信号与系统LTI系统微分特性证明
- 格式:ppt
- 大小:183.00 KB
- 文档页数:1
())()()]([),()(20d t t tf t tg t g T t t f t g -==-=令,∞-≠-)()(00t t y t t T f f ,=-)(0t t y f)()(00t t f t t --。
(3))()(0t t f t g -=令,)()()]([0t t f t g t g T --=-=,≠-)(0t t T f )(0t t y f -,)()(00t t f t t y f +-=-线性时不变系统。
显然其不相等,即为非不失一般性,设可以表示为为系统运算子,则设解时不变系统?判断该系统是否为线性的关系为与输出已知某系统输入),()()()]([),()()]([)()()(,)()]([)()(T :)()()()(.2.12111121t y t f t f t f T t y t f t f T t f t f t f t f t f T t y t y t f t y t y t f =+===+====1.3判断下列方程所表示系统的性⎰+=t dx x f dtt df t y 0)()()(:)1()()()]([:)2(2't f t y t y =+(3):)2()()(3)(2)(''''-+=++t f t f t y t y t y (4):)(3)(2)('2)("t f t y t ty t y =++ 线性 非线性时不变 线性时不变 线性时变1.4。
试证明方程y'(t)+ay(t)=f(t)所描述的系统为线性系统。
证明:不失一般性,设输入有两个分量,且f 1(t)→y 1(t),f 2(t)→y 2(t) 则有y 1'(t)+ay 1(t)=f 1(t),y 2'(t)+ay 2(t)=f 2(t) 相加得y 1'+ay 1(t)+y 2'(t)+ay 2(t)=f 1(t)+f 2(t) 即dtd[y 1(t)+y 2(t)]+a[y 1(t)+y 2(t)] =f 1(t)+f 2(t )可见f 1(t)+f 2(t)→y 1(t)+y 2(t)即满足可加性,齐次性是显然的。
课题一信号调制与解调题目说明:从语音,图像的原始信息变过来的原始信号频谱分量频率较低,不适宜在信道中长距离传输。
因此,在通信系统的发送通端常需要有调制过程将其转换为适合传输的信号,在接收端则需要有调节过程,将信号还原成原来的信息,以便更准确的利用信息。
原理分析:调制就是按调制信号的变化规律去改变某些参数。
解调是调制的逆过程,即从已调制信号中恢复或提取调制信号的过程。
幅度调制是正弦型载波的幅度随调制信号变化的过程。
采用模拟调制利用正旋波载波的幅度调制,频率调制和相位调制的方式进行信号的处理。
同步解调端本振信号频率必须与发射端调制的载波信号的频率和相位相同才能实现同步解调。
脉冲调制信号只有在脉冲出现才需要存在,在其他时间内等于零,这样就有可能在这空余的时间间隔中去传输其他路德信号,发送端和接受端的转换开关按照同样的顺序和周期轮流接通各个通道,在信道中传送的是各个脉冲幅度调制信号的和,各个脉冲出现在不同的时间段。
而通过接收端的开关以后各路接受端接收到的相当于某一路信号脉冲幅度的结果,可以用低通滤波器进行解调。
实验内容:1.将一正旋信号x(n)=sin(2πn/256)分别以100000Hz的载波和1000000Hz的取样频率进行调制,写出MATLAB脚本实现抑制载波幅度调制,实现同步解调,滤波输出的波形。
2.分别作出cos(10t)cos(w c t)和[1+0.5sin(10t)]cos(w c t)的波形图和频谱图,并对上面调制信号进行解调,观察与源图的区别。
模块设计1:1.产生一个输入信号 2.产生一个载波信号3.构造用于解调的低通滤波器4.低通滤波解调5.画图MATLAB程序1:>> clear; %清除已存在变量n=0:0.0001:256; %自变量e=sin(2*pi*n/256); %调治信号s=cos(100000*n); % 载波信号a=e.*s; % 调制b=a.