晶格的宏观对称性
- 格式:pptx
- 大小:1.97 MB
- 文档页数:30
晶体的宏观对称性一宏观对称性晶体的点阵结构使晶体的对称性跟分子的对称性有一定的差别。
晶体的宏观对称性仍然具有分子对称性的4种类型,但受到点阵的制约:旋转轴和反轴的轴次只能为1、2、3、4、6等几种。
因此,宏观对称元素只有:n=1,2,3,4,6;i,m,二宏观对称元素组合和32个点群对于宏观对称元素而言,进行组合是必须严格遵从两个条件的限制:第一,晶体的多面体外形是一种有限图形,因而各对称元素组合必须通过一个公共点,否则将会产生出无限多个对称元素来,这是与有限外形相互矛盾的;第二,晶体具有周期性的点阵结构,任何对称元素组合的结果,都不允许产生与点阵结构不相容的对称元素(如5、7、…等),可产生32个点群。
三晶系根据晶体的对称性,按有无某种特征对称元素为标准,将晶体分成7个晶系:立方晶系:在立方晶胞4个方向对角线上均有三重旋转轴(a=b=c, α=β=γ=90)六方晶系:有1个六重对称轴(a=b, α=β=90;, γ=120;)四方晶系:有1个四重对称轴(a=b, α=β=γ=90;)三方晶系:有1个三重对称轴(a=b, α=β=90;, γ=120;)正交晶系:有3个互相垂直的二重对称轴或2个互相垂直的对称面(α=β=γ=90;)单斜晶系:有1个二重对称轴或对称面(α=γ=90;)三斜晶系:没有特征对称元素十四种空间点阵由于这些型式是由布拉维(A.Bravais)在1885年推引得出的,故也称为"布拉维空间格子"。
⑴简单三斜(ap)⑵简单单斜(mP)⑶C心单斜(mC,mA,mI⑷简单正交(oP)⑸C心正交(oC,oA,oB)⑹体心正交(oI)⑺面心正交(oF)⑽简单四方(tP)⑾体心四方(tI)⑻简单六方(hP)⑼R心六方(hR)⑿简单立方(cP)⒀体心立方(cI)⒁面心立方(cF)。
第四章晶体的宏观对称在第二章中已经介绍,晶体的生长过程,实质上就是质点按照空间格子规律有规则地进行堆积的过程;所以,只要生长时有足够的自由空间,晶体就必然会长成一定形状的几何多面体。
例如石盐常成立方体,而α-石英经常长成带有尖顶的六方柱体,等等。
在具有几何多面体外形的晶体——结晶多面体上,最突出的一个性质就是它的对称性。
晶体外形上的对称性是由其内部格子构造的对称性所决定的。
所以,一切晶体都是对称的。
不过,不同晶体之间的对称性往往又是有差别的,这表现在它们的对称要素可以有所不同,并且因此构成不同的对称型。
所以,有必要同时也有可能,根据晶体的对称特点来对晶体进行分类,即划分出不同的晶族和晶系。
由于晶体的对称性从本质上来讲取决于其内部的格子构造,因此,晶体的对称性不仅包含几何意义上的对称,而且也包含物理意义上的对称,亦即晶体中凡是具有方向性的物理性质,例如折射率、电导率、弹性模量、硬度等等,它们也都呈现相应的对称关系。
这是因为,晶体的各项物理性质都是取决于其组成质点的种类和它们的排列方式的。
所以,晶体的对称性决定并影响着晶体中涉及到几何及物理两方面的一切性质。
反过来,根据晶体的几何外形以及它们的一系列物理性质,又可以用来正确地确定晶体的对称性。
所以晶体的对称性对于我们认识晶质矿物的一系列特性都具有重要的意义。
另一方面,晶体的对称性对于晶体的利用还具有指导意义。
在本章中我们将依次阐述以上的有关内容,但限于讨论晶体外形上的对称,即晶体的宏观对称。
第一节对称的概念和晶体对称的特点一、对称的概念图形相同部分有规律的重复,称为对称。
具有对称特征的图形,称为对称图形。
对称是自然科学中最普遍的一种基本概念。
自然界许多东西都具有对称特点,如植物枝叶的对生与互生,花瓣、动物形体及器官的对称生长、晶体界限要素的对称分布等;建筑物、交通工具、生活用品等,常具有对称的外形;在装饰、装潢设计、纺织品中也常可见到对称图案。
所有对称物体和对称图案统称为对称图形。
第1篇一、引言晶体是自然界中普遍存在的物质形态,它们在微观结构上具有高度的有序性。
晶体的这种有序性可以通过宏观对称操作来描述,这些操作能够保持晶体的几何形态和物理性质。
