机器人学_第二讲 齐次变换矩阵
- 格式:pdf
- 大小:1.27 MB
- 文档页数:46
相机坐标系到机械臂末端坐标系的齐次变换矩阵是机器视觉和工业机器人领域中一个非常重要的概念。
对于工业领域的自动化生产,机械臂和相机之间的精确配准是至关重要的,而齐次变换矩阵正是用来描述相机坐标系到机械臂末端坐标系之间的关系的。
本篇文章将深入探讨相机坐标系到机械臂末端坐标系的齐次变换矩阵的计算方法,并且将详细介绍该计算方法的原理和实际应用。
一、齐次变换矩阵的概念和基本原理齐次变换矩阵是一种用来描述坐标系之间关系的数学工具,它可以将一个坐标系中的点映射到另一个坐标系中去。
在工业机器人和机器视觉系统中,我们常常需要将相机坐标系中的点映射到机械臂末端坐标系中,这就需要使用到齐次变换矩阵。
齐次变换矩阵的基本形式如下所示:\[ T = \begin{bmatrix} R & t \\ 0 & 1 \end{bmatrix} \]其中,\[R\]为旋转矩阵,\[t\]为平移向量。
齐次变换矩阵可以将一个点的坐标\[P\]从相机坐标系变换到机械臂末端坐标系:\[ P' = T \times P \]二、计算相机坐标系到机械臂末端坐标系的齐次变换矩阵计算相机坐标系到机械臂末端坐标系的齐次变换矩阵需要以下步骤:1. 确定相机坐标系和机械臂末端坐标系的原点需要确定相机坐标系和机械臂末端坐标系的原点位置。
这两个坐标系的原点通常是相机的光学中心和机械臂末端执行器的中心点。
确定了原点位置之后,我们可以将相机坐标系和机械臂末端坐标系的坐标系原点重合。
2. 计算旋转矩阵接下来,需要计算相机坐标系到机械臂末端坐标系的旋转矩阵。
旋转矩阵描述了两个坐标系之间的旋转关系。
在实际应用中,可以通过标定相机和机械臂的姿态来获取旋转矩阵。
3. 计算平移向量除了旋转矩阵之外,还需要计算相机坐标系到机械臂末端坐标系的平移向量。
平移向量描述了两个坐标系之间的平移关系。
平移向量可以通过相机和机械臂的空间位置信息来计算得到。
4. 组合旋转矩阵和平移向量将计算得到的旋转矩阵和平移向量组合在一起,就得到了相机坐标系到机械臂末端坐标系的齐次变换矩阵。
举例说明运用齐次变换矩阵求解机器人正运动学的方法齐次变换矩阵用于描述刚体在空间中的位姿(位置和方向)。
在机器人正运动学问题中,运用齐次变换矩阵可以求解机器人末端执行器的位姿。
我们以一个简单的2R(两个旋转关节)机械臂为例进行说明。
假设2R机械臂有两个关节q1和q2,臂长分别为L1和L2。
我们的目标是求解两个关节角度q1和q2下,末端执行器的位置坐标(x, y)和方向theta。
首先,我们需确定两个坐标系。
通常将基坐标系(frame0)放在第一个关节处,frame1放在第二个关节处,frame2放在末端执行器处。
然后,我们需要分别计算从frame0到frame1的齐次变换矩阵T01和从frame1到frame2的齐次变换矩阵T12。
T01表示frame1相对于frame0的位姿,其旋转角度为q1,平移距离为L1。
矩阵形式如下:```T01 = | cos(q1) -sin(q1) 0 L1*cos(q1) || sin(q1) cos(q1) 0 L1*sin(q1) || 0 0 1 0 || 0 0 0 1 |```同理,T12表示frame2相对于frame1的位姿,其旋转角度为q2,平移距离为L2。
矩阵形式如下:```T12 = | cos(q2) -sin(q2) 0 L2*cos(q2) || sin(q2) cos(q2) 0 L2*sin(q2) || 0 0 1 0 || 0 0 0 1 |```接下来,我们需要计算从frame0到frame2的齐次变换矩阵T02。
通过矩阵乘法,我们可以得到:```T02 = T01 * T12```最后,我们从T02矩阵中提取机器人末端执行器的位置和方向。
位置坐标(x, y)就是T02矩阵中的平移部分,即:```x = T02[0][3]y = T02[1][3]```方向theta可以通过以下公式计算:```theta = atan2(T02[1][0], T02[0][0])```所以,通过齐次变换矩阵,我们可以求解出机器人末端执行器的位置和方向,从而解决2R机械臂的正运动学问题。