轴承压装力计算公式
- 格式:doc
- 大小:112.00 KB
- 文档页数:2
轴承压轴力计算公式轴承是机械设备中常用的零部件,用于支撑旋转机械零件的轴。
在轴承工作时,会受到来自旋转部件的轴向力的作用。
因此,对于轴承来说,计算轴向力是非常重要的。
本文将介绍轴承压轴力的计算公式及其应用。
轴承压轴力是指轴承在工作时所受到的轴向力。
在实际工程中,需要计算轴承压轴力,以确定轴承的选型和轴承座的设计。
轴承压轴力的计算公式如下:F = C0 × (Y × Fr + Y0 × Fa)。
其中,F为轴承压轴力,单位为N;C0为轴承的基本静载荷,单位为N;Y为轴承系数,取值范围一般为0.5-0.8;Fr为轴承的径向力,单位为N;Fa为轴承的轴向力,单位为N;Y0为轴承系数,取值范围一般为0.6-1.0。
在实际工程中,轴承的选型和轴承座的设计需要根据实际工况来确定。
在计算轴承压轴力时,需要考虑轴承所受的径向力和轴向力。
通常情况下,径向力是由旋转部件在轴向上的惯性力和离心力引起的,而轴向力则是由机械装置的工作负荷引起的。
因此,在计算轴承压轴力时,需要分别考虑这两种力的作用。
对于径向力Fr,可以通过以下公式进行计算:Fr = m × r ×ω^2。
其中,m为旋转部件的质量,单位为kg;r为旋转部件的半径,单位为m;ω为旋转部件的角速度,单位为rad/s。
对于轴向力Fa,可以通过以下公式进行计算:Fa = P ×η。
其中,P为机械装置的工作负荷,单位为N;η为机械装置的传动效率,取值范围一般为0.8-0.95。
通过上述公式,可以计算出轴承所受的径向力和轴向力,进而计算出轴承的压轴力。
在实际工程中,需要根据轴承所受的压轴力来选择合适的轴承型号和轴承座设计,以确保轴承能够正常工作并具有足够的寿命。
除了上述的计算公式,轴承压轴力的计算还需要考虑一些其他因素,如轴承的工作温度、润滑情况、安装方式等。
这些因素都会对轴承的压轴力产生影响,因此在实际工程中需要综合考虑这些因素,以确定轴承的选型和轴承座的设计。
计算数据F--压入力(N)F=P fmax πd f L f μ584.1509设计数据d f --结合直径(mm)34.9000设计数据L f --结合长度(mm)9.3980选择数据μ--结合面摩擦系数0.1300计算数据P fmax --结合面承受的最大单位压力(N/mm 2)13.7000设计数据δmax --最大过盈量(mm)0.0127选择参数E a --包容件材料弹性模量(N/mm2)230000.0000选择数据E i --包容件材料弹性模量(N/mm2)230000.0000计算数据C a --系数C a =[(d a 2+d f 2)/(d a 2-d f 2)]+V a 1.3516计算数据C i --系数C i =[(d f 2+d i 2)/(d f 2-d i 2)]-V i4.7576设计数据d a --包容件外径(mm)70.0000设计数据d i --被包容件内径,实心轴为0(mm)28.5750选择参数V a --包容件泊松系数0.3100选择参数V i --被包容件泊松系数0.3100计算数据F end ----最终压装力(N)1927.698058-22 材料摩擦系数村料摩擦因数μ(无润滑)摩擦因数μ(有润滑)钢一钢0.07~0.160.05~0.13钢—铸钢0.110.07钢一结构钢0.10.08钢一优质结构0.110.07钢—青铜0.15~0.200.03~0.06钢—铸铁0.12~0.150.05~0.10铸铁—铸铁0.15~0.250.05~0.10表58-23,常用材料的弹性模量,泊松比和线胀系数加热碳钢、低合金钢、合金结构钢200~2350.30~0.3111灰铸铁(HT150、HT200)70~800.24~0.2511灰铸铁(HT250、HT300)105~1300.24~0.2610可锻铸铁90~1000.2510非合金球墨铸铁160~1800.28~0.2910青铜850.3517黄铜800.36~0.3718铝合金690.32~0.3621镁铝合金400.25~0.3025.5注:在选用压力机规格时应是计算压力P的3~3.5倍材料弹性模量E/(KN/mm 2)泊松比v 线胀系数-6/℃使用资料压装时的主要要求为: 1)压装时不得损伤零 2)压入时应平稳,被压入件应准确到位。
托辊轴承压装力矩托辊轴承是物流输送系统中不可或缺的组成部分,其负责支撑输送带和物品的重量,承受着巨大的压力和摩擦力。
而托辊轴承的压装力矩则是保证其正常运转的重要因素之一。
