当前位置:文档之家› 陈文登考研高数中的微分算子法的推导

陈文登考研高数中的微分算子法的推导

陈文登考研高数中的微分算子法的推导
陈文登考研高数中的微分算子法的推导

陈文登考研数学一里面的微分算子法的推导

撰写

1.定义 引进记号

因此,n 阶常系数线性非齐次方程

令111()n n n n F D D a D a D a --=++++,

则: 方程 *1()()()()

F D y f x y f x F D ?=?= 注意:D 表示求导,1D 表示积分,如2111,cos sin 2x x x x D D

==,不用带常数。 2.1()

F D 性质 性质1 11,()0()()

kx kx e e F k F D F k =≠,若k 为()F k 的m 重根,则: 性质2

2211sin sin ()()ax ax F D F a =- 若2()0F a -=,不妨设2()a -为2()0F a -=的m 重根,则

性质3 11()()()()

kx kx e f x e f x F D F D k =+ 性质4

1111111()()()()p p p p p p p p x b x b x b Q D x b x b x b F D ----++++=++++ 其中()Q x 为1除以()F D ,按升幂排列1()n n n a a D D -+++所得商式,其最高次数为p 。

3.推导:关于性质1、2、3的推导详看我在豆丁上传的微分算子法

下面主要看性质4

性质4 我们用例题来说明它到底是什么意思

例 求26535x y y y e x '''-+=-+

解 显然12()()()y x y x y x =+

其中1211()(3)(3)65(1)(5)

x x y x e e D D D D =-=--+-- 今有 1111131313()(3)

(3)1151154144

x x x x x y x e e e e xe D D D D D =-=-===----- 最后得 注:2()y x 用上面蓝色的解法当然是很好的一种方法。但有更一般的解法,即是性质4 令 2201221()(5)65

g x x a x a x a D D ==++-+(注意x 的最高次幂要相同) 则 2222012(65)(())(65)()5

D D g x D D a x a x a x -+=-+++= 根据同幂系数相等的原则有

方程组0102

10151205620a a a a a a =??-=??-+=?

解得: 1011251205

a a a -=?= 即:2222012211262()()(5)65525

y x g x x a x a x a x x D D ===++=++-+ 以后所有高次的多项式都可以应用此法进行求解了。以前性质4怎么也没有弄懂,现在终于是知道为什么这样了。

高等数学习题详解-第7章 多元函数微分学

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1y x z ++=。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 0A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

隐函数的求导方法总结

河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(=οοy x F ,0),(≠οοy x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)(οοx f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x

微分方程总结

第十章:微分方程总结姓名:刘桥 学号:40905237 班级:工商49班 小组:第八小组 组长:刘洪材

一、 微分方程的基本概念 1. 微分方程及其阶的定义 微分方程:凡含有未知函数的导数或微分的方程叫微分方程. 分类1:常微分方程(未知函数为一元函数的微分方程) ()() ,dy axy a dx dy p x y Q x dx =+=为常数 偏微分方程(未知函数为多元函数,从而出现偏导数的微分方程) () 22,2224 2 u u f x y x y u u y x ??+=????=?? 微分方程的阶.:微分方程中出现的未知函数导数或微分的最高阶数. 分类2:一阶微分方程 (,,)0,(,);F x y y y f x y ''== 高阶(n )微分方程 ()(,,,,)0,n F x y y y '= ()(1)(,,, ,).n n y f x y y y -'= 分类3:线性与非线性微分方程. ()(),y P x y Q x '+=2()20;x y yy x ''-+= 分类4:单个微分方程与微分方程组. 32,2,dy y z dx dz y z dx ?=-??? ?=-?? 2. 微风方程的解 微分方程的解:代入微分方程能使方程成为恒等式的函数. 微分方程解的分类:通解(微分方程的解中含有任意常数,且任意常数的个数与 微分方程的阶数相同.)

