幂的乘法、幂的乘方与积的乘方
- 格式:doc
- 大小:230.00 KB
- 文档页数:7
幂的运算1、同底数幂的乘法同底数幂相乘,底数不变,指数相加.公式表示为:()mnm na a am n +⋅=、为正整数同底数幂的乘法可推广到三个或三个以上的同底数幂相乘,即()m n p m m p a a a a m n p ++⋅⋅=、、为正整数注意:(1)同底数幂的乘法中,首先要找出相同的底数,运算时,底数不变,直接把指数相加,所得的和作为积的指数.(2) 在进行同底数幂的乘法运算时,如果底数不同,先设法将其转化为相同的底数,再按法则进行计算.例1: 计算列下列各题 (1) 34a a ⋅; (2) 23b b b ⋅⋅ ; (3) ()()()24c c c -⋅-⋅-练习:简单 一选择题1. 下列计算正确的是( )A.a2+a3=a5B.a2·a3=a5C.3m +2m =5mD.a2+a2=2a42. 下列计算错误的是( )A.5x2-x2=4x2B.am +am =2amC.3m +2m =5mD.x·x2m-1= x2m3. 下列四个算式中①a3·a3=2a3 ②x3+x3=x6 ③b3·b·b2=b5④p 2+p 2+p 2=3p 2正确的有( )A.1个B.2个C.3个D.4个4. 下列各题中,计算结果写成底数为10的幂的形式,其中正确的是( )A.100×102=103B.1000×1010=103C.100×103=105D.100×1000=104二、填空题1. a4·a4=_______;a4+a4=_______。
2、 b 2·b ·b 7=________。
3、103·_______=10104、(-a)2·(-a)3·a5=__________。
5、a5·a( )=a2·( ) 4=a186、(a+1)2·(1+a)·(a+1)5=__________。
幂的乘方与积的乘方一、幂的乘方法则幂的乘方,底数不变,指数相乘,即(a m)n =a mn(m,n为正整数)逆用:a mn =(a m)n(m,n为正整数)二、积的乘方法则积的乘方,把积的每一个因式分别乘方,再把所有得幂相乘,即(ab)n=a n b n(n为正整数)逆用: a n b n =(ab)n(n为正整数)(当ab=1或-1时常逆用)1.计算(﹣a3)2的结果是()A.a6B.﹣a6C.﹣a5D.a5解:原式=a6,故选A。
2.计算(ab2)3的结果是()A.3ab2 B.ab6 C.a3b5 D.a3b6解:原式=a3b6,故选D。
3.下列计算正确的是()A.a2+a3=a5 B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2解: A. a2与a3不是同类项,故A错误;B. 原式=a5,故B错误;D. 原式=a2b2,故D错误;故选C.4.已知a=8131,b=2741,c=961,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.a<b<c D.b>c>a解:∵a=8131=(34)31=3124 b=2741=(33)41=3123; c=961=(32)61=3122.则a>b>c.故选A.5.化简(a2)3的结果为()A.a5B.a6C.a8D.a9解:(a2)3=a6.故选:B.6.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a解:A、2a和3b不能合并,故本选项错误;B、结果是9a6,故本选项错误;C、a6和a2不能合并,故本选项错误;D、结果是﹣a,故本选项正确;故选D.7.下列计算正确的是()A.﹣(a﹣b)=﹣a﹣b B.a2+a2=a4C.a2•a3=a6D.(ab2)2=a2b4解:A、括号前是负号,去括号全变号,故A不符合题意;B、不是同底数幂的乘法指数不能相加,故B不符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、积的乘方等于乘方的积,故D符合题意;故选:D.8.