信号与系统课后习题答案—第1章
- 格式:doc
- 大小:262.00 KB
- 文档页数:6
信号与线性系统课后答案第一章 信号与系统(一)1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))fεt=(sin)(t (5))tf=r(sin)(t(7))tf kε(k=(2)(10))f kεk-=(k+]()1(1[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
信号与系统课后习题与解答第⼀章1-1 分别判断图1-1所⽰各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解信号分类如下:--???--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所⽰信号分别为(a )连续信号(模拟信号);(b )连续(量化)信号;(c )离散信号,数字信号;(d )离散信号;(e )离散信号,数字信号;(f )离散信号,数字信号。
1-2 分别判断下列各函数式属于何种信号?(重复1-1题所⽰问)(1))sin(t e at ω-;(2)nT e -;(3))cos(πn ;(4)为任意值)(00)sin(ωωn ;(5)221。
解由1-1题的分析可知:(1)连续信号;(2)离散信号;(3)离散信号,数字信号;(4)离散信号;(5)离散信号。
1-3 分别求下列各周期信号的周期T :(1))30t (cos )10t (cos -;(2)j10t e ;(3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----。
解判断⼀个包含有多个不同频率分量的复合信号是否为⼀个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为⾮周期信号。
(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。
由于5π为21T T 、的最⼩公倍数,所以此信号的周期5T π=。
(2)由欧拉公式)t (jsin )t (cos e t j ωωω+= 即)10t (jsin )10t (cos e j10t +=得周期5102T ππ==。
(3)因为[])16t (cos 2252252)16t (cos 125)8t (5sin 2-=-?=所以周期8162T ππ==。
习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。
因此,公共周期3110==f T s 。
(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。
因此,公共周期5110==f T s 。
(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。
所以是非周期的。
(d) 两个分量是同频率的,基频 =0f 1/π Hz 。
因此,公共周期π==01f T s 。
1-2 解 (a) 波形如图1-2(a)所示。
显然是功率信号。
t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。
显然是能量信号。
3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。
1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。
第1章 习题答案1-1 题1-1图所示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?解: ① 连续信号:图〔a 〕、〔c 〕、〔d 〕; ② 离散信号:图〔b 〕; ③ 周期信号:图〔d 〕; ④ 非周期信号:图〔a 〕、〔b 〕、〔c 〕; ⑤有始信号:图〔a 〕、〔b 〕、〔c 〕。
1-2 某系统的输入f(t)与输出y(t)的关系为y(t)=|f(t)|,试判定该系统是否为线性时不变系统。
解: 设T 为此系统的运算子,由条件可知: y(t)=T[f(t)]=|f(t)|,以下分别判定此系统的线性和时不变性。
① 线性1〕可加性不失一般性,设f(t)=f 1(t)+f 2(t),那么y 1(t)=T[f 1(t)]=|f 1(t)|,y 2(t)=T[f 2(t)]=|f 2(t)|,y(t)=T[f(t)]=T[f 1(t)+f 2(t)]=|f 1(t)+f 2(t)|,而|f 1(t)|+|f 2(t)|≠|f 1(t)+f 2(t)|即在f 1(t)→y 1(t)、f 2(t)→y 2(t)前提下,不存在f 1(t)+f 2(t)→y 1(t)+y 2(t),因此系统不具备可加性。
由此,即足以判定此系统为一非线性系统,而不需在判定系统是否具备齐次性特性。
2〕齐次性由条件,y(t)=T[f(t)]=|f(t)|,那么T[af(t)]=|af(t)|≠a|f(t)|=ay(t) 〔其中a 为任一常数〕即在f(t)→y(t)前提下,不存在af(t)→ay(t),此系统不具备齐次性,由此亦可判定此系统为一非线性系统。
② 时不变特性由条件y(t)=T[f(t)]=|f(t)|,那么y(t-t 0)=T[f(t-t 0)]=|f(t-t 0)|,即由f(t)→y(t),可推出f(t-t 0)→y(t-t 0),因此,此系统具备时不变特性。
依据上述①、②两点,可判定此系统为一非线性时不变系统。
信号与系统课后习题参考答案1试分别指出以下波形就是属于哪种信号?题图1-11-2试写出题1-1图中信号得函数表达式。
1-3已知信号与波形如题图1-3中所⽰,试作出下列各信号得波形图,并加以标注。