*s; % 解调[nb,na]=butter(4,100,'s'); % 低通滤波sys=tf(nb,na); % 构建sys对象c=lsim(sys,b,n); %低通滤波subplot(2,2,1) % 图形输出语句plot(n,e);title('调制信号'); %图形标题>> xlabel('n'),ylabel('e(n)'); %横纵坐标变量>> grid on %坐标网格>> subplot(2,2,2) % 图形输出语句>> plot(n,a);>> title('调幅信号'); %图形标题>> xlabel('n'),ylabel('a(n)'); %横纵坐标变量>> grid on %坐标网格>> subplot(2,2,3) % 图形输出语句>> plot(n,b);>>title('解调波形'); %图形标题>> xlabel('n'),ylabel('b(n)'); %横纵坐标变量>> grid on %坐标网格>> subplot(2,2,4) % 图形输出语句>> plot(n,c);>> title('滤波后的波形');%图形标题>>xlabel('n'),ylabel('e(n)'); %横纵坐标变量>> grid on %坐标网格模块设计2:1.产生两个输入信号 2.用克诺内科内积产生两个周期行序列脉冲3.调制并向加4.构造用于解调的低通滤波器5.低通滤波解调 6画图MATLAB程序2:>> clear; % 清除变量t=0:0.001:9.999; % 定义自变量取值范围和间隔e1=cos(10*t).*cos(600*t); % 输入信号e2=(1+0.5*sin(10*t)).*cos(600*t); %输入信号p0=ones(1,2500);p1=kron(p0,[1,0,0,0]); %第一个序列脉冲p2=kron(p0,[0,0,1,0]); % 第二个序列脉冲a=p1.*e1+p2.*e2; 调制并向加[nb,na]=butter(4,20,'s'); % 用于解调的低通滤波器sys=tf(nb,na); %构建sys对象b1=a.*p1; % 取得第一路信号的脉冲调制信号c1=lsim(sys,b1,t);%通过低通滤波解调输出b2=a.*p2; %取得第二路信号的脉冲调制信号c2=lsim(sys,b2,t); % 通过低通滤波解调输出subplot(4,2,1) % 图形输出语句plot(t,e1);title('第一路输出信号'),xlabel('t'),ylabel('e(t)');grid on%图形横纵坐标,标题,坐标网格subplot(4,2,2) % 图形输出语句plot(t,e2);title('第二路输出信号'),xlabel('t'),ylabel('e(t)');grid on%图形横纵坐标,标题,坐标网格subplot(4,2,3) % 图形输出语句plot(t,e1.*p1);title('第一路脉冲调制信号'),xlabel('t'),ylabel('e(t)');grid on %图形横纵坐标,标题,坐标网格subplot(4,2,4) % 图形输出语句plot(t,e2.*p2);title('第二路脉冲调制信号'),xlabel('t'),ylabel('e(t)');grid on %图形横纵坐标,标题,坐标网格subplot(4,2,5) % 图形输出语句plot(t,a);title('合成的传输信号'),xlabel('t'),ylabel('e(t)');grid on%图形横纵坐标,标题,坐标网格subplot(4,2,6) % 图形输出语句plot(t(5001:5250),a(5001:5250));title('局部放大后的合成信号'),xlabel('t'),ylabel('e(t)');grid on%图形横纵坐标,标题,坐标网格实验总结:通过对理论知识的学习,使自己对信号的调制与解调具有一定的认知水平,然后开始做实验,此时要理论结合实践,作出波形图后要考虑与理论波形进行比较,比较的方法是,首先判断所测波形是否正确,若不正确找出错误原因,若正确则分析实测波形与理论波形不完全相同的原因。
第2章 线性时不变连续系统的时域分析2.1 学习要求(1)会建立描述系统激励与响应关系的微分方程;(2)深刻理解系统的完全响应可分解为:零输入响应与零状态响应,自由响应与强迫响应,瞬态响应与稳态响应;(3)深刻理解系统的零输入线性与零状态线性,并根据关系求解相关的响应; (4)会根据系统微分方程和初始条件求解上述几种响应; (5)深刻理解单位冲激响应的意义,并会求解;(6)深刻理解系统起始状态与初始状态的区别,会根据系统微分方程和输入判断0时刻的跳变情况; (7)理解卷积运算在信号与系统中的物理意义和运算规律,会计算信号的卷积。
; 2.2 本章重点(1)系统(电子、机械)数学模型(微分方程)的建立; (2)用时域经典法求系统的响应; (3)系统的单位冲激响应及其求解;(4)卷积的定义、性质及运算,特别是()t δ函数形式与其它信号的卷积; (5)利用零输入线性与零状态线性,求解系统的响应。