下列运算正确的是()A.a+2a=3a2B.a3•a2=a5C.(a4)2=a6D.a4+a2=a4解:A、a+2a=3a,此选项错误;B、a3•a2=a5,此选项正确;C、(a4)2=a8,此选项错误;D、a4与a2不是同类项,不能合并,此选项错误;故选:B.9.下列运算正确的是()A.(x3)2=x5B.(﹣x)5=﹣x5C.x3•x2=x6 D.3x2+2x3=5x5解:A、原式=x6,故本选项错误;B、原式=﹣x5,故本选项正确;C、原式=x5,故本选项错误;D、3x2与2x3不是同类项,不能合并,故本选项错误;故选:B.10.计算(﹣2a3)2的结果是()A.﹣4a5B.4a5C.﹣4a6D.4a6解:原式=4a6,故选D.11.下列运算正确的是()A.3m﹣2m=1 B.(m3)2=m6C.(﹣2m)3=﹣2m3D.m2+m2=m4解:A、原式=(3﹣2)m=m,故本选项错误;B、原式=m3×2=m6,故本选项正确;C、原式=(﹣2)3•m3=﹣8m3,故本选项错误;D、原式=(1+1)m2=2m2,故本选项错误;故选:B.12.下列运算中,正确的是()A.7a+a=7a2B.a2•a3=a6C.a3÷a=a2D.(ab)2=ab2解:A、错误、7a+a=8a.B、错误.a2•a3=a5.C、正确.a3÷a=a2.D、错误.(ab)2=a2b2故选C.13.比较大小:2100与375(说明理由)解:2100<375,理由:2100=(24)25=1625,375=(33)25=2725,27>16,2725>1625,∴2100<375.14.已知10a=4,10b=3,求(1)102a+103b的值;(2)102a+3b的值.解:(1)原式=(10a)2+(10b)3=42+33=16+27=43(2)原式=102a•103b=(10a)2•(10b)3=42×33=43215.已知3×9m×27m=321,求m的值.解:∵3×9m×27m=3×32m×33m=31+2m+3m=321,∴1+2m+3m=21,∴m=4.16.已知10a=2,10b=3,求:103a+2b的值.解:103a+2b=103a102b=(10a)3(10b)2=23•32=8×9=72.故103a+2b的值为72.17.计算:(﹣x)3•x2n﹣1+x2n•(﹣x)2.解:(﹣x)3•x2n﹣1+x2n•(﹣x)2=﹣x2n+2+x2n+2=0.18.(1)若2x+5y﹣3=0,求4x•32y的值.(2)若26=a2=4b,求a+b值.解:(1)∵2x+5y﹣3=0,∴2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8;(2)∵26=a2=4b,∴(23)2=a2=(22)b=22b,∴a=±8,2b=6,解得:a=±8,b=3,∴a+b=11或﹣5.19.已知2x+3y﹣2=0,求9x•27y的值.解:∵2x+3y﹣2=0,∴2x+3y=2,∴9x•27y=32x•33y=32x+3y=32=9.20.简便计算:0.1252016×(﹣8)2017.解:0.1252016×(﹣8)2017,=×(﹣8)2016×(﹣8),=(﹣1)2016×(﹣8),=﹣8.基础演练1.下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5 C.(2a)3=6a3D.a6+a3=a9解:A、2a 与5b不是同类项不能合并,故本项错误;B、a2•a3=a5,正确;C、(2a)3=8a3,故本项错误;D、a6与a3不是同类项不能合并,故本项错误.故选:B.2.下列计算正确的是()A.a2+a2=a4 B.(a2)3=a5C.2a﹣a=2 D.