选取主要是参考成熟型号设计经验,很少对过盈配合的接触问题进行研究,如在某型发动的研制过程中,轴承内圈过盈装配到轴上后,采用压紧螺母进行压紧时,发生了内圈转动的现象,笔者以该工程实例为对象,使用ABAQUS有限元软件,对其过盈配合接触问题进行相应分析,分析了故障原因。
1 轴承内圈与轴的模型笔者选取了在装配时发生转动的轴承内圈与轴的模型,其结构如图1所示,图2为三维模型图。
该轴承为双半内圈角接触球轴承,是某型航空发动机的低压压气机后支点,在工作时承受低压转子轴向力。
该轴承内圈与轴承采用过盈配合的安装形式。
基于Solidworks Simulation的轴承过盈配合接触应力分析王斌【摘要】The finite element analysis software Solidworks Simulation was used to analyze the problem of bearing inner race inter-ferencecontact.From the stress nephogram,strain nephogram and displacement nephogram,finding the position ofmaximum stress ,circumferential stress,radial stress and radial displacement.The interference fit analysis can provide the theoretical basis for the design and check calculation of the interference fit of the main shaft of the traction motor,and provide the basis for judging the bearing pressure.%利用有限元Solidworks Simulation软件对球轴承内圈过盈接触问题进行仿真分析,通过求解出应力、应变和位移云图,找出了轴的最大应力、周向应力、径向应力和径向位移。
过盈配合接触应力分析可为牵引电机主轴轴承过盈配合的设计和校核计算提供理论依据,同时为判断轴承压装到位提供依据。
【期刊名称】《技术与市场》【年(卷),期】2017(000)001【总页数】3页(P18-19,23)【关键词】轴承;YQ-365;牵引电机;过盈配合;接触应力【作者】王斌【作者单位】中车株洲电机有限公司,湖南株洲421001【正文语种】中文轴承通常采用过盈配合安装在轴及轴承座上,这种安装方式可以防止由于轴承内径和轴外径之间或是轴承外径和轴承座之间相对运动而产生微动磨损[1]。
1、内圈旋转的配合:内圈 m6 n6 p6 外圈H7G7K7;2、外圈旋转时:内圈 h6 k6,外圈 M6 N6;2、双H配合一般不要采用因为国内加工能力不行孔和轴尺寸和形状达不到要求的话会跑外圈①当轴承内径公差带与轴公差带构成配合时,在一般基孔制中原属过渡配合的公差代号将变为过赢配合,如k5、k6、m5、m6、n6等,但过赢量不大;当轴承内径公差代与h5、h6、g5、g6等构成配合时,不在是间隙而成为过赢配合。
②轴承外径公差带由于公差值不同于一般基准轴,也是一种特殊公差带,大多情况下,外圈安装在外壳孔中是固定的,有些轴承部件结构要求又需要调整,其配合不宜太紧,常与H6、H7、J6、J7、Js6、Js7等配合。
附:一般情况下,轴一般标0~+0。
005 如果是不常拆的话,就是+0。
005~+0。
01的过盈配合就可以了,如果要常常的拆装就是过渡配合就可以了。
我们还要考虑到轴材料本身在转动时候的热胀,所以轴承越大的话,最好是-0。
005~0的间隙配合,最大也不要超过0。
01的间隙配合还有一条就是动圈过盈,静圈间隙0 前言三维,cad,机械,技术,汽车,catia,pro/e,ug,inventor,solidedge,solidworks,caxa,时空,镇江/ v0 G6 A8 e! ^' |9 L滚动轴承是一种标准化部件,具有摩擦力小、容易起动及更换简便等优点。
我们在日常维修或从事机械设计时,合理、正确选择轴承配合是至关重要的。