题图1-3⑴⑵⑶⑷⑸⑹⑺⑻⑼1-4已知信号与波形如题图1-4中所⽰,试作出下列各信号得波形图,并加以标注。
题图1-4⑴⑵⑶⑷⑸⑹⑺⑻⑼1-5已知信号得波形如题图1-5所⽰,试作出信号得波形图,并加以标注。
题图1-51-6试画出下列信号得波形图:⑴⑵⑶⑷1-7试画出下列信号得波形图:⑴⑵⑶⑷⑸⑹1-8试求出以下复变函数得模与幅⾓,并画出模与幅⾓得波形图。
⑴⑵⑶⑷1-9已知信号,求出下列信号,并画出它们得波形图。
1-10试作出下列波形得奇分量、偶分量与⾮零区间上得平均分量与交流分量。
题图1-101-11试求下列积分:⑴⑵⑶⑷⑸⑹1-12试求下列积分:⑴⑵⑴(均为常数)⑵⑶⑷⑸⑹⑺⑻1-14如题图1-14中已知⼀线性时不变系统当输⼊为时,响应为。
试做出当输⼊为时,响应得波形图。
题图1-14 1-15已知系统得信号流图如下,试写出各⾃系统得输⼊输出⽅程。
题图1-151-16已知系统⽅程如下,试分别画出她们得系统模拟框图。
⑴⑵⑶1-17已知⼀线性时不变系统⽆起始储能,当输⼊信号时,响应,试求出输⼊分别为与时得系统响应。
第⼆章习题2-1试计算下列各对信号得卷积积分:。
⑴(对与两种情况)⑵⑶⑷⑸⑹2-2试计算下列各对信号得卷积与:。
⑴(对与两种情况)⑵⑶⑷⑸⑹2-3试计算下图中各对信号得卷积积分:,并作出结果得图形。
题图2-32-4试计算下图中各对信号得卷积与:,并作出结果得图形。
题图2-42-5已知,试求:⑴⑵⑶2-7系统如题图2-7所⽰,试求系统得单位冲激响应。
已知其中各⼦系统得单位冲激响应分别为:题图2-72-8设已知LTI 系统得单位冲激响应,试求在激励作⽤下得零状态响应。
2-9⼀LTI 系统如题图2-9所⽰,由三个因果LTI ⼦系统级联⽽成,且已知系统得单位样值响应如图中。
第1章 习题答案1-1 题1-1图所示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?解: ① 连续信号:图(a )、(c )、(d ); ② 离散信号:图(b ); ③ 周期信号:图(d ); ④ 非周期信号:图(a )、(b )、(c ); ⑤有始信号:图(a )、(b )、(c )。
1-2 已知某系统的输入f(t)与输出y(t)的关系为y(t)=|f(t)|,试判定该系统是否为线性时不变系统。
解: 设T 为此系统的运算子,由已知条件可知: y(t)=T[f(t)]=|f(t)|,以下分别判定此系统的线性和时不变性。
① 线性1)可加性不失一般性,设f(t)=f 1(t)+f 2(t),则y 1(t)=T[f 1(t)]=|f 1(t)|,y 2(t)=T[f 2(t)]=|f 2(t)|,y(t)=T[f(t)]=T[f 1(t)+f 2(t)]=|f 1(t)+f 2(t)|,而|f 1(t)|+|f 2(t)|≠|f 1(t)+f 2(t)|即在f 1(t)→y 1(t)、f 2(t)→y 2(t)前提下,不存在f 1(t)+f 2(t)→y 1(t)+y 2(t),因此系统不具备可加性。
由此,即足以判定此系统为一非线性系统,而不需在判定系统是否具备齐次性特性。
2)齐次性由已知条件,y(t)=T[f(t)]=|f(t)|,则T[af(t)]=|af(t)|≠a|f(t)|=ay(t) (其中a 为任一常数)即在f(t)→y(t)前提下,不存在af(t)→ay(t),此系统不具备齐次性,由此亦可判定此系统为一非线性系统。
② 时不变特性由已知条件y(t)=T[f(t)]=|f(t)|,则y(t-t 0)=T[f(t-t 0)]=|f(t-t 0)|,即由f(t)→y(t),可推出f(t-t 0)→y(t-t 0),因此,此系统具备时不变特性。
依据上述①、②两点,可判定此系统为一非线性时不变系统。
1-3 判定下列方程所表示系统的性质:)()()]([)()(3)(2)(2)()()2()()(3)(2)()()()()()(2''''''''0t f t y t y d t f t y t ty t y c t f t f t y t y t y b dx x f dt t df t y a t =+=++-+=+++=⎰解:(a )① 线性1)可加性由 ⎰+=t dx x f dt t df t y 0)()()(可得⎪⎩⎪⎨⎧→+=→+=⎰⎰t t t y t f dx x f dt t df t y t y t f dx x f dt t df t y 01122011111)()()()()()()()()()(即即 则⎰⎰⎰+++=+++=+t t t dx x f x f t f t f dtd dx x f dt t df dx x f dt t df t y t y 0212102201121)]()([)]()([)()()()()()( 即在)()()()()()()()(21212211t y t y t f t f t y t f t y t f ++前提下,有、→→→,因此系统具备可加性。
2)齐次性由)()(t y t f →即⎰+=t dx x f dtt df t y 0)()()(,设a 为任一常数,可得 )(])()([)()()]([)]([000t ay dx x f dtt df a dx x f a dt t df a dx x af t af dt d t t t =+=+=+⎰⎰⎰ 即)()(t ay t af →,因此,此系统亦具备齐次性。
由上述1)、2)两点,可判定此系统为一线性系统。
