微分算子法中D的运算
- 格式:doc
- 大小:480.50 KB
- 文档页数:3
外微分尹小玲(以下仅在三维空间中讨论)一、微分的外积运算微分的外积定义:对三维空间中自变量的微分dx ,dy ,dz ,其外积运算用Ù表示,如dx 与dy 的外积记为dy dx Ù,它们满足以下运算法则:(1))()(dy dx a dy adx Ù=Ù,(a 是实数);(2)外积运算对加法有分配律,如dz dx dy dx dz dy dx Ù+Ù=+Ù)(;(3)反交换律,即任何两个微分的外积交换次序后变号,如dx dy dy dx Ù-=Ù;(4)任意一个微分与自身的外积等于0,如0=Ùdx dx ;(5)结合律,dz dy dx dz dy dx ÙÙ=ÙÙ)()(;dx ,dy ,dz 在几何上可以理解为有向长度微元。
dy dx dx dz dz dy ÙÙÙ,,在几何上可以理解为有向面积微元,dz dy dx ÙÙ在几何上可以理解为有向体积微元。
因此,它们与dxdy dzdx dydz ,,,dxdydz 的区别在于前者是有向度量,即值有正负之分,而后者是无向的,永远是正的。
把微分的外积运算与向量的外积运算b a r r ´相比较,上述运算法则(1)~(4)是完全类似的。
而||b a r r ´在几何上是以b a r r ,为边的平行四边形的面积,对应于dydz dz dy =Ù||,dzdx dx dz =Ù||,dxdydy dx =Ù||二、外微分式及其外微分式的外积运算设F C B A R Q P ,,,,,,都是三维空间的函数,则分别称(1)~(4)式为零阶、一阶、二阶和三阶外微分式F(1)RdzQdy Pdx ++(2)dyCdx dx Bdz dz Ady Ù+Ù+Ù(3)dz dy Fdx ÙÙ(4)例p 阶外微分式与q 阶外微分式的外积是q p +阶外微分式,当3>+q p 时,外积为0。
微分算子法例题
微分算子法是微积分中的一种常用方法,用于求解微分方程和函数的导数。
以下是一个微分算子法的例题:
例题:使用微分算子法求解微分方程 y'' - y = 0。
解答:
首先,我们定义微分算子 D 为导数运算,即 D(y) = y',D^2(y) = y''。
将微分方程 y'' - y = 0 重写为 D^2(y) - y = 0。
现在我们假设 y 的形式为 y = e^(rx),其中 r 是待定系数。
对 y 进行两次导数得到:
D^2(y) = D^2(e^(rx)) = r^2e^(rx)。
将 D^2(y) 和 y 代入初始微分方程,得到:
r^2e^(rx) - e^(rx) = 0。
将 e^(rx) 提取出来,得到:
e^(rx) * (r^2 - 1) = 0。
根据零乘法则,得到两个解:
e^(rx) = 0 或者 r^2 - 1 = 0。
可以发现,e^(rx) = 0 没有实数解,所以我们只关注第二个解:
r^2 - 1 = 0。
解这个二次方程,得到两个解:
r = 1 或者 r = -1。
根据假设的 y 的形式,我们可以得到两个特解:
y1 = e^x,y2 = e^(-x)。
由于微分方程是线性的,所以通解可以通过特解的线性组合得到:
y = C1 * e^x + C2 * e^(-x),
其中 C1 和 C2 是任意常数。
这就是微分算子法求解微分方程 y'' - y = 0 的过程和结果。
常系数非齐次线性微分方程的解法有很多,例如笔者的教材(《高等数学第六版》)所述的待定系数法和接下来给出的称之为“算子法”以及另一种同样使用算子的方法。
1、首先介绍一种使用算子求解的方法:考察二阶常系数非齐次线性微分方程d2x/dt2+a1dx/dt+a0x=b(t)相应的齐次方程的通解是已知的,所以只须求出方程的一个特解(由微分方程解的结构给出)。
设该方程的特征多项式q(λ)=λ2+a1λ+a0分解为q(λ)=(λ-λ1) (λ-λ2)则算子多项式q(D)也分解为q(D)=(D-λ1) (D-λ2)则原微分方程可写成 (D-λ1) (D-λ2)=b(t)依次解以下两个方程(D-λ2) x1=b(t)(D-λ1) x=x1就可求得方程的特解。
(其中x1看成是中间变量,只要通过求解x1来求解x)对于λ1和λ2是共轭虚数的情形,按上述步骤求得的方程特解有可能是一个复值函数z(t)=x(t)+iy(t)。
这时应有恒等式d2z(t)/dt2+a1dz(t)/dt+a0z(t)=b(t)比较上式两边的实部,我们得到d2x(t)/dt2+a1dx(t)/dt+a0x(t)=b(t)这样,不论λ1和λ2是实数或者是共轭虚数,我们都可能够求出方程在实数范围内的特解,从而完全解决了这方程的求解问题。
给出教材上一个例子:求微分方程y``-5y`+6y=xe2x.(《高等数学》P343)解:该微分方程的算子多项式分解为 q(D)=(D-2) (D-3)设y1=(D-2)y,代入知(D-3)y1=xe2x(该式子是一阶常系数微分方程),易求得y1=﹣(x+1) e2x+Ce3x(其中C为任意常数).所以 (D-2)y=﹣(x+1) e2x+Ce3x.得y=C1e2x+C2e3x-(x2+2x) e2x/2.2、下面来说另一种更简便的方程,也就是“算子法”。