P, t1 E9 y3 G! S1 |1 轴承配合的选择方法三维|cad|机械|汽车|技术|catia|pro/e|ug|inventor|solidedge|solidworks|caxa! x8 A1 {3 w2 S/|正确选择轴承配合,对保证机器正常运转、提高轴承的使用寿命和充分利用轴承的承载能力关系很大。
滚动轴承配合的选择主要是根据轴承套圈承受负荷的性质和大小,并结合轴承的类型、尺寸、工作条件、轴与壳体的材料和结构以及工作温度等因素综合考虑。
压装配合过盈量计算及有限元分析乔颖敏;张建刚【摘要】为得到过盈量和温度改变时轴承孑孔应力的变化趋势及压装配合时过盈量的合理取值范围,根据过盈配合原理计算径向力和接触面应力,同时以某型号变速器输入轴轴承与轴承孑孔的过盈配合为例,建立有限元模型并进行数值模拟,得出此型号轴承压装配合过盈量最优范围.【期刊名称】《汽车工艺与材料》【年(卷),期】2016(000)009【总页数】4页(P38-41)【关键词】过盈配合;压装力;有限元;应力【作者】乔颖敏;张建刚【作者单位】陕西法士特汽车传动工程研究院,西安710119;陕西法士特汽车传动工程研究院,西安710119【正文语种】中文【中图分类】TH133.3过盈配合是轴承与轴承孔配合常用的连接方式之一。
两个或两个以上的零件配合可分为滑动配合、过渡配合、紧配合等多种状态,过盈配合属于紧配合中的一种,二者配合过程中需用特殊工具以较大的压装力挤压进去,也可利用材料的热胀冷缩特性,把孔径材料预热或者把轴材料冷却,迅速插入待常温后即为过盈配合状态。
变速器的输入轴与离合器壳体通过轴承进行连接,轴承外圈与离合器壳体无相对滑动,轴承内圈与输入轴一起转动且相对无滑动,轴承内外圈连接之间严格无转动。
在实际工作过程中,轴承高速转动而产热导致零件升温、过盈配合量减小,在转动过程中轴承传递到外圈部分扭矩克服过盈周向摩擦而使轴承外圈与轴承孔有相互转动,致使出现轴承跑外圈现象。
长时间轴承跑外圈,会使轴承孔磨损,逐渐导致轴承孔径增大,进一步导致齿轮啮合状态变差,引起齿轮点蚀、断齿、轴承破坏等一系列变速器故障。
上述的工作过程存在复杂的非线性接触,数值求解困难。
常用的有限元分析理论[1]和相关软件在计算复杂接触问题方面具有较大优势,为计算过盈配合的应力分布提供了有效途径。
设有两个空心轴过盈配合,其中外轴(包容件)内径D2,外径d3,内轴(被包容件)内径D1,外径d2,则两轴过盈配合量为Δd=D2-d2,可根据制造公差计算。
第十八章滚动轴承§18-1 滚动轴承的结构及类型一、滚动轴承的结构滚动轴承一般是由内圈、外圈、滚动体和保持架组成(图18-1)。
通常内圈随轴颈转动,外圈装在机座或零件的轴承孔内固定不动。
内外圈都制有滚道,当内外圈相对旋转时,滚动体将沿滚道滚动。
保持架的作用是把滚动体沿滚道均匀地隔开,如图18-2所示。
图18-1滚动轴承结构图18-2滚动轴承运动滚动体与内外圈的材料应具有高的硬度和接触疲劳强度、良好的耐磨性和冲击韧性。
一般用含铬合金钢制造,经热处理后硬度可达HRC61~65,工作表面须经磨削和抛光。
保持架一般用低碳钢板冲压制成,高速轴承多采用有色金属或塑料保持架。
与滑动轴承相比,滚动轴承具有摩擦阻力小,起动灵敏、效率高、润滑简便和易于互换等优点,所以获得广泛应用。
它的缺点是抗冲击能力较差,高速时出现噪声,工作寿命也不及液体摩擦的滑动轴承。
由于滚动轴承已经标准化,并由轴承厂大批生产,所以,使用者的任务主要是熟悉标准、正确选用。
图18-3给出了不同形状的滚动体,按滚动体形状滚动轴承可分为球轴承和滚子轴承。
滚子又分为长圆柱滚子、短圆柱滚子、螺旋滚子、圆锥滚子、球面滚子和滚针等。
图18-3 滚动体的形状二、滚动轴承的类型滚动轴承常用的类型和特性,见表18-1。
由于结构的不同,各类轴承的使用性能如下。
1.承载能力在同样外形尺寸下。
滚子轴承的承载能力约为球轴承的1.5~3倍。
所以,在载荷较大或有冲击载荷时宜采用滚子轴承。
但当轴承内径d 20mm时,滚子轴承和球轴承的承载能力已相差不多,而球轴承的价格一般低于滚子轴承,故可优先选用球轴承。
2.接触角接触角是滚动轴承的一个主要参数,轴承的受力分析和承载能力等与接触角有关。