一、托辊轴承的压装托辊轴承的压装是指将轴承安装到托辊上的过程。
在压装过程中,需要施加一定的力矩,使轴承与托辊之间形成紧密的接触,以确保轴承能够承受输送带和物品的重量,并保证其正常运转。
二、压装力矩的计算压装力矩的计算需要考虑多个因素,包括轴承的尺寸、材质、精度等。
一般来说,压装力矩的计算公式为:M=K×D×d其中,M为压装力矩,K为系数,D为轴承外径,d为轴承内径。
不同类型的轴承,其系数K也不同。
例如,对于深沟球轴承,K的取值范围为0.005~0.01;对于圆锥滚子轴承,K的取值范围为0.02~0.05。
三、压装力矩的影响因素除了轴承的尺寸和类型外,压装力矩还受到其他因素的影响,包括轴承的材质、精度、表面质量等。
例如,轴承的材质越硬,需要的压装力矩就越大;轴承的精度越高,需要的压装力矩就越小。
此外,压装力矩还受到安装工具的影响。
使用不合适的安装工具,可能会导致压装力矩不足或过大,从而影响轴承的正常运转。
四、压装力矩的重要性正确的压装力矩对于轴承的正常运转至关重要。
如果压装力矩不足,轴承与托辊之间的接触不紧密,轴承容易松动或磨损,从而影响输送带的正常运转;如果压装力矩过大,轴承容易变形或损坏,从而缩短轴承的使用寿命。
因此,在安装托辊轴承时,必须严格按照压装力矩的要求进行操作,以确保轴承能够正常运转,从而保证物流输送系统的稳定运行。
总之,托辊轴承的压装力矩是保证其正常运转的重要因素之一。
正确的压装力矩能够保证轴承与托辊之间的紧密接触,从而确保轴承能够承受输送带和物品的重量,并保证物流输送系统的稳定运行。
滚动轴承所承受的载荷取决于所支承的轴系部件承担的载荷。
右图为一对角接触球轴承反装支承一个轴和一个斜齿圆柱齿轮的受力情况。
图中的F re、F te、F ae分别为所支承零件(齿轮)承受的径向、切向和轴向载荷,F d1和F d2为两个轴承在径向载荷F r1和F r2(图中未画出)作用下所产生的派生轴向力。
这里,轴承所承受的径向载荷F r1和F r2可以依据两个角接触球轴承反装的受力分析(径向反力)F re、F te、F ae经静力分析后确定,而轴向载荷F a1和F a2则不完全取决于外载荷F re、F te、F ae,还与轴上所受的派生轴向力F d1和F d2有关。
对于向心推力轴承,由径向载荷F r1和F r2所派生的轴向力F d1和F d2的大小可按下表所列的公式计算。
注:表中Y和e由载荷系数表中查取,Y是对应表中F a/F r>e的Y 值下图中把派生轴向力的方向与外加轴向载荷F ae的方向一致的轴承标为2,另一端则为1。
取轴和与其相配合的轴承内圈为分离体,当达到轴向平衡时,应满足:F ae+F d2=F d1由于F d1和F d2是按公式计算的,不一定恰好满足上述关系式,这时会出现下列两种情况:当F ae+F d2>F d1时,则轴有向左窜动的趋势,相当于轴承1被“压紧”,轴承2被“放松”,但实际上轴必须处于平衡位置,所以被“压紧”的轴承1所受的总轴向力F a1必须与F ae+F d2平衡,即F a1=F ae+F d2而被“放松”的轴承2只受其本身派生的轴向力F d2,即F a2=F d2。
当F ae+F d2<F d1时,同前理,被“放松”的轴承1只受其本身派生的轴向力F a1,即F a1=F d1而被“压紧”的轴承2所受的总轴向力为: F a2=F d1-F ae综上可知,计算向心推力轴承所受轴向力F a的方法可以归纳为:先通过派生轴向力及外加轴向载荷的计算与分析,判断被“放松”或被“压紧”的轴承;然后确定被“放松”轴承的轴向力仅为其本身派生的轴向力,被“压紧”轴承的轴向力则为除去本身派生的轴向力后其余各轴向力的代数和。
压装配合过盈量计算及有限元分析乔颖敏;张建刚【摘要】为得到过盈量和温度改变时轴承孑孔应力的变化趋势及压装配合时过盈量的合理取值范围,根据过盈配合原理计算径向力和接触面应力,同时以某型号变速器输入轴轴承与轴承孑孔的过盈配合为例,建立有限元模型并进行数值模拟,得出此型号轴承压装配合过盈量最优范围.【期刊名称】《汽车工艺与材料》【年(卷),期】2016(000)009【总页数】4页(P38-41)【关键词】过盈配合;压装力;有限元;应力【作者】乔颖敏;张建刚【作者单位】陕西法士特汽车传动工程研究院,西安710119;陕西法士特汽车传动工程研究院,西安710119【正文语种】中文【中图分类】TH133.3过盈配合是轴承与轴承孔配合常用的连接方式之一。
两个或两个以上的零件配合可分为滑动配合、过渡配合、紧配合等多种状态,过盈配合属于紧配合中的一种,二者配合过程中需用特殊工具以较大的压装力挤压进去,也可利用材料的热胀冷缩特性,把孔径材料预热或者把轴材料冷却,迅速插入待常温后即为过盈配合状态。