不过在使用算子法的时候,很多性质是必须了解的,在这里不作说明。
“算子法”是一个能直接求出常系数非齐次线性微分方程的特解的一个简单的方法,也就是得到我们需要求的y*。
微积分 d微积分,是数学中的一个分支,主要研究连续变化的数量的一些基本概念、性质和方法。
微积分的核心内容是导数和积分,也就是微分和积分学。
微积分的详细内容包括极限、函数、导数、微分、积分、微分方程等,其中微积分中的d是微分符号,下面我们详细介绍一下微积分中的d。
一、微积分中的d微积分中的d是微分的符号,表示一个极小的量或者微小的变化量。
在微积分中,d通常代表着微小的变化,它可以用来表示变量的微小增量或微小减量。
同时,d也可以代表微分算子,它表示对一个函数进行微分的运算符号。
因此,微积分中的d具有十分重要的意义。
二、微积分中的极限微积分中的极限是微积分学的重要基础,它是微积分的最基本概念。
极限的概念是描述函数在某一点附近的行为。
它可以用于求导、积分、级数等问题。
极限的定义是对于任意给定的正实数ε,存在一个正实数δ,使得对于任意在(a-δ,a+δ)中的x,都有|f(x)-L|<ε,那么就称函数f(x)的极限为L,记为limx->af(x)=L。
三、微积分中的导数导数是微积分中的重要内容,它表示函数在某一点上的斜率或者变化率。
导数的数学定义是f'(x)=limx->0(f(x+Δx)-f(x))/Δx,它表示函数在x点的切线斜率。
导数的应用非常广泛,比如求最大值、最小值、极值、拐点等问题。
四、微积分中的微分微分是导数的逆运算,它是微积分中的重要内容。
微分的定义是:对于函数y=f(x),如果一个函数f(x)在x0有导数,那么在x0处的微分dy=f'(x0)dx,其中dx表示自变量x的微小变化量,dy表示因变量y的微小变化量。
微分的应用包括牛顿法、形态分析等等。
五、微积分中的积分积分是微积分中的另一重要内容,它表示曲线下面的面积或者是求函数的反函数。
积分的定义是:如果函数f(x)在[a,b]上连续,则[a,b]上的积分可以表示为∫abf(x)dx,它表示曲线y=f(x)在x轴下方的曲边梯形的面积。
关于非齐次线性常系数微分方程特解的微分算子解法的若干示例一、表示符号把某函数对于自变量x 的导数写成D ,即D=dxd 。
例如,函数y 对x 的一阶导数为y dxdy '=,可以表示成Dy ,同理,y ''可以写成2D y ,三阶、四阶….以此类推D1则代表着求积分,如D1x ,就是⎰xdx ,参看复习指导二、 微分方程的表示如果非齐次方程按降阶写成:)x (f y a y a ya y a n 1n )1n (1)n (0=+'+++-- (1)当然,你也可以写成:)x (f y p y p y p y n 1n )1n (1)n (=+'+++-- ,本质都一样,这种形式相当于(1)方程两边同时除以a 0(0≠)。
这里我们以(1)式为准。
用微分子形式表示方程(1):)x (f y a Dy a y D a y D a n 1n 1n 1n 0=++++-- 方程左边把公因子y 提出来:f(x))y a D a D a D (a n 1n 1n 1n 0=++++--上式中,把)a D a Da D (a n 1n 1n 1n0++++-- 看作关于D 的一个函数表达式,表示成F (D )即F (D )=)a D a Da D (a n 1n 1n 1n 0++++--则方程(1)最终可以写成:F (D )y=f (x )三、 相关结论 F (D )kxe=kxe·F (k )甲也可以写成:)F(k ee )D (F 1kxkx=,(分母不为零时),若分母为零,参见指导书表格内的公式证明:F (D )kxe =kxn 1n 1n 1n0)ea D a Da D (a ++++--=)(ea )(ea )(ea )(ea kxn kx1n )1n (kx1)n (kx0+'+++--=kxn kx1n kx1-n 1kxn 0ea kea eka e k a ++++-kxn 1n 1-n 1n0-kx=F (k )kxe甲注意此处方程左右两端的写法,表达的意义是不一样的,左边F (D )是求导,具体来说左边是kxn 1n 1n 1n0)ea D a D a D (a ++++-- ,即)(ea )(e a )(ea )(ea kxn kx1n )1n (kx1)n (kx0+'+++-- ,而方程右边则是)(ekx乘于多项式F (k )其中,左边的带下划线的部分的函数形式与F (D )一样,因此写成F (k )形式,只是字母 是常数k ,而不是求导了,意义也就不同了,它只是个关于k 的多项式了。
微分算子法多项式除法
微分算子法,也称为Heaviside除法,是一种用微分算子来实
现多项式除法的方法。
它基于这样的观察:两个多项式相除的结果可以表示为一个常数乘以指数函数的线性组合。
具体步骤如下:
1. 将被除式和除式表示为微分算子的形式。
例如,对于被除式p(x)和除式q(x),将它们表示为P(D)和Q(D),其中D是微分
算子。
2. 将除式Q(D)的次数提取出来。
将Q(D)表示为Q(D) = D^m + a_(m-1)D^(m-1) + ... + a_1D + a_0,并求出m的值。