,y y '=例;x y ce =通解 0,y y ''+=12sin cos ;y c x c x =+通解 特解( 确定了通解中任意常数以后的解.) 初始条件:用来确定任意常数的条件. 初值问题: 求微分方程满足初始条件的解的问题. 积分曲线:微分方程的任一特解的图形都是一条曲线,称为微分方程的积分曲线 二、 一阶微分方程 1. 可分离变量的方程 可分离变量的微分方程:形如: ()()g y dy f x dx =的一阶微分方程. 例题回味:求方程()290y dy x dy ye ++ =的通解 分离变量得,21 9 y ye dy dx x = + 两边同时积分得, 2 1 9y ye dy dx x =- +?? 于是得到通解为,()11arctan 33 y x y e c -=+ 2. 齐次方程 如果一阶微分方程可化为()dy y f dx x =形如的方程,那么久称之为齐次方程. 解法:作变量代换,y u x = ,y xu =或 两边分求微分得, ,dy udx xdu =+ 代入原式得,(),du u x f u dx +=().du x f u u dx =-即 ()0,f u u -≠若则对上式分离变量得, ()du dx f u u x =-. 两边分别积分得, ()du dx f u u x =-? ? 求出积分后,将y u x = 代入,就求得了原微分方程的通解. 例题回味:求解微分方程(cos )cos 0.y y x y dx x dy x x -+=

微分算子法典型例题讲解

高阶常微分方程的微分算子法 高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。但是有一个例外:常系数线性微分方程。我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐 次方程的特解。本节主要讨论微分算子法。 1.求方程230y y y ''''''--=的通解. 解 记()n n y D y =,将方程写成 32230D y D y Dy --= 或32(23)0D D D y --= 我们熟知,其实首先要解特征方程 32230D D D --= 得0,1,3D =-故知方程有三特解31,,x x e e -,由于此三特解为线性无关,故立得通解 3123x x y C C e C e -=++ 注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是 1111()()()()() n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---=++++= 其中系数1(),,()n a x a x 是某区间(,)a b 上的连续函数,上述方程又可写成 1 1()(()())n n n L y D a x D a x y -≡+++ ()f x = 可以把上面括号整体看作一种运算,常称为线性微分算子。本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。 2.求解 61160y y y y ''''''-+-= 解 写成 32(6116)0D D D y -+-= 从特征方程 3 2 06116D D D =-+- (1)(2)(3)D D D =--- 解得 1,2,3D =共三实根,故可立即写成特解 23123x x x y C e C e C e =++ 3.求解 39130y y y y ''''''-++= 解 写成 32(3913)0D D D y -++= 或 2(1)(413)0D D D y +-+= 特征方程 2(1)(413)0D D D +-+=有根 1,23D i =-±,故对应的特解是x e -,2cos3x e x , 2sin3x e x 从而通解是 22123cos3sin3x x x y C e C e x C e x -=++ 4.求(4)45440y y y y y ''''''-+-+=之通解. 解 写成 432(4544)0D D D D y -+-+= 或 22(2)(1)0D D y -+= 特征根是2,2,D i =±,对应的特解应是 22,,cos ,sin x x e xe x x ,故写成通解 21234()()cos sin x y x e C C x C x C x =+++ 5.求1(cos )y y x -''+=的通解 解 本题为非齐次方程,先求出对应的齐次方程 0y y ''+=的通解,写成2(1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+ 设原方程有特解形为 *12()cos ()sin y C x x C x x =+ 其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组 121 12()cos ()sin 0 ()(cos )()(sin )(cos ) C x x C x x C x x C x x x -?''+=??''''+=?? 或 121 12()cos ()sin 0()sin ()cos (cos ) C x x C x x C x x C x x x -?''+=??''-+=?? (方程组右端为原方程非齐次项1(cos )x -),解得 1s i n ()cos x C x x '=-,2()1C x '= 或 1()ln cos C x x =,2()C x x = 最后得通解为 1*()()()y x y x y x =+ 12cos sin cos ln cos sin C x C x x x x x =+++

一阶常微分方程解法总结

页脚内容1 第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )()(=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(11212 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(1212 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有dy y N y Q dx x P x M ) ()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x

页脚内容2 解:当0)1)(1(22≠--y x 时,有dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如)(x y g dx dy = 解法:令x y u = ,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(222111c y b x a c y b x a f dx dy ++++= 解法:01、02211 =b a b a ,转化为)(by ax G dx dy +=,下同①; 02、0221 1 ≠b a b a ,???=++=++00222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u

