9结构位移计算习题课
- 格式:ppt
- 大小:680.00 KB
- 文档页数:17
第9章矩阵位移法习题解答习题9.1是非判断题(1)矩阵位移法既可计算超静定结构,又可以计算静定结构。
()(2)矩阵位移法基本未知量的数目与位移法基本未知量的数目总是相等的。
()(3)单元刚度矩阵都具有对称性和奇异性。
()(4)在矩阵位移法中,整体分析的实质是建立各结点的平衡方程。
()(5)结构刚度矩阵与单元的编号方式有关。
()(6)原荷载与对应的等效结点荷载使结构产生相同的内力和变形。
()【解】(1)正确。
(2)错误。
位移法中某些不独立的杆端位移不计入基本未知量。
(3)错误。
不计结点线位移的连续梁单元的单刚不具奇异性。
(4)正确。
(5)错误。
结点位移分量统一编码会影响结构刚度矩阵,但单元或结点编码则不会。
(6)错误。
二者只产生相同的结点位移。
习题9.2填空题(1)矩阵位移法分析包含三个基本环节,其一是结构的,其二是分析,其三是分析。
(2)已知某单元的定位向量为[3 5 6 7 8 9]七则单元刚度系数炫应叠加到结构刚度矩阵的元素中去。
(3)将非结点荷载转换为等效结点荷载,等效的原则是。
(4)矩阵位移法中,在求解结点位移之前,主要工作是形成矩阵和_________________ 列阵。
(5)用矩阵位移法求得某结构结点2的位移为4=[. V2 ft]T=[0.8 0.3 0.5]T,单元①的始、末端结点码为3、2,单元定位向量为尸>=[0 0 0 3 4 5]T ,设单元与x轴之间的夹角为a =买,则2 尹> =O(6 )用矩阵位移法求得平面刚架某单元在单元坐标系中的杆端力为F e =[7.5 -48 -70.9 -7.5 48 -121.09]T ,则该单元的轴力心=kN。
【解】(1)离散化,单元,整体;(2)灯8;(3)结点位移相等;(4)结构刚度,综合结点荷载;(5)[0 0 0 0.3 -0.8 0.5]。
(6)-7.5o离、空的值以及K ⑴中元素妍、愚、姒的值。
【解】各刚度系数的物理意义如习题解9.3图所示。
第5章静定结构位移计算的虚力法
5.1 复习笔记
本章重点介绍了虚力法的原理以及如何运用虚力法对不同结构在各种荷载作用下的指定位移进行求解。
遵循“化整为零、积零为整”的思想,对结构的局部位移公式进行了分项讨论,在虚力法的指导下叠加组成了结构的整体变形公式,随后将虚力法升华到了对广义单位荷载的设定以及对广义位移的求解;通过引入图乘法,结构的弯矩变形公式的求解变得更加快捷且精确;最后介绍了温度影响下结构的位移求解并归纳了线性变形体系的四个互等定理。
一、虚力法求刚体体系的位移(见表5-1-1)
表5-1-1 虚力法求刚体体系的位移
图5-1-1
二、虚力法求静定结构的位移(见表5-1-2)
表5-1-2 虚力法求静定结构的位移
表5-1-3 广义位移分类
三、两个对偶解法——虚力法求位移、虚位移法求内力(见表5-1-4)
表5-1-4 两个对偶解法——虚力法求位移、虚位移法求内力
四、荷载作用时静定结构的弹性位移计算(见表5-1-5)
表5-1-5 荷载作用时静定结构的弹性位移计算
五、图乘法(见表5-1-6)
表5-1-6 图乘法
图5-1-2 六、温度改变时静定结构位移计算(见表5-1-7)。
第7章位移法7.1 复习笔记本章重点介绍了位移法的原理以及如何运用位移对超静定结构在各种荷载作用下的内力和位移进行求解。
位移法和力法像一幅对联,是超静定结构分析中的两个基本方法。
力法通过撤除多余约束达到简化计算的目的,而位移法通过添加约束达到此目的。
此外,二者对偶关系总结如下:力法:虚设单位力——求结构柔度——利用变形协调——求解未知约束力——算出结构内力。
位移法:虚设单位位移——求结构刚度——利用受力平衡——求解未知位移——算出结构内力。
两种方法殊途同归,在结构计算中应该综合考虑结构特点和求解目标选取合理的手法,使结构计算更加方便、快捷、准确。
一、位移法的基本概念(见表7-1-1)表7-1-1 位移法的基本概念二、杆件单元的形常数和载常数——位移法的前期工作采用位移法对刚架的等截面杆件进行分析时,杆件端部弯矩受两方面影响:①杆端位移产生的杆端弯矩——形常数;②外荷载产生的固端弯矩——载常数。
1.由杆端位移求杆端内力——形常数(见表7-1-2)表7-1-2 由杆端位移求杆端内力——形常数图7-1-12.由荷载求固端内力——载常数荷载作用下的杆端弯矩和杆端剪力,称为固端弯矩和固端剪力。
由于它们是只与荷载形式有关的常数,所以又称载常数,不同支座形式下杆件的固端弯矩和剪力值见表7-1-3。
表7-1-3 等截面杆件的固端弯矩和剪力三、位移法解无侧移刚架(见表7-1-4)表7-1-4 位移法解无侧移刚架四、位移法解有侧移刚架(表7-1-5)表7-1-5 位移法解有侧移刚架图7-1-2五、位移法的基本体系(见表7-1-6)表7-1-6 位移法的基本体系图7-1-3图7-1-4图7-1-5图7-1-6六、位移法解对称结构(见表7-1-7)表7-1-7 位移法解对称结构。
第8章位移法复习思考题1.位移法的基本思路是什么?为什么说位移法是建立在力法的基础之上的?答:(1)位移法的基本思路位移法的基本思路是首先确定原结构的基本未知量,加入附加联系从而得基本结构,令各附加联系发生与结构相同的结点位移;再根据在荷载等外因和各结点位移共同作用下,各附加联系上的反力偶或反力均等于零的条件,建立方程,求出未知位移;最后求出结构反力和内力。
(2)位移法是建立在力法的基础之上的原因因为位移法的基本结构是两端固定的或一端固定一端铰支的单跨超静定梁。
位移法进行计算是以这些基本结构为基础的,需要用力法算出单跨超静定梁在杆端发生各种位移时以及荷载等因素作用下的内力,才能继续进行位移法以后的求解。