3. 计算常数乘以指数函数的线性组合。
根据多项式除法的原理,p(x)/q(x)可以表示为:
p(x)/q(x) = C_0 + C_1e^x + C_2e^(2x) + ... + C_me^(mx)
其中,C_0, C_1, ..., C_m是待求的常数。
4. 求解线性组合中的常数。
将p(x)/q(x)代入原方程,并依次对
x求导m次,得到一系列的待定方程。
利用这些方程,可以求解出C_0, C_1, ..., C_m的值。
5. 得到多项式除法的结果。
将求解出的C_0, C_1, ..., C_m带入线性组合中,即可得到p(x)/q(x)的表达式。
需要注意的是,微分算子法多项式除法适用于特定情况,即解决形如常系数线性常微分方程的问题。
在应用这种方法时,要保证被除式和除式都具有相同的形式,即都可以表示为微分算子的形式。
二阶常系数微分方程的微分算子法求特解二阶常系数非齐次微分方程求特解,在一般的本科教材中均采用设特解再用待定系数法求出待定的系数,计算量往往偏大,考生若掌握了微分算子法,则可以起到事半功倍的效果。
具体做法如下:引入微分算子222222d d d d d d ,,,,,,d d d d d d ====== nn n n n n y y y D Dy D D y D D y x x x x x x因此,n 阶常系数线性非齐次方程()(1)11()−−′++++= n n n n y a y a y a y f x()111()−−⇒++++= n n n n D a D a D a y f x令111()n n n n F D D a D a D a −−=++…++称为算子多项式,则 方程*1()()()()⇒=⇒=F D y f x y f x F D【评注】D 表示求导,1D 表示积分.如()21111,cos 2sin 222==x x x x D D ,不要常数.类型1 ()=e kx f x1.若()0F k ≠,则()()11e e ∗==kx kx y F D F k , 2.若()=0F k ,k 为()0F k =的m 重根,则 ()()()()11e e ∗==m kx m kx m m y x x F D F k ,【例1】求223e x y y y ′′′+−=的一个特解【解析】()2222221111e e e e 2322235x x x x y F D D D ∗====+−+×−【例2】求323e x y y y −′′′+−=的一个特解【解析】由与()3=0F −,3−为()0F k =的单根, ()()()3333311111e e e e e 222324∗−−−−−=====−′+×−+x x x x x y x x x x F D F D D ,【例3】求2+e xy y y ′′′−=的一个特解【解析】由于()1=0F ,1为()0F k =的二重根, ()()2221111e e =e e 22∗===′′x x x x y x x x F D F D .类型2 ()=cos f x ax 或()=sin f x ax1.若2()0F a −≠,则()()2211sin sin y ax ax F D F a ∗==− 或()()2211cos cos y ax ax F D F a ∗==−2.若2()=0F a −,则()()2211sin sin y ax x ax F D F D ∗==′ 或()()2211cos cos ∗==′y ax x ax F D F D【评注】()()212211111sin sin cos n n n ax ax ax D D a a a + ==− −− ()()212211111cos cos sin n n n ax ax ax D D a a a +==−− 由此()()11sin cos ax ax F D F D ,可求,例如 221111sin sin sin 2112121x x x D D D D ==+−−+−− ()()21111sin =1sin cos sin 2144D x D x x x D +=−+=−+−【例4】求+4+5sin 2y y y x ′′′=的一个特解【解析】()22111sin 2sin 2sin 245245y x x x F D D D D ∗===++−++ ()21411sin 2sin 28cos 2sin 24116165D x x x x D D −===−−+−【例5】求+4cos 2y y x ′′=的一个特解【解析】()220F −=()21111cos 2cos 2cos 2sin 24222x y x x x x x F D D D ∗====+类型三 ()()=m f x P x 即自由项为x 的m 次多项式 ()()()()1m m y P x Q D P x F D ∗==,其中()Q D 为1除以()F D 按升幂()1n n n aa D D −+++ (即从低次往高次排列)所得商式,其最高次为m 次,超过m 次的求导后全为零,故略去.