(ab)2=a2b2解:A、a2+a2=2a2,原式错误,故本选项错误;B、(a2)3=a6,原式错误,故本选项错误;C、2a﹣a=a,原式错误,故本选项错误;D、(ab)2=a2b2,原式正确,故本选项正确.故选D.3.(﹣a m)5•a n=()A.﹣a5+m B.a5+m C.a5m+n D.﹣a5m+n解:(﹣a m)5•a n=﹣a5m+n.4.(x n+1)2(x2)n﹣1=()A.x4n B.x4n+3 C.x4n+1 D.x4n﹣1解:(x n+1)2(x2)n﹣1=x2n+2•x2n﹣2=x4n.故选:A.5.(a m)m•(a m)2不等于()A.(a m+2)m B.(a m•a2)m C.D.(a m)3•(a m﹣1)m解:(a m)m•(a m)2=•a2m=,(a m+2)m=,故A选项不符合题意;(a m•a2)m=(a m+2)m=,故B选项不符合题意;(a m)3•(a m﹣1)m==,故D选项不符合题意;故选C.6.下列计算正确的是()A.(x3)4=x7B.x3•x4=x12 C.(﹣3x)2=9x2D.2x2+x2=3x4解:A、(x3)4=x12,所以A选项错误;B、x3•x4=x7,所以B选项错误;C、(﹣3x)2=9x2,所以C选项正确;D、2x2+x2=3x2,所以D选项错误.故选C.7.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵27n=9×3m+3,∴(33)n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=1.8.已知n正整数,且x2n=2,求(3x3n)2﹣4(x2)2n的值.解:原式=9x6n﹣4x4n=9(x2n)3﹣4(x2n)2,当x2n=2时,原式=9×23﹣16=56.9.已知2m=a,32n=b,m、n为正整数,求23m+10n.解:∵2m=a,32n=b,∴2m=a,25n=b,23m+10n=(2m)3×(25n)2=a3b2.10.已知2x+3•3x+3=36x﹣2,求x的值.解:∵2x+3•3x+3=(2×3)x+3=6x+3,36x﹣2=(62)x﹣2=62x﹣4,∴x+3=2x﹣4,解得x=7.巩固提高11.化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x解:(2x)2=4x2,12.下列运算正确的是()A.a3•a3=2a6B.a3+a3=2a6C.(a3)2=a6D.a6•a2=a3解:A、a3•a3=a6,故此选项错误;B、a3+a3=2a3,故此选项错误;C、(a3)2=a6,正确;D、a6•a2=a8,故此选项错误.故选:C.13.下列运算正确的是()A.3x+2y=5(x+y)B.x+x3=x4 C.x2•x3=x6D.(x2)3=x6解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、x2•x3=x5,故C错误;D、(x2)3=x6,故D正确.故选:D.14.下列计算正确的是()A.a2+a3=a5 B.(2a)2=4a C.a2•a3=a5 D.(a2)3=a5解:A、不是同底数幂的乘法指数不能相加,故A不符合题意;B、积的乘方等于乘方的积,故B不符合题意;C、同底数幂的乘法底数不变指数相加,故C符合题意;D、幂的乘方底数不变指数相乘,故D不符合题意;故选:C.15.下列运算结果是a6的式子是()A.a2•a3 B.(﹣a)6C.(a3)3D.a12﹣a6解:∵a2•a3=a5,(﹣a)6=a6,(a3)3=a9,a12﹣a6无法合并,故选B.16.下列运算正确的是()A.(ab)2=ab2B.3a+2a2=5a2C.2(a+b)=2a+b D.a•a=a2解:A、(ab)2=a2b2,故此选项错误;B、3a+2a2无法计算,故此选项错误;C、2(a+b)=2a+2b,故此选项错误;D、a•a=a2,故此选项正确;故选:D.17.