表18-2列出各类轴承的公称接触角。
滚动体套圈接触处的法线与轴承径向平面(垂直于轴承轴心线的平面)之间的夹角称为公称接触角。
公称接触角越大,轴承承受轴向载荷的能力也越大。
滚动轴承按其承受载荷的方向或公称接触角的不同,可分为:(1) 径向轴承,主要用于承受径向载荷,其公称接触角从0 到45 ;(2) 推力轴承,主要用于承受轴向载荷,其公称接触角从大于45 到90(表18-2)。
空心轴设计计算公式空心轴是一种常见的机械零件,在机械设计中起着重要的作用。
它具有重量轻、强度高等特点,能够有效地减小机械传动的惯性负载,提高机械运转的效率。
关于空心轴的设计计算公式,可以从以下几个方面进行探讨:1.转矩计算公式转矩是空心轴设计的最基本要素,它直接关系到轴的强度和承载能力。
空心轴的转矩计算公式为:T = π/16 * [D1^3 - D2^3] * τ其中,T为转矩,D1为外径,D2为内径,τ为轴材料的抗剪强度。
该公式的意义在于通过轴的外径和内径的差异,来计算轴的承载和强度。
2.弯曲应力公式在机械传动中,轴杆常常会受到弯曲变形的影响,因此弯曲应力也是空心轴设计中不可忽视的重要参数。
其计算公式为:σb = M * y / I其中,M为作用在轴上的弯矩,y为垂直于轴线的距离,I为轴面惯性矩。
该公式用于计算轴材料在弯曲形变下的应力,以判断轴的强度和承载能力。
3.轴承压力计算公式轴承对轴的承载和转动起着重要的作用,因此轴承压力也是轴设计中必不可少的一项考虑因素。
其计算公式为:P = Fa / Ds其中,P为轴承压力,Fa为轴承承受的轴向力,Ds为轴的直径。
该公式用于计算轴承的承载压力,以判断合适的轴承类型和数量。
4.空心轴重量计算公式空心轴的设计中还需要考虑轴的重量,该参数对于机械的传动效率和运行稳定性都有重要影响。
轴的重量计算公式为:G = π / 4 * [D1^2 - D2^2] * L * ρ其中,G为轴的重量,L为轴的长度,ρ为轴材料的密度。
该公式用于计算轴的重量,以判断机械传动的稳定性和可靠性。
以上是空心轴设计中常用的几项计算公式,设计者可以根据实际情况进行选择和应用。
流场基本方程在静压和动静压轴承设计当中,为了计算油膜的承载能力,就需要计算油膜的压力分布。
而计算流体的流量,就需要计算油膜内的速度分布。
另外,需要计算轴承的摩擦阻力,那就要计算轴承面上的剪应力分布。
特别的,在轴高速转动时,进油温度和出油温度之间有温度差。
考虑到粘度和温度之间的耦合关系,若要准确计算油膜的压力分布,还需要计算轴承面上的温度分布。
轴承间隙中的润滑液体为黏性流体,根据动量、质量和能量守恒定律以及微元的力平衡条件,可以推导出纳维-斯托克斯方程(流体的动量方程)、连续方程、剪应力方程、能量方程和热传导方程。
再加上润滑液体的状态方程(粘温方程、粘压方程)、油膜的几何方程以及轴颈和轴承的变形方程,通过这些方程之间的联立,就可以求解流固耦合、粘温耦合下的油膜压力分布。
纳维-斯托克斯方程(Navier-Stokes)和雷诺方程(Reynolds)黏性流体运动方程是研究润滑流体的基本方程。
对于不可压缩的牛顿流体,其运动方程,即纳维-斯托克斯方程可以表示为公式1{ρdudt=ρX−ðpðx+μ∇2uρdvdt=ρY−ðpðy+μ∇2vρdwdt =ρZ−ðpðz+μ∇2w式中,u、v、w分别为流速沿x、y、z坐标轴方向的分量;X、Y、Z为单位质量的体力沿着x、y、z坐标轴方向的分量;p为油膜压力;ρ为液压油的密度;μ为液压油的粘度;对时间的全微分可以表示为ddt =ððt+uððx+vððy+wððz;定义拉普拉斯算子∇2=ð2ðx2+ð2ðx2+ð2ðz2。
等式的左侧项为微元体的惯性力,而等式的右侧项表示的是微元体的体力、压力和黏性剪切力。
将x-y-z坐标系下的纳维-斯托克斯方程展开后可以表示为:{ρdudt=ρX−ðpðx+μ(ð2uðx2+ð2uðy2+ð2uðz2)ρdvdt=ρY−ðpðy+μ(ð2vðx2+ð2vðy2+ð2vðz2)ρdwdt=ρZ−ðpðz+μ(ð2wðx2+ð2wðy2+ð2wðz2)对于有些流场(比如环形的止推轴承面或是展开后为部分圆环的圆锥轴承面),圆柱坐标下进行计算会变得更加容易些。