② 时不变性)()(t y t f → 具体表现为:⎰+=t dx x f dtt df t y 0)()()( 将方程中得f(t)换成f(t-t 0)、y(t)换成y(t-t 0)(t 0为大于0的常数),即 ⎰-+-=-t dx t x f dtt t df t t y 0000)()()( 设τ=-0t x ,则τd dx =,因此⎰--+-=-00)()()(00t t t d f dtt t df t t y ττ 也可写成⎰--+-=-00)()()(00t t t dx x f dtt t df t t y , 只有f(t)在t=0时接入系统,才存在)()(00t t y t t f -→-,当f(t)在t ≠0时接入系统,不存在)()(00t t y t t f -→-,因此,此系统为一时变系统。
依据上述①、②,可判定此系统为一线性时变系统。
(b )① 线性1)可加性在由)2()()(3)(2)(''''-+=++t f t f t y t y t y 规定的)()(t y t f →对应关系的前提下,可得 )]2()2([)]()([)]()([3)]()([2)]()([)2()()(3)(2)()2()()(3)(2)(21'2121'21''212'22'2''21'11'1''1-+-++=+++++⇒⎭⎬⎫-+=++-+=++t f t f t f t f t y t y t y t y t y t y t f t f t y t y t y t f t f t y t y t y即由)()()()()()()()(21212211t y t y t f t f t y t f t y t f ++可推出→−−→−⎭⎬⎫→→,系统满足可加性。
2)齐次性 由)()(t y t f →,即)2()()(3)(2)(''''-+=++t f t f t y t y t y ,两边同时乘以常数a ,有 )]2([)]([)]([3)]([2)]([)]2()([)](3)(2)([''''''''-+=++⇒-+=++t af t af t ay t ay t ay t f t f a t y t y t y a 即)()(t ay t af →,因此,系统具备齐次性。
由1)、2)可判定此系统为一线性系统。
② 时不变性分别将)()(00t t f t t y --和(t 0为大于0的常数)代入方程)2()()(3)(2)(''''-+=++t f t f t y t y t y 左右两边,则左边=)(3)(2)(00202t t y dt t t dy dtt t y d -+-+- )(3)()(2)]()([)()2()(00000000t t y t t y t t d d t t y t t d d t t d d t t f dt t t df -+--+---=--+-右边= 而 ,)()()(000t t y dt d t t y t t d d -=-- )()]()([)(022000t t y dtd t t y t t d d t t d d -=--- 所以,右边=)(3)(2)(00202t t y dt t t dy dtt t y d -+-+-=左边,故系统具备时不变特性。
依据上述①、②,可判定此系统为一线性时不变系统。
(c )① 线性1)可加性在由式)(3)(2)(2)('''t f t y t ty t y =++规定的)()(t y t f →对应关系的前提下,可得)]()([3)]()([2)]()([2)]()([)(3)(3)(2)(2)(2)(2)()()(3)(2)(2)()(3)(2)(2)(2121'21''212121'2'1''2''122'2''211'1''1t f t f t y t y t y t y t t y t y t f t f t y t y t ty t ty t y t y t f t y t ty t y t f t y t ty t y ++++++两式相加=+++−−→−=+++−−−→−⎭⎬⎫=++=++ 即在)()()()(2211t y t f t y t f →→、的前提下,有式)()()()(2121t y t y t f t f +→+存在,即系统满足可加性。
2)齐次性由)()(t y t f →,即)(3)(2)(2)('''t f t y t ty t y =++,两边同时乘以常数a ,有)]([3)]([2)]([2)]([)(3)(2)(2)(''''''t af t ay t ay t t ay t af t ay t aty t ay =++⇒=++,即有 )()(t ay t af →,因此,系统具备齐次性。
依据上述1)、2),此系统为一线性系统。
② 时不变性分别将)()(00t t f t t y --和 (t 0为大于0的常数)代入方程)(3)(2)(2)('''t f t y t ty t y =++ 左右两边,则 )(2)(2)(00022t t y t t y dt d t t t y dtd -+-+-左边=右边=右边=≠-+--+-=-+---+---)(2)()(2)()(2)()()(2)()()(3000022000002020t t y t t y dt d t t t t y dt d t t y t t y t t d d t t t t y t t d d t t f因此,系统是时变的。
依据上述①、②,可判定此系统为一线性时变系统。
(d )① 线性1)可加性在由式)()()]([2't f t y t y =+规定的)()(t y t f →对应关系的前提下,可得)()()()()]([)]([)()()]([)()()]([21212'22'1222'2112'1t f t f t y t y t y t y t f t y t y t f t y t y +=+++−−−→−⎭⎬⎫=+=+两式相加 而不是:)]()([)]()([})]'()({[2121221t f t f t y t y t y t y +=+++即在)()()()(2211t y t f t y t f →→、的前提下,并不存在)()()()(2121t y t y t f t f +→+ 因此系统不满足可加性,进而系统不具备线性特性。