变速器的输入轴与离合器壳体通过轴承进行连接,轴承外圈与离合器壳体无相对滑动,轴承内圈与输入轴一起转动且相对无滑动,轴承内外圈连接之间严格无转动。
在实际工作过程中,轴承高速转动而产热导致零件升温、过盈配合量减小,在转动过程中轴承传递到外圈部分扭矩克服过盈周向摩擦而使轴承外圈与轴承孔有相互转动,致使出现轴承跑外圈现象。
长时间轴承跑外圈,会使轴承孔磨损,逐渐导致轴承孔径增大,进一步导致齿轮啮合状态变差,引起齿轮点蚀、断齿、轴承破坏等一系列变速器故障。
上述的工作过程存在复杂的非线性接触,数值求解困难。
常用的有限元分析理论[1]和相关软件在计算复杂接触问题方面具有较大优势,为计算过盈配合的应力分布提供了有效途径。
设有两个空心轴过盈配合,其中外轴(包容件)内径D2,外径d3,内轴(被包容件)内径D1,外径d2,则两轴过盈配合量为Δd=D2-d2,可根据制造公差计算。
摘要转向架圆锥滚动轴承压装机是用于铁路车辆滚动轴承压装的专用设备,适用于铁路车辆新造及检修时压装SKF197726、352226型轴承。
广泛应用于各车辆厂、车辆段、车辆大修厂及煤矿铁路运输单位。
本次设计是根据25t轴重列车的资料和其工作现场情况,设计出达到压装要求的轴承压装机。
压装机工作过程直接影响转向架运行情况,车轴是转向架的重要零件,为提高行车速度,进一步提高列车车辆的运营能力和效率,增强与航空、公路、水运的竞争力,必须要确保轮对轴承压装质量,提高行车的安全性与平稳性。
如果压装过程不合理,产生错误,将会造成严重后果,车辆运行时噪声过大,起动加速度,制动减速度减小,甚至会发生轴温过热切轴等重大事故。
为达到要求,必须使压装机输出适当且足够大的压装力,提高轴承与轴颈的配合精度。
因为压装机工作过程输出压力大,速度慢,压装机采用液压传动系统。
压装部分是压装机的最重要组成部分,本文主要是针对圆锥滚动轴承压装机的压装部分的机械结构进行设计。
关键词:转向架;滚动轴承;压装;机械AbstractBogie taper rolling bearing push mounting machine is the appropriation equipment for railcar rolling bearing mounting. It is widely used for mounting the SKF197726 and 352226 moulds bearings in making and overhauling railcar, and widely used in vehicle factories, vehicle sections, vehicle overhauling factories and mine railcar companies etc. In this thesis, it is aimed to design a push mounting machine fulfilling the push mounting requirement, based on data of 25t axle load railcar and fieldwork. The process of the rolling bearing push mounting is of great importance to the bogie. To get higher speed, and become more competitive with aqueduct, air and highway transport. If mistakes be made in the push mounting process, it may result in big trouble, the railcar will make over volume noise in running period, the starting and breaking acceleration will reduce to a low and dangerous level. To up to the scratch, the machine has to output reasonable and big enough push mounting force. For the work process needs enough power but low speed, the