宏观对称操作是晶体学中一个重要的概念,它有助于我们理解晶体的结构特征和性质。
本文将详细探讨晶体的宏观对称操作,包括其定义、分类、性质以及在实际中的应用。
二、定义宏观对称操作是指对晶体进行一系列的几何变换,这些变换能够保持晶体的几何形态和物理性质不变。
这些操作包括旋转、反射、平移和螺旋等。
在晶体学中,这些操作被统称为点群对称操作。
三、分类1. 旋转操作旋转操作是指将晶体绕某一轴线旋转一定角度,使晶体的几何形态和物理性质保持不变。
旋转操作的轴线称为旋转轴,旋转角度称为旋转角。
根据旋转角的不同,旋转操作可以分为以下几种:(1)一级旋转:旋转角为360°,即整个晶体绕旋转轴旋转一周。
(2)二级旋转:旋转角为180°,即晶体绕旋转轴旋转半周。
(3)三级旋转:旋转角为120°,即晶体绕旋转轴旋转1/3周。
(4)n级旋转:旋转角为360°/n,即晶体绕旋转轴旋转1/n周。
2. 反射操作反射操作是指将晶体相对于某一平面进行镜像变换,使晶体的几何形态和物理性质保持不变。
这个平面称为反射面。
根据反射面的不同,反射操作可以分为以下几种:(1)镜面反射:反射面为晶体的一个平面。
(2)轴面反射:反射面为晶体的一个轴面。
(3)体对角面反射:反射面为晶体的一个体对角面。
3. 平移操作平移操作是指将晶体沿某一方向进行平行移动,使晶体的几何形态和物理性质保持不变。
平移操作可以看作是无限多个平移操作叠加的结果。
4. 螺旋操作螺旋操作是指将晶体绕某一轴线旋转一定角度,同时沿轴线方向进行平行移动,使晶体的几何形态和物理性质保持不变。
螺旋操作的轴线称为螺旋轴,旋转角称为螺旋角。
四、性质1. 对称性晶体的宏观对称操作具有以下性质:(1)自反性:晶体经过对称操作后,其几何形态和物理性质与原始状态相同。
复习:1.正点阵基矢与倒易点阵基矢之间的关系同种正应阵基去如倒易点阵基去的栋量叙为1,系 同种正点阵基央如倒易点阵基水的标■叙为零 2、晶带定律[uvw]的方向:r uvw = u a + V b + w c(hkl)面的法线方向:r*hki = h a* + k b* + 1 c* (h a* + kb* + 1 c*)・ (ua + vb + wc) = Ohu+kv+lw=OUVW 加 k] " h, k, h 2 k 2 12 h 2 k 212 两个晶面同属于一个晶带[uvw](112), (232)一个晶面同属于两个晶带[uvw][321], [111]晶面间距通用公式:h hakcosy cos/Jkh ./1cosy//ak1akcosp——1cosa+ —cos/—cosa+ _ c osy1—a bc cosa1bcos ftb4c1c c os。
cosa b /c11 cosy cos/i cosy 1cos a cosp cos a 1简立方:(cP): a=4 A,面间距:(111)体心立方:: a= 4 A,面间距:(111)立方晶系:简立方1 _ /?2+k2 +/2“ =2cr体心立方/面心立方晶面间距:d简立方/ 2§3-1对称性与对称操作对称元素;对称操作;晶体的对称性晶体外部形态的对称性,通常称为宏观对称性, 点对称性。
晶体内部原子排列的对称性,称为微观对称,1生§3.2晶体的宏观对称元素惯用记号:C; 国1 >对称中心际符号:i;熊夫利符号:G2、旋转轴旋转操作;旋转反演、倒反对称轴(旋转轴)基转角:a旋转轴的轴次:n = 3607a旋转矩阵:X2cos a-sin。
0「力= sin a cos a0.0 0 I .Z|.cos a -sin。
0/?;(©)= sin a cos 67 00 0 IN只能是1, 2, 3, 4, 6没有5或者7等更高次c AB 一AC, AD/ AD = AC = ABA -------- •* E AE = m-AB AE = 2-AC-cosaXy Bm = |2-cosa| (m整数,晶体的平移周期D 性)-2 < m < 2m:・2、・1、0^ 1、2,a: 180, 120, 90, 60和360。