计算:(m4)2+m5•m3+(﹣m)4•m4.解:(m4)2+m5•m3+(﹣m)4•m4=m4×2+m5+3+m4+4=3m8.18.已知n为正整数,且x2n=2,求(2x3n)2+(﹣x2n)3的值.解:(2x3n)2+(﹣x2n)3=4x6n﹣x6n=3(x2n)3=3×23=2419.根据已知求值:(1)已知a m=2,a n=5,求a3m+2n的值;(2)已知3×9m×27m=321,求m的值.解:(1)a3m+2n=(a m)3•(a n)2=23×52=200;(2)∵3×9m×27m=321,∴3×32m×33m=321,31+5m=321,∴1+5m=21,m=4.20.已知2x+3y﹣3=0,求9x•27y的值.解:∵2x+3y﹣3=0,∴2x+3y=3,则9x•27y=32x•33y=32x+3y=33=27.故答案为:27.1.下列计算正确的是()A.(a3)2=a9B.(a2)3=a5C.(﹣a2)3=a6 D.(﹣a3)2=a6解:A、(a3)2=a6,故本选项错误;B、(a2)3=a6,故本选项错误;C、(﹣a2)3=﹣a6,故本选项错误;D、(﹣a3)2=a6,故本选项正确.故选D.2.下列运算正确的是()A.a3+a2=a5 B.a3﹣a2=a C.a3•a2=a5 D.(a3)2=a5解:a3和a2不是同类项,不能合并,A错误;a3和a2不是同类项,不能合并,B错误;a3•a2=a5,C正确;(a3)2=a6,D错误,故选:C.3.下列运算正确的是()A.x2+x2=x4 B.x2•x3=x6 C.(﹣2x3)2=﹣4x6D.(x3)2=x6解: A. 原式=2x2,故A错误; B. 原式=x5,故B错误;C. 原式=4x6,故C错误;故选D.4.若m,n均为正整数且2m•2n=32,(2m)n=64,则mn+m+n的值为()A.10 B.11 C.12 D.13解:∵2m•2n=32,∴2m+n=25,∴m+n=5,∵(2m)n=64,∴2mn=26,∴mn=6,∴原式=6+5=11,故选B.5.计算(a2)3的结果是()A.3a2B.2a3C.a5D.a6解:(a2)3=a6.故选:D.6.计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5 B.﹣a6C.a6﹣4a5 D.﹣3a6解:a•a5﹣(2a3)2=a6﹣4a6=﹣3a6.故选:D.7.下列计算正确的是()A.a2+a2=a4 B.(a2)3=a5C.a+2=2a D.(ab)3=a3b3解:A、a2+a2=2a2,故此选项错误;B、(a2)3=a6,故此选项错误;C、a+2无法计算,故此选项错误;D、(ab)3=a3b3,正确.故选:D.8.下列运算错误的是()A.a4•a3=a7 B.a4﹣a3=a C.(a4)3=a12 D.(ab)3=a3b3解:A、a4•a3=a7,正确,不合题意;B、a4﹣a3无法计算,故此选项错误,符合题意;C、(a4)3=a12,正确,不合题意;D、(ab)3=a3b3,正确,不合题意;故选:B.9.已知a m=5,a n=3,求a2m+3n.解:∵a m=5,a n=3,∴a2m+3n=a2m•a3n=(a m)2•(a n)3=52×33=675.10.(1)已知a x=5,a x+y=25,求a x+a y的值;(2)已知10α=5,10β=6,求102α+2β的值.解:(1)∵a x+y=a x•a y=25,a x=5,∴a y=5,∴a x+a y=5+5=10;(2)102α+2β=(10α)2•(10β)2=52×62=900.1.下列运算正确的是()A.x2•x3=x6 B.(x3)2=x5 C.(﹣2x2y)3=﹣8 x6y3 D.﹣x+2x=﹣3x解: A. 原式=x5,故A错误; B. 原式=x6,故B错误;D. 原式=x,故D错误;故选 C.2.计算(﹣xy2)3的结果是()A.x3y6 B.