姚老师最爱的两招:表格法与微分算子法

姚老师最爱的两招:表格法与微分算子法,因为效率高,所以喜欢,仅此而已!录入可是字字辛苦,希望大家珍惜哦! 一、 分部积分的表格法 分部积分主要针对被积函数为两类函数乘积的类型,主要可以归纳为反幂、对幂、幂三、幂指和三指五种,幂可以扩展为多项式函数,三主要指正弦和余弦两类三角函数,基本原则是把其中一类函数拿去凑微分,遵循“反对幂三指”、越往后越先凑微分的原则,前四种称为“终止模式”,最后一种称为“循环模式”。当涉及到幂函数(多项式函数)次数较高时,需多次用到分部积分,计算较繁且易出错,因此介绍一个推广公式: 定理:设(),()u u x v v x ==有1n +阶连续导数,则 (1)()(1)(2)(3)1(1)''''''(1)n n n n n n n uv dx uv u v u v u v u vdx +---++=-+-++-? ?。(此定理及证 明可略,仅告诉大家,我不是瞎编乱造,而是有理论依据的!) 【证:用数学归纳法。 当0n =时,''uv dx uv u vdx =-??。 设1n k =≥时,(1)()(1)(2)(3)1(1)''''''(1)k k k k k k k uv dx uv u v u v u v u vdx +---++=-+-+ +-?? (*) 则当1n k =+时,(2)(1)(1)(1)'k k k k uv dx udv uv u v dx ++++==-???, 将上式的'u (*)式中的u ,则有 (1)()(1)(2)1(2)'''''''(1)k k k k k k u v dx u v u v u v u vdx +--++=-+++-? ?, 从而(2)(1)()(1)(2)2(2)''''''(1)k k k k k k k uv dx uv u v u v u v u vdx ++--++=-+-+ +-??,得证。】 上述式子并不好记,它的一个直观表达就是表格法,如下表。 1))1)2) v v +-- 下面通过例子给予演示: (1)“幂三”型 例1.1 52(325)cos x x x xdx +-+? 解:

高等数学题库第08章(多元函数微分学)

第八章 多元函数微积分 习题一 一、填空题 1. 设2 23),(y x y x y x f +-= ,则.________ )2,1(_______,)1,2(=-=-f f 2. 已知12),(22++=y x y x f ,则._________________ )2,(=x x f 二、求下列函数的定义域并作出定义域的图形 1.x y z -= 2. y x z -+-=11 3. 224y x z --= 4. xy z 2log = 习题二 一、是非题 1. 设y x z ln 2 +=,则 y x x z 1 2+=?? ( ) 2. 若函数),(y x f z =在),(00y x P 处的两个偏导数),(00y x f x 与),(00y x f y 均存在,则 该函数在P 点处一定连续 ( ) 3. 函数),(y x f z =在),(00y x P 处一定有),(00y x f xy ),(00y x f yx = ( ) 4. 函数?? ? ?? =+≠++=0,00,),(222222y x y x y x xy y x f 在点)0,0(处有0)0,0(=x f 及 0)0,0(=y f ( ) 5. 函数22y x z += 在点)0,0(处连续,但该函数在点)0,0(处的两个偏导数 )0,0(x z )0,0(,y z 均不存在。 ( ) 二、填空题

1. 设2 ln y x z = ,则_;___________; __________1 2=??=??==y x y z x z 2. 设),(y x f 在点),(b a 处的偏导数),(b a f x 和),(b a f y 均存在,则 ._________) 2,(),(lim =--+→h h b a f b h a f h 三、求下列函数的偏导数: 1. ;133+-=x y y x z 2. ;) sin(22y e x xy xy z ++= 3. ;)1(y xy z += 4. ;tan ln y x z = 5. 222zx yz xy u ++= 四、求下列函数的,22x z ??22y z ??和y x z ???2: 1. ;234 23+++=y y x x z 2. y x z arctan = 五、计算下列各题 1. 设),2(),(sin y x e y x f x +=-求);1,0(),1,0(y x f f 2. 设)ln(),(y x x y x f +=,求,2 12 2==??y x x z , 2 122==??y x y z .2 12==???y x y x z 六、设)ln(3 13 1y x z +=,证明:.3 1=??+??y z y x z x 习题三 一、填空题 1.xy e y x z +=2在点),(y x 处的._______________ =dz 2.2 2 y x x z += 在点)1,0(处的._______________ =dz

高数多元函数微分学教案 第一讲 多元函数的基本概念

第八章 多元函数微分法及其应用 第一讲 多元函数的基本概念 授课题目: §8.1多元函数的基本概念 教学目的与要求: 1、理解多元函数的概念. 2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质. 教学重点与难点: 重点:多元函数的概念、二元函数的极限和连续的概念. 讲授内容: 一、平面点集 n 维空间 1、平面点集 平面上一切点的集合称为二维空间, 记为R 2 即 R 2=R ?R={(x , y ):x , y ∈R } 坐标平面上具有某种性质P 的点的集合, 称为平面点集,记作 E ={(x , y ):(x , y )具有性质P }. 例如,平面上以原点为中心、r 为半径的圆内所有点的集合是 C ={(x , y ):x 2+y 2