【例6】求232231y y y x x ′′′−+=−+的一个特解【解析】()()21231y x x F D ∗=−+()22137231248D D x x =++−+ ()()2137231+434248x x x −+−+×23724x x =++ ()()()2221123123132∗=−+=−+−+y x x x x F D D D ()2211231312122−+ −− x x D D()222231311123122222 =+−+−+−+D D D D x x ()222319112312242=+−++−+ D D D x x ()223711231242=+++−+ D D x x ,下同【例7】求233y y x ′′′−=−的一个特解【解析】1)()()()()22113=33y x x F D D D ∗=−−− ()222111111225=3=39273927D D x x x D D −−−−−+−321125=+9927x x x −−2)()()()()()222111113=33333∗ =−−=−− −− y x x x F D D D D D ()()()22223111111133133939393313=−−−−=−++−−−−D D x x x x x D D 2332122111251253393933927981 =−−++−−=−+−+x x x x x x x【评注】数字1除以23D D −是没法直接除的,因为分母没有最低次常数项.类型四 ()()=e kx f x u x ,其中()u x 为x 的多项式或()sin cos ax ax 【移位定理】()()()()11e =e kx kx v x v x F D F D k +【例8】求+32e sin 2x y y y x −′′′−=的一个特解【解析】()()()211e sin 2=e sin 21312x x y x x F D D D ∗−−=−+−− 2211+8=e sin 2e sin 2e sin 24864x x x D x x x D D D D −−−==+−−−()()11e 2cos 28sin 2e cos 24sin 26834x x x x x x −− =−+=−+【例9】求+3+2ex y y y x −′′′=的一个特解【解析】()()()211e =e 1+312∗−−=−−+x x y x x F D D D ()21111=e e e 11−−−==−++xx x x x D x D D D D D ()211e 1e 2−− −=− xx x x x D类型五 ()()=sin m f x P x ax 或()cos m P x ax【评注】此种情况考试考到的概率几乎为零. (可以不看). 为不加重考生负担,仅讨论()=m P x x ,且()20F a −≠否则,要用到欧拉公式,且计算量不比待定系数法简单! 记()()sin cos u x ax ax =,则()()()()()()11F D x u x x u x F D F D F D ′⋅=−【例10】求+cos 2y y x x ′′=的一个特解【解析】()211cos 2cos 21y x x x x F D D ∗==+2222112cos 2cos 21131D D x x x xD D D=−=−− +++1214cos 2+cos 2cos 2sin 233339Dx x x x x x=−⋅=−+−。
微分方程算子法微分方程算子法是微分方程求解的一种重要方法。
它通过引入算子的概念,将微分方程转化为代数方程,从而简化了求解过程。
微分方程是描述自然界中各种变化规律的重要数学工具。
它包含了未知函数及其导数之间的关系,一般形式为:F(x, y, y', y'', ...) = 0其中,x是自变量,y是未知函数,y'、y''等表示y的一阶、二阶导数等。
求解微分方程的目标就是找到满足这个方程的未知函数y。
常见的微分方程求解方法有分离变量法、变量替换法、常系数线性微分方程求解法等。
而微分方程算子法是其中的一种,它主要用于求解线性微分方程。
所谓线性微分方程,是指未知函数及其导数之间的关系式为线性关系。
对于形如:L(y) = f(x)的线性微分方程,其中L是一个微分方程算子,f(x)是已知函数。
我们的目标是求解出未知函数y。
微分方程算子法的基本思想是引入一个算子D,使得D(y) = y'。
这样,原微分方程L(y) = f(x)就可以转化为:L(D)(y) = f(x)其中L(D)是一个算子,它作用在y上得到一个新的函数。
通过将微分方程转化为代数方程,我们就可以利用代数方法求解。
具体来说,我们可以将微分方程L(D)(y) = f(x)展开为:a0*y + a1*D(y) + a2*D^2(y) + ... + an*D^n(y) = f(x)其中a0、a1、...、an是常数,D^k表示算子D作用k次。
然后,我们可以将未知函数y表示为算子D的多项式形式:y = c0 + c1*D(y) + c2*D^2(y) + ... + cn*D^n(y)将这个表达式代入原微分方程,我们可以得到关于c0、c1、...、cn的代数方程组。
通过求解这个方程组,我们就可以得到未知函数y的表达式。