﹣x3y6 C.﹣x4y5 D.x4y5解:原式=﹣x3y6,故选B.3.计算(﹣3a2)2的结果是()A.3a4 B.﹣3a4C.9a4 D.﹣9a4解:(﹣3a2)2=32a4=9a4.故选C.4.下列计算中,正确的是()A.(xy)3=xy3B.(2xy)3=6x3y3C.(﹣3x2)3=27x5D.(a2b)n=a2n b n解:A、应为(xy)3=x3y3,故本选项错误;B、应为(2xy)3=8x3y3,故本选项错误;C、应为(﹣3x2)3=﹣27x6,故本选项错误;D、(a2b)n=a2n b n,正确.故选D.5.下列运算正确的是()A.2a+3b=5ab B.a2•a3=a5 C.(2a)3=6a 3D.a6+a3=a9解:A、2a+3b无法计算,故此选项不合题意;B、a2•a3=a5,正确,符合题意;C、(2a)3=8a 3,故此选项不合题意;D、a6+a3,无法计算,故此选项不合题意;故选:B.6.下列计算正确的是()A.2+a=2a B.2a﹣3a=﹣1 C.(﹣a)2•a3=a5D.8ab÷4ab=2ab 解:A、2+a无法计算,故此选项错误,不合题意;B、2a﹣3a=﹣a,故此选项错误,不合题意;C、(﹣a)2•a3=a5,正确,符合题意;D、8ab÷4ab=2,故此选项错误,不合题意;故选:C.7.计算(3a2)2的正确结果是()A.9a5 B.6a5C.6a4 D.9a4解:(3a2)2=32×(a2)2=9a4,故选:D.8.计算(4ab)2的结果是()A.8ab B.8a2b C.16ab2D.16a2b2解:(4ab)2=16a2b2.故选:D.9.若2x=3,2y=5,求42x+y的值.解:∵2x=3,2y=5,∴42x+y=42x×4y=24x×22y=(2x)4×(2y)2=34×52=2025.10.若2x+3y﹣4=0,求9x﹣1•27y.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=9.11.已知a m=2,a n=4,求下列各式的值(1)a m+n(2)a3m+2n.解:(1)∵a m=2,a n=4,∴a m+n=a m×a n=2×4=8;(2)∵a m=2,a n=4,∴a3m+2n=(a m)3×(a n)2=8×16=128.12.计算:a3•a5+(﹣a2)4﹣3a8.解:原式=a8+a8﹣3a8=﹣a8.。
一、概述乘方是数学中常见的概念,它在代数运算中起着重要作用。
在本文中,我们将讨论乘方的概念及其相关性质。
首先我们将介绍乘方的定义,然后我们将讨论幂的乘方以及积的乘方的运算规律。
二、乘方的定义乘方是指将一个数称为“底数”,另一个数称为“指数”,并将底数连乘指数次得到的结果。
其数学表示为a^n,其中a为底数,n为指数,n表示连乘的次数。
2^3=2*2*2=8。
三、幂的乘方幂的乘方指的是将同一底数的幂连乘起来。
其数学表示为(a^m)^n,其中a为底数,m和n为指数,表示连乘的次数。
幂的乘方的运算规律为(a^m)^n=a^(m*n)。
(3^2)^3=3^(2*3)=3^6=729。
四、积的乘方积的乘方指的是将多个不同底数的积连乘起来。
其数学表示为(a*b)^n,其中a和b为不同底数,n为指数,表示连乘的次数。
积的乘方的运算规律为(a*b)^n=a^n*b^n。
(2*3)^4=2^4*3^4=16*81=1296。
五、乘方的性质1. 乘方的分配律:对于任意底数a和b,以及任意指数m和n,都有(a*b)^n=a^n*b^n。
2. 乘方的乘法法则:对于任意底数a,b和指数n,有(a^n)*(b^n)=(a*b)^n。
3. 乘方的幂法则:对于任意底数a和指数m,n和k,有(a^m)^n=a^(m*n),(a^m)^n=a^(m/n)。
4. 乘方的0次幂:对于任意非零数a,a^0=1。
5. 乘方的负指数:对于任意非零数a和负整数n,a^(-n)=1/(a^n)。