如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U .. 点与点集之间的关系: 任意一点P ∈R 2与任意一个点集E ?R 2之间必有以下三种关系中的一种: (1)内点:如果存在点P 的某一邻域U (P ), 使得U (P )?E , 则称P 为E 的内点. (2)外点:如果存在点P 的某个邻域U (P ), 使得U (P )?E =?, 则称P 为E 的外点. (3)边界点:如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点. E 的边界点的全体, 称为E 的边界, 记作?E . E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E . (4)聚点:如果对于任意给定的δ>0, 点P 的去心邻域),(δP U 内总有E 中的点, 则称P 是E 的聚点. 由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E . 例如, 设平面点集E ={(x , y )|1

高等数学多元函数微分法

第 八 章 多元函数微分法及其应用 第 一 节 多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数 概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。 教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、 区域 1. 邻域 设),(000y x p 是xoy 平面上的一个点,δ是某一正数。与点),(000y x p 距离小于δ的点(,)p x y 的全体,称为点0P 的δ邻域,记为),(0δP U ,即 ),(0δP U =}{0δδ为半径的圆内部的点),(y x P 的全体。 2. 区域 设E 是平面上的一个点集,P 是平面上的一个点。如果存在点P 的某一邻域E P U ?)(,则称P 为E 的内点。显然,E 的内点属于E 。 如果E 的点都是内点,则称E 为开集。例如,集合 }41),{(221<+<=y x y x E 中每个点都是E 1的内点,因此E 1为开集。

如果点P 的任一邻域内既有属于E 的点,也有不属于E 的点(点P 本身可以属于E ,也可以不属于E ),则称P 为E 的边界点。E 的边界点的全体称为E 的边界。例如上例中,E 1的边界是圆周12 2 =+y x 和 22y x +=4。 设D 是点集。如果对于D 内任何两点,都可用折线连结起来,且该折线上的点都属于D ,则称点集D 是连通的。 连通的开集称为区域或开区域。例如,}0),{(>+y x y x 及 }41),{(22<+0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 h r V 2 π=。 这里,当r 、h 在集合}0,0),{(>>h r h r 内取定一对值),(h r 时,V 的对应值就随之确定。

微分算子法典型例题讲解

高阶常微分方程的微分算子法 3.求解 39130y y y y ''''''-++= 解 写成 32 (3913)0D D D y -++= 或 2 (1)(413)0D D D y +-+= 特征方程 2 (1)(413)0D D D +-+=有根 1,23D i =-±,故对应的特解是x e -,2cos3x e x , 2sin 3x e x 从而通解是 22123cos3sin 3x x x y C e C e x C e x -=++ 4.求(4) 45440y y y y y ''''''-+-+=之通解. 解 写成 432 (4544)0D D D D y -+-+= 或 22 (2)(1)0D D y -+= 特征根是2,2,D i =±,对应的特解应是 22,,cos ,sin x x e xe x x ,故写成通解 21234()()cos sin x y x e C C x C x C x =+++ 5.求1 (cos )y y x -''+=的通解 解 本题为非齐次方程,先求出对应的齐次方程 0y y ''+=的通解,写成2 (1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+ 设原方程有特解形为 *12()cos ()sin y C x x C x x =+ 其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组 121 12()cos ()sin 0()(cos )()(sin )(cos ) C x x C x x C x x C x x x -?''+=??''''+=?? 或 121 12()cos ()sin 0()sin ()cos (cos ) C x x C x x C x x C x x x -?''+=??''-+=?? (方程组右端为原方程非齐次项1 (cos )x -),解得 1sin ()cos x C x x '=-,2()1C x '= 或 1()ln cos C x x =,2()C x x = 最后得通解为 1*()()()y x y x y x =+ 12cos sin cos ln cos sin C x C x x x x x =+++

隐函数的求导方法总结

百度文库- 让每个人平等地提升自我 河北地质大学 课程设计(论文)题目:隐函数求偏导的方法 学院:信息工程学院 专业名称:电子信息类 小组成员:史秀丽 角子威 季小琪 2016年05月27日

摘要 (3) 一.隐函数的概念 (3) 二.隐函数求偏导 (3) 1.隐函数存在定理1 (3) 2.隐函数存在定理2 (4) 3.隐函数存在定理3 (4) 三. 隐函数求偏导的方法 (5) 1.公式法 (5) 2.直接法 (6) 3.全微分法 (6) 参考文献 (8)

