机器人的数学基础齐次变换矩阵及其运算
- 格式:ppt
- 大小:3.91 MB
- 文档页数:35
相机坐标系到机械臂末端坐标系的齐次变换矩阵是机器视觉和工业机器人领域中一个非常重要的概念。
对于工业领域的自动化生产,机械臂和相机之间的精确配准是至关重要的,而齐次变换矩阵正是用来描述相机坐标系到机械臂末端坐标系之间的关系的。
本篇文章将深入探讨相机坐标系到机械臂末端坐标系的齐次变换矩阵的计算方法,并且将详细介绍该计算方法的原理和实际应用。
一、齐次变换矩阵的概念和基本原理齐次变换矩阵是一种用来描述坐标系之间关系的数学工具,它可以将一个坐标系中的点映射到另一个坐标系中去。
在工业机器人和机器视觉系统中,我们常常需要将相机坐标系中的点映射到机械臂末端坐标系中,这就需要使用到齐次变换矩阵。
齐次变换矩阵的基本形式如下所示:\[ T = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \]其中,\[R\]为旋转矩阵,\[t\]为平移向量。
齐次变换矩阵可以将一个点的坐标\[P\]从相机坐标系变换到机械臂末端坐标系:\[ P' = T \times P \]二、计算相机坐标系到机械臂末端坐标系的齐次变换矩阵计算相机坐标系到机械臂末端坐标系的齐次变换矩阵需要以下步骤:1. 确定相机坐标系和机械臂末端坐标系的原点需要确定相机坐标系和机械臂末端坐标系的原点位置。
这两个坐标系的原点通常是相机的光学中心和机械臂末端执行器的中心点。
确定了原点位置之后,我们可以将相机坐标系和机械臂末端坐标系的坐标系原点重合。
2. 计算旋转矩阵接下来,需要计算相机坐标系到机械臂末端坐标系的旋转矩阵。
旋转矩阵描述了两个坐标系之间的旋转关系。
在实际应用中,可以通过标定相机和机械臂的姿态来获取旋转矩阵。
3. 计算平移向量除了旋转矩阵之外,还需要计算相机坐标系到机械臂末端坐标系的平移向量。
平移向量描述了两个坐标系之间的平移关系。
平移向量可以通过相机和机械臂的空间位置信息来计算得到。
4. 组合旋转矩阵和平移向量将计算得到的旋转矩阵和平移向量组合在一起,就得到了相机坐标系到机械臂末端坐标系的齐次变换矩阵。
矩阵运算几何变换通常是用矩阵运算方法实现的,就是将描述模型或图形的几何信息的点列坐标矩阵乘以某种变换矩阵,从而获得一组新的点列坐标矩阵,再由这组新的点列坐标生成新的模型或图形。
即如下形式:形体的原点列坐标矩阵 几何变换矩阵 形体的新点列坐标矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n nnz y x z y x z y x .........222111 × ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡i hgf e d c b a = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'''''''''n nnz y x z y x z y x .........222111因此,下面就矩阵运算的基本要点作简要介绍。
设有一个m 行n 列矩阵A其中被称为第i 个行向量,被称为第j 个列向量。
一) 矩阵的加法运算设两个矩阵A 和B 都是m x n 的,把他们对应位置的元素相加而得到的矩阵叫做A 、B 的和,记为A +B只有在两个矩阵的行数和列数都相同时才能加法。
二) 数乘矩阵用数k 乘矩阵A 的每一个元素而得的矩阵叫做k 与A 之积,记为 kA三) 矩阵的乘法运算只有当前一矩阵的列数等于后一矩阵的行数时两个矩阵才能相乘。
,矩阵C中的每一个元素。
下面让我们用一个简单的例子来说明,设A为2x3的矩阵,B为3x2的矩阵,则两者的乘积为:四) 单位矩阵对于一个nxn的矩阵,如果它的对角线上的各个元素均为1,其余元素都为0,则该矩阵称为单位阵,记为In。
对于任意mxn的矩阵恒有五) 矩阵的转置交换一个矩阵Amxn的所有的行列元素,那么所得到的nxm的矩阵被称为原有矩阵的转置,记为AT:显然但是对于矩阵的积:六) 矩阵的逆对于一个nxn的方阵A,果存在一个nxn的方阵B,使得AB=BA=In,则称B是A的逆,记为,A则被称为非奇异矩阵。
A的逆矩阵=A的伴随矩阵/A的行列式A的伴随矩阵:主对角元直接对调,非对角元变为相反数。