六、习题1. 计算以下乘方:a) 2^5b) (3^2)^4c) (4*5)^32. 按照乘方的性质,计算以下乘方:a) 2^3 * 2^4b) (3*4)^53. 证明乘方的乘法法则。
七、结论乘方是代数运算中常见的概念,它具有一系列的运算规律和性质。
通过学习乘方的概念及其运算规律,我们可以更加灵活地进行数学运算,并解决实际问题中的计算需求。
八、参考资料1. 《数学七年级下册》,人民教育出版社。
第三十五讲 幂的乘方与积的乘方【知识要点】一、幂的乘方:①幂的乘方法则:底数不变,指数相乘,()m n mn a a=(m 、n 都是正整数) ②公式逆用:()()mn m n n m a a a ==③多重乘方:()(p n m mnp a a m ⎡⎤=⎢⎥⎣⎦、n 、p 都是正整数) 二、积的乘方:①积的乘方法则:积的乘方等于每一个因数乘方的积,()m m m ab a b =⋅(m 为正整数) ②三个或三个以上的数的积的乘方也具有这一性质,()n n n n abc a b c = ③积的乘方法则也可以逆用.即(),()m m m n n n n ab ab a bc abc ⋅==三、注意: ①幂的乘方要和同底数幂的乘法区别开来;②积的乘方等于将积的每个因式分别乘方(即转化成若干个幂的乘方),再把所得的幂相乘.【经典例题】【例1】计算.①5324)()(x x x -⋅-⋅ ②m m m x x x 5233)()(⋅⋅+ ③3342])([b a a -⋅-④2333)105.2()104.0(⨯⨯⨯ ⑤24232)3(3)2(a a a -⋅-【例2】已知:625255=⋅x x ,求x 的值.【例3】若63=a ,5027=b ,求a b +33的值.【例4】已知192221232=-++a a ,求a 的值.【例5】比较5553,4444,3335的大小.【初试锋芒】1.计算:①432)3(b a --= ; ②3243)()(a a -⋅-= ; ③=⨯-20152014)522()125( ; ④323)21(bc a -= ; ⑤2009200822-= ; ⑥()n m a a ⋅3=2.若5,2n n a b ==则32()n a b = ; n 为奇数,则22()()n n a a -+-= .3.下列运算正确的是( )4.计算32)2(xy --,结果正确的是( ) A. 5361y x B. 6381y x - C. 6361y x - D. 5381y x - 5.下列计算:(1)22)(m m a a-=;(2)m m a a )(22-=;(3)743222)()(b a b a ab =-⋅-;(4)212218)3()2(++=-⋅n n n n b ab a ab ;(5)52236)3(b a ab =中正确的个数为( )6.已知m x =10,n y =10,则m y x =+3210等于( ) A. n m 32+ B. 22n m + C. mn 6 D. 32n m7.下列四个式子中结果为1210的有( )①661010+; ②21010)52(⨯; ③6510)1052(⨯⨯⨯; ④43)10( A. ①② B. ③④ C. ②③ D. ①④8.如果正方体的棱长是3)2-1(b ,那么这个正方体的体积是( )A. 6)2-1(bB. 9)2-1(bC. 12)2-1(bD. 6)2-1(6b9.n m 279⋅等于( )A. n m +9B. n m +27C. n m 323+D. n m 933+ 10.已知3181=a ,4127=b ,519=c ,则a ,b ,c 的大小关系是( )【大展身手】1.计算:①201410078)125.0(⨯- ②b a ab b a a ⋅-⋅-+⋅-⋅-32332)()3()2()()(2.①若62=m ,34=n ,求3222++n m 的值.②3,4m na a ==求32m n a +的值为多少?3.已知17232793=⨯⨯m m ,求m 的值.4.若0542=-+y x ,求y x 164⋅的值.【挑战脑细胞】1.设112233445,4,3,2====D C B A ,则A 、B 、C 、D 从小到大的排列顺序是怎样的?2.已知:m n +3能被13整除,求证:m n ++33也能被13整除.。