摘要 本文讨论了一元隐函数,多元隐函数的存在条件及相关结论,总结出隐函数求偏导的方法和全微分法等方法和相应实例,目的是更好的计算隐函数的求导 关键字:隐函数 偏导数 方法 一.隐函数的概念 一般地,如果变量y x 和满足方程()0,=y x F ,在一定条件下,当x 取某区间的任一 值时,相应地总有满足这方程的唯一的y 值存在,那么就说方程()0,=y x F 在该区间内确 定了一个隐函数。例如,方程013 =-+y x 表示一个函数,因为当变量x 在()∞+∞-, 内取值时,变量y 有确定的值与其对应。如等时时321,10=-===y x y x 。 二.隐函数求偏导 1.隐函数存在定理1 设函数0),(=y x F 在P (x 。,y 。)在某一领域内具有连续偏导数, 且0),(= y x F ,0),(≠ y x F y ,则方程0),(=y x F 在点(x 。,y 。)的某一领域内恒能唯一确定一个连续且具有连续导数的函数)(x f y =,它满足条件)( x f y =,并有 y x y F F d d x - =。 例1:验证方程2x -2 y =0在点(1,1)的某一邻域内能唯一确定一个具有连续导数,且当x=1时y=1的隐函数y=)(x f ,并求该函数的导数dx dy 在x=1处的值。 解 令),(y x F =2x -2 y ,则 x F =2x ,y F =-2y ,)1,1(F =0,)1,1(y F =-2≠0 由定理1可知,方程2x -2y =0在点(1,1)的某一邻域内能唯一确定一个连续可导的隐函数,当x=1时,y=1的隐函数为y=x ,且有 dx dy =y x F F -=y x 22=y x

微分算子法中D的运算

微分算子法中D 的运算 D:微分的意思,如Dx 2=2x , D 3x 2=0 D 1:积分的意思,如D 1x=2x 2 ******************************************************************************* 定理1:)()(F k F e e D kx kx = 注意使用公式时的前后顺序 例: x x x x e e k e e D 22222225)12()1()1(=+=+=+ 推论:) (1)(F 1k F e e D kx kx = (F(k)≠0) 例:x e y y 2=+'' x e y D 22)1(=+ x x x e e e D y 22222*5 1121)1(1=+=+= ****************************************************************************** 定理2:)(sin sin )(F 22a F ax ax D -?= )(cos cos )(F 22a F ax ax D -?= 注意使用公式时的前后顺序 推论:) (1sin sin )(F 122a F ax ax D -?= (F(-a 2) ≠0) 例:x y y 3cos 24=+)( x y D 3cos 2)1(4=+ x x x x D x D y 3cos 4113cos 82121)3(13cos 23cos 1)(123cos )1(1222224*=??=+-??=?+?=?+?=遇到sinax,cosax 时,要凑出D 2来。F(D)里有D 2,即可代换为-a 2,代换后继续算F(D)。 ******************************************************************************* 定理3: )()()()(F x v k D F e x v e D kx kx += 注意使用公式时的前后顺序 推论:)() (1)()(F 1x v k D F e x v e D kx kx += 例:x e x y y 22y 44?=+'-''