微分方程算子法的优势在于,它将微分方程转化为代数方程,避免了直接求解导数的麻烦。
此外,它还可以简化一些复杂的非线性微分方程的求解过程。
微分算子法中D 的运算
D :微分的意思,如Dx 2=2x , D 3x 2=0
D 1:积分的意思,如D
1x=2x 2
******************************************************************************* 定理1:)()(F k F e e
D kx kx = 注意使用公式时的前后顺序 例: x x x x e e k e e
D 22222225)12()1()1(=+=+=+ 推论:)
(1)(F 1k F e e D kx kx = (F(k)≠0) 例:x e y y 2=+''
x e y D 22)1(=+
x x x e e e D y 22222*5
1121)1(1=+=+= ****************************************************************************** 定理2:)(sin sin )(F 22a F ax ax D -⋅=
)(cos cos )(F 22a F ax ax D -⋅= 注意使用公式时的前后顺序 推论:)
(1sin sin )(F 122a F ax ax D -⋅= (F(-a 2) ≠0) 例:x y y 3cos 24=+)
( x y D 3cos 2)1(4
=+ x x x x D x D y 3cos 4113cos 82121)3(13cos 23cos 1)(123cos )1(1222224*=⋅⋅=+-⋅⋅=⋅+⋅=⋅+⋅=遇到sinax,cosax 时,要凑出D 2来。
F(D)里有D 2,即可代换为-a 2,代换后继续算F(D)。
******************************************************************************* 定理3: )()()()(F x v k D F e x v e D kx kx += 注意使用公式时的前后顺序 推论:)()
(1)()(F 1x v k D F e x v e D kx kx += 例:x e x y y 22y 44⋅=+'-''
x e x y D D 222)44(⋅=+-
42222222222*12
11)2)2((1)2(1x e x D e x D e x e D y x x x x ⋅=⋅⋅=⋅-+=⋅-= 例:x e y y y =-'+''-'''y 33
x e y D =-3)1(
x e D y 3*)
1(1-= 此时不能用定理1,故 3333*6
1111)1)1((1x e D e D e D e y x x x x ⋅⋅=⋅=⋅=-+= ****************************************************************************** 例: x y y e 4=-)(
x e D e D e e D e D e D D e D D D e D y x x x x x x x x ⋅==-+⋅=-⋅=+⋅⋅⋅-=⋅⋅+⋅-=⋅+⋅-⋅+=⋅-=411411114111411112111211111111111)1(12224*例:22+-=+''x x y y
2)1(22+-=+x x y D
)2()
1(122*+-+=x x D y 用长除法:按幂次增加排列,至得出的D 的最高幂次与x 的最高幂次相同。
4
422
2
22
11
)1D 1D D D D D D ---++- x
x x x x x D y -=-+-=+--=2222*22)2)(1( )
(1D F 除法举例:F(D)=D 2-2D-3 x 最高阶为2,所以除到D 的2次幂即可
4343232322222277272027727149792979294323132313211
)D 232779231D D D D D D D D D D D D D D D D D +--++-++--+--++---+- 注意:对sinax 和cosax 不适用,因为除不到尽头。
******************************************************************************* 推论:
)()
(1)(f )(1)()(f )(12121x f D F x D F x f x D F ⋅+⋅=+)( ax a a ax a ax D a ax D D ax D n n n n n n cos 1)1(1sin )(1sin 1)(1sin 1sin 1222212-⋅⋅-=⋅-=⋅-=⋅=⎰+)sin cos (1sin )()(1sin sin 12
22222222ax b ax ka b a k ax b kD b a k ax b D k b kD ax b kD -⋅+-=⋅-⋅--=--=+x x x D cos 21sin 112⋅⋅-=+ x x x D sin 2
1cos 112⋅⋅=+。