machine take advantage of hydraulic power transmission system. The push mounting part is the most important part of the whole machine, this issue is mainly about the design of that part’s mechanical structure of taper rolling bearing push mounting machine.Keywords:Bogie;Taper rolling bearing;Push mounting;Mechanical structure第一章绪论1.1 引言轴承压装机是铁路车辆系统滚动轴承压装的专业设备, 其主要用途是采用冷压方式将滚动轴承压装到轮对轴颈上。
8 计算与校核[21]8.1过盈配合装配压入力的计算在立式轴承压装机邀标文件的技术要求中明确指出锥轴承外圈与轴承孔配合为过渡配合,故采用过盈配合装配压入力的计算方法。
方法如下:过盈配合装配压入力的计算方法μπf f f L d p P max =其中:P —压入力,Nm ax f p —结合表面承受的最大单位压力,2/mm N f d —结合直径,mm f L —结合长度,mm μ—摩擦系数结合表面最大单位压力计算公式:)(maxmax iia a f f E C E C d p +=δ其中:m ax δ —最大过盈量,mma C 、i C —系数;a E 、i E —包容件和被包容件的材料弹性模量,2/mm N系数a C 、i C 计算方法如下:ν+-+=2222f a f a a d d d d Cν--+=2222if if i dd d d Ca d 、i d 分别为包容件外径和被包容件内径(实心轴i d =0),mmν—泊松系数压装机所需的压力一般为压入力的3~3.5倍表8.1常用材料的摩擦系数表摩擦系数μ材料无润滑有润滑钢-钢0.07~0.16 0.05~0.13钢-铸钢0.11 0.07钢-结构钢0.10 0.08钢-优质结构钢0.11 0.07钢-青铜0.15~0.20 0.03~0.06钢-铸铁0.12~0.15 0.05~0.10铸铁-铸铁0.15~0.25 0.05~0.10表8.2常用材料弹性模量、泊松系数材料弹性模量E 泊松系数ν碳钢196~216 0.24~0.28 低合金钢、合金结构钢186~206 0.25~0.30灰铸铁78.5~157 0.23~0.27 铜及其合金72.6~128 0.31~0.42铝合金70 0.33轴承为标准件,采用轴承钢GCr15;压头的材料选用高级优质碳素工具钢T10A,其密度是7.85g/cm3,特点是容易锻造、加工性能良好、价格便宜,能够承受冲击、硬度高,应用于不受剧烈冲击的高硬度耐磨工具,如车刀、刨刀、冲头、丝锥、钻头、手锯条。
压装时的主要要求为:
1)压装时不得损伤零件
2)压入时应平稳,被压入件应准确到位。
3)压装的轴或套引入端应有适当导锥,但怠锥长度不得大于配合长度的15%,导向斜角一般不应大于10°。
4)将实心轴压入盲孔,应在适当部位有排气孔或槽。
5)压装零件的配合表面除有特殊要求外,在压装时应涂以清洁的润滑剂。
6)用压力机压入时,压入前应根据零件的材料和配合尺寸,计算所需的压入力。
压力机的压力一般应为所需压入力的3~3.5倍,压入力的计算方法如下:
表
村料摩擦因数μ(无润滑)摩擦因数μ(有润滑)
钢一钢0.07~0.16 0.05~0.13
钢—铸钢0.11 0.07
钢一结构钢0.10 0.08
钢一优质结构0.11 0.07
钢—青铜0.15~0.20 0.03~0.06
钢—铸铁0.12~0.15 0.05~0.10
铸铁—铸铁0.15~0.25 0.05~0.10
表
材料弹性模量E/(KN/mm2)泊松比v 线胀系数a/(10-6/℃
加热冷却
碳钢、低合金钢、合金结
构钢
200~235 0.30~0.31 11 —8.5 灰铸铁(HT150、HT200) 70~80 0.24~0.25 11 —9 灰铸铁(HT250、HT300) 105~130 0.24~0.26 10 —8 可锻铸铁90~100 0.25 10 —8 非合金球墨铸铁160~180 0.28~0.29 10 —8 青铜85 0.35 17 —15 黄铜80 0.36~0.37 18 —16 铝合金69 0.32~0.36 21 —20 镁铝合金40 0.25~0.30 25.5 —25。