幂的运算一1.同底数幂的乘法:a m·a n=a m+n (m, n是自然数)同底数幂的乘法法则是本章中的第一个幂的运算法则,也是整式乘法的主要依据之一。
学习这个法则时应注意以下几个问题:(1)先弄清楚底数、指数、幂这三个基本概念的涵义。
(2)它的前提是“同底”,而且底可以是一个具体的数或字母,也可以是一个单项式或多项式,如:(2x+y)2·(2x+y)3=(2x+y)5,底数就是一个二项式(2x+y)。
(3)指数都是正整数(4)这个法则可以推广到三个或三个以上的同底数幂相乘,即a m·a n·a p....=a m+n+p+... (m, n, p都是自然数)。
(5)不要与整式加法相混淆。
乘法是只要求底数相同则可用法则计算,即底数不变指数相加,如:x5·x4=x5+4=x9;而加法法则要求两个相同;底数相同且指数也必须相同,实际上是幂相同系数相加,如-2x5+x5=(-2+1)x5=-x5,而x5+x4就不能合并。
例1.计算:(1) (- )(- )2(- )3 (2) -a4·(-a)3·(-a)5解:(1) (- )(- )2(- )3分析:①(- )就是(- )1,指数为1=(- )1+2+3②底数为- ,不变。
=(- )6③指数相加1+2+3=6= ④乘方时先定符号“+”,再计算的6次幂解:(2) -a4·(-a)3·(-a)5分析:①-a4与(-a)3不是同底数幂=-(-a)4·(-a)3·(-a)5可利用-(-a)4=-a4变为同底数幂=-(-a)4+3+5②本题也可作如下处理:=-(-a)12-a4·(-a)3·(-a)5=-a4(-a3)(-a5)=-a12=-(a4·a3·a5)=-a12例2.计算(1) (x-y)3(y-x)(y-x)6解:(x-y)3(y-x)(y-x)6分析:(x-y)3与(y-x)不是同底数幂=-(x-y)3(x-y)(x-y)6 可利用y-x=-(x-y), (y-x)6=(x-y)6=-(x-y)3+1+6变为(x-y)为底的同底数幂,再进行计算。
同底数幂的乘法、幂的乘方与积的乘方问
题
背景
在数学中,幂是一种常见的运算方式。
幂的乘法、幂的乘方和积的乘方是幂运算中的相关问题。
本文将探讨这些问题的定义、性质和解决方法。
同底数幂的乘法
同底数幂的乘法是指将底数相同的幂进行相乘的运算。
如果我们有两个同底数幂,即a^m和a^n,那么它们的乘积可以表示为
a^(m+n)。
简单说,就是将它们的指数相加,而底数不变。
例如,我们有2^3和2^4,它们的底数都是2。
根据同底数幂的乘法规则,它们的乘积为2^(3+4),即2^7。
幂的乘方
幂的乘方是指将幂的结果再次进行幂运算的操作。
如果我们有
一个幂a^m,再对其进行幂运算,即(a^m)^n,那么它可以简化为
a^(m*n)。
换句话说,就是将它们的指数相乘。
举个例子,我们有2^3,如果我们对其进行幂的乘方,即
(2^3)^2,根据幂的乘方规则,它可以简化为2^(3*2),即2^6。
积的乘方
积的乘方是指求积的幂的运算。
如果我们有一个积a*b,对其
进行乘方运算,即(a*b)^n,那么它可以展开为a^n * b^n。
简单说,就是将积的每个因子都进行乘方。
举个例子,我们有积2*3,我们对其进行乘方运算,即(2*3)^3,根据积的乘方规则,它可以展开为2^3 * 3^3。
结论
同底数幂的乘法、幂的乘方和积的乘方是幂运算中常见的问题。
通过了解它们的定义和规则,我们可以更好地进行幂运算的简化和
求解。
使用这些规则,我们可以轻松计算出任何同底数幂的乘法、幂的乘方和积的乘方的结果。