2.3 本章的知识结构2.4 本章的内容摘要2.4.1系统微分方程的建立电阻:)(1)(t v Rt i R R =电感:dtt di L t v L L )()(= )(d )(1)(0t i v Lt i L tL L +=⎰∞-ττ 电容:dtt dv C t i C C )()(= ⎰+=tt L C C t i i Ct v 0)(d )(1)(0ττ 2.4.2 系统微分方程的求解 齐次解和特解。
齐次解为满足齐次方程t n t t h e c e c e c t y 32121)(λλλ+⋅⋅⋅++=当特征根有重根时,如1λ有k 重根,则响应于1λ的重根部分将有k 项,形如t k t k t k t k h e c te c e t c e t c t y 111112211)(λλλλ++⋅⋅⋅++=--- 当特征根有一对单复根,即bi a +=2,1λ,则微分方程的齐次解bt e c bt e c t y at at h sin cos )(21+= 当特征根有一对m 重复根,即共有m 重ib a ±=2,1λ的复根,则微分方程的齐次解bt e t c bt te c bt c t y at m m at h cos cos cos )(121-+⋅⋅⋅++= bt e t d bt te d bt e d at m m at at sin sin sin 121-+⋅⋅⋅+++ 特解的函数形式与激励函数的形式有关。
习题三3.1考虑一个连续时间LTI 系统,满足初始松弛条件,其输入)(t x 与输出)(t y 的关系由下列微分方程描述:d ()4()()d y t y t x t t+= (1)若输入(13)()()j t x t e u t -+=,求输出)(t y 。
(2)若输入()e cos(3)()t x t t u t -=,求输出)(t y 。
解:此系统的特征方程为40s += 所以4()t h y t Ae -= (1)(13)()()j tx t eu t -+=设(13)()e j t p y t Y -+= 则(13)(13)(13)(13j)e 4e e ,0j tj t j t Y Y t -+-+-+-++=>解得11336jY j -==+ 所以4(13)1()()()e e ()6t j t h p j y t y t y t A u t --+-⎛⎫=+=+ ⎪⎝⎭又因为初始松弛,所以106jA -+= 即16j A -=所以4(13)11()()()()()66t j th p j j y t y t y t e e u t --+--=+=+ (2)()cos(3)()t x t e t u t -=是(1)中(13)()()j tx t eu t -+=的实部,用2()x t 表示cos(3)()t e t u t -,用1()x t 表示(13)()j t e u t -+观察得{}21()Re ()x t x t =所以{}421111()Re ()cos(3)sin(3)()666t t t y t y t e e t e t u t ---⎛⎫==-++ ⎪⎝⎭3.2若离散时间LTI 系统的输入[]x n 与输出][n y 的关系由下述差分方程给出:][]1[25.0][n x n y n y =--求系统的单位冲激响应][n h 。
解:[]0.25[1][]h n h n n δ=-+因为该系统是因果的,所以0n <时,[]0h n =2231[0]0.25[1][0]01111[1]0.25[0][1]1044111[2]0.25[1][2]0444111[3]0.25[2][3]0444 (111)[]0.25[1][]0444n nh h h h h h h h h n h n n δδδδδ-=-+=+==+=⨯+==+=⨯+==+=⨯+==-+=⨯+=综上,1[][]4n h n u n = 3.3系统S 为两个系统1S 与2S 的级联:S1:因果LTI 系统,[]0.5[1][]w n w n x n =-+; S2: 因果LTI 系统,[][1][]y n ay n bw n =-+][n x 与][n y 的关系由下列差分方程给出:[]0.125[2]0.75[1][]y n y n y n x n +---=(1) 确定a 与b 。
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt e t h j H tj ωω)()(3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。