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

最新微分算子法

微分算子法

仅供学习与交流,如有侵权请联系网站删除 谢谢6 高阶常微分方程的微分算子法 撰写 摘自《大学数学解题法诠释》 .徐利治,.冯克勤,.方兆本,.徐森林,.1999 高阶方程的求解自然要比一阶方程更为困难,即使是对于线性微分方程。但是有一个例外:常系数线性微分方程。我们可以完整的求出它的通解来,所以常系数线性方程的求解,主要精力是集中在讨论对应的非齐 次方程的特解。本节主要讨论微分算子法。 1.求方程230y y y ''''''--=的通解. 解 记()n n y D y =,将方程写成 32230D y D y Dy --= 或32(23)0D D D y --= 我们熟知,其实首先要解特征方程 32 230D D D --= 得0,1,3D =-故知方程有三特解31,,x x e e -,由于此三特解为线性无关,故立得通解 3123x x y C C e C e -=++ 注:本题方程为齐次常系数三阶常微分方程,线性常微分方程的一般形状是 1 111 ()()() ()()n n n n n n n d y d y dy L y a x a x dx dx dx a x y f x ---= ++++= 其中系数1(),,()n a x a x 是某区间(,)a b 上的连 续函数,上述方程又可写成 11()(()())n n n L y D a x D a x y -≡++ + ()f x = 可以把上面括号整体看作一种运算,常称为线性微分算子。本题中各()i a x 均为实常数,今后也仅对实常系数的情形来进一步发展线性微分算子方法。 2.求解 61160y y y y ''''''-+-= 解 写成 32(6116)0D D D y -+-= 从特征方程 3206116D D D =-+- (1)(2)(3)D D D =--- 解得 1,2,3D =共三实根,故可立即写成特解 23123x x x y C e C e C e =++ 3.求解 39130y y y y ''''''-++= 解 写成 32(3913)0D D D y -++= 或 2(1)(413)0D D D y +-+= 特征方程 2(1)(413)0D D D +-+=有根 1,23D i =-±,故对应的特解是x e -, 2cos3x e x , 2sin 3x e x 从而通解是 22123cos3sin 3x x x y C e C e x C e x -=++ 4.求(4)45440y y y y y ''''''-+-+=之通解. 解 写成 432(4544)0D D D D y -+-+= 或 22(2)(1)0D D y -+= 特征根是2,2,D i =±,对应的特解应是 22,,cos ,sin x x e xe x x ,故写成通解 21234()()cos sin x y x e C C x C x C x =+++ 5.求1(cos )y y x -''+=的通解 解 本题为非齐次方程,先求出对应的齐次方程0y y ''+=的通解,写成2(1)0D y +=,可知特征根为i ±,相应的通解为112cos sin y C x C x =+ 设原方程有特解形为 *12()cos ()sin y C x x C x x =+ 其中12,C C 为待定函数,常数变异告诉我们,应求解下面的方程组 121 12()cos ()sin 0()(cos )()(sin )(cos )C x x C x x C x x C x x x -?''+=??''''+=?? 或 121 12()cos ()sin 0()sin ()cos (cos ) C x x C x x C x x C x x x -?''+=??''-+=??

微分方程总结

第七章 微分方程 1.一阶微分方程 (1)微分方程的基本概念: ①、微分方程:含有未知函数、未知函数的导数即自变量的等式叫做微分方程。未知函数是一元函数,叫做常微分方程;未知函数是多元函数,叫做偏微分方程。 ②、微分方程的阶:微分方程中所出现的未知函数导数的最高阶数,叫做微分方程的阶。 ③、微分方程的解:若某个函数代入微分方程能使该方程成为恒等式,这个函数就叫做该微分方程的解。 ④、微分方程的通解:若微分方程的解中所含相互独立的任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解。 ⑤、微分方程的初始条件、特解:用来确定微分方程通解中任意常数的条件叫做初始条件。确定了通解中任意常数的解称为微分方程的特解。 (2)可分离变量方程:形如)()(dx dy x g x f =的方程称为可分离变量微分方程。设g(y)≠0,则可将方程化为dx )() (dy x f y g ,其特点是方程的一端只含有y 的函数dy ,另一端只含有x 的函数dx ,即将两个变量分离在等式两端,其接法是分离变量后两边积分得到通解。 (3)齐次方程:形如)(y x y f ='的方程称为齐次方程。其解法是做变换x y u =,则y=ux,dx du dx dy x u +=,代入方程化为可分离变量的微分方程。 (4)一阶线性微分方程:形如)()(dx dy x Q y x P =+的方程称为一阶线性微分呢方程,其特点是方程中的未知函数及其导数为一次的。如果0)(≡x Q ,则称为一阶线性齐次微分方程;如果Q(x)不恒等于零 ,则称为一阶线性非齐次微分方程,其通解为 C dx e x Q e y dx x P dx x P +?=??-)()()((。 (5)伯努利方程:形如)1,0()()('≠=+n y x Q y x P y n 的方程称为伯努利方程。次方程的特点是未知函数的导数仍是一次的,但未知函数出现n 次方幂。其解法是做变量替换n y z -=1,则: ,dx dz 11dx dy ,dx dy )1(dx dz 11n y y n n n -=-=--即 代入原方程,得: ),()1()()1(dx dz x Q n z x P n -=-+ 这是一个线性非齐次微分方程,再按线性非齐次微分方程的解法求出通解;最后以n y z -=1换回原变量,即为所求。 2、高阶微分方程,常系数线性微分方程: (1)可降价的高阶微分方程: ①、)()(x f y n =:其特点是右端仅含有自变量x ,通过连续积分n 次得到通解。 ②、)',(''y x f y =:其特点是方程不显含未知函数y 。令'''),('p y x p y ==则,代入原方程化为一阶微分

相关主题
文本预览
相关文档 最新文档