2.位移法的基本未知量与超静定次数有关吗?答:位移法的基本未知量与超静定次数无关。
因为位移法的基本未知量是指独立的结点的角位移和独立的结点的线位移,而这两个量与超静定次数并无关系。
3.位移法的典型方程是平衡条件,那么在位移法中是否只用平衡条件就可以确定基本未知量,从而确定超静定结构的内力?在位移法中满足了结构的位移条件(包括支承条件和变形连续条件)没有?在力法中又是怎样满足结构的位移条件和平衡条件的?答:(1)在位移法中只用平衡条件就可以确定基本未知量,从而确定超静定结构的内力。
(2)在位移法中已满足结构的位移条件(包括支承条件和变形连续条件)。
因为在位移法的假设和取基本未知量时,结构的支承条件和变形连续条件就已经考虑进去了,所以位移法中结构的位移条件自动满足,故只需要平衡条件就可以确定基本未知量了。
(3)力法的典型方程实质上就是满足结构的位移条件(包括支承条件和变形连续条件)。
力法是在满足平衡条件下进行分析的,只要结构不破坏,平衡条件会自动满足。
4.在什么条件下独立的结点线位移数目等于使相应铰结体系成为几何不变所需添加的最少链杆数?答:不考虑受弯直杆的轴向变形(即受弯直杆两端距离不变)的条件下,独立的结点线位移数目等于使相应铰结体系成为几何不变所需添加的最少链杆数。
第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。
( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。
( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。
( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。
( )(5) 习题2.1(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。
( )B DACEF习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC 后,成为习题2.1(6) (b)图,故原体系是几何可变体系。
( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF 后,成为习题2.1(6) (c)图,故原体系是几何可变体系。
()(a)(b)(c)AEBFCD习题 2.1(6)图【解】(1)正确。
(2)错误。
0W 是使体系成为几何不变的必要条件而非充分条件。
(3)错误。
(4)错误。
只有当三个铰不共线时,该题的结论才是正确的。
(5)错误。
CEF 不是二元体。
(6)错误。
ABC 不是二元体。
(7)错误。
EDF 不是二元体。
习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。
习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。
习题2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。
习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。
习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。
习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。
结构⼒学-习题集(含答案)《结构⼒学》课程习题集⼀、单选题1.弯矩图肯定发⽣突变的截⾯是(D )。
A.有集中⼒作⽤的截⾯;B.剪⼒为零的截⾯;C.荷载为零的截⾯;D.有集中⼒偶作⽤的截⾯。
2.图⽰梁中C截⾯的弯矩是( D )。
4m2m4mA.12kN.m(下拉);B.3kN.m(上拉);C.8kN.m(下拉);D.11kN.m(下拉)。
3.静定结构有变温时,(C)。
A.⽆变形,⽆位移,⽆内⼒;B.有变形,有位移,有内⼒;C.有变形,有位移,⽆内⼒;D.⽆变形,有位移,⽆内⼒。
4.图⽰桁架a杆的内⼒是(D)。
A.2P;B.-2P;C.3P;D.-3P。
5.图⽰桁架,各杆EA为常数,除⽀座链杆外,零杆数为(A)。
A.四根;l= a66.图⽰梁A点的竖向位移为(向下为正)(C)。
A.)24/(3EIPl; B.)16/(3EIPl; C.)96/(53EIPl; D.)48/(53EIPl。
PEIEI A l/l/2227. 静定结构的内⼒计算与( A )。
A.EI ⽆关;B.EI 相对值有关;C.EI 绝对值有关;D.E ⽆关,I 有关。
8. 图⽰桁架,零杆的数⽬为:( C )。
A.5;9. 图⽰结构的零杆数⽬为( C )。
A.5;B.6;C.7;D.8。
10. 图⽰两结构及其受⼒状态,它们的内⼒符合( B )。
A.弯矩相同,剪⼒不同;B.弯矩相同,轴⼒不同;C.弯矩不同,剪⼒相同;D.弯矩不同,轴⼒不同。
PP2EI EI EIEI 2EI EIllhl l11. 刚结点在结构发⽣变形时的主要特征是( D )。
A.各杆可以绕结点结⼼⾃由转动; B.不变形; C.各杆之间的夹⾓可任意改变; D.各杆之间的夹⾓保持不变。
12. 若荷载作⽤在静定多跨梁的基本部分上,附属部分上⽆荷载作⽤,则( B )。
A.基本部分和附属部分均有内⼒;B.基本部分有内⼒,附属部分没有内⼒;C.基本部分⽆内⼒,附属部分有内⼒;D.不经过计算,⽆法判断。
第8章位移法复习思考题1.位移法的基本思路是什么?为什么说位移法是建立在力法的基础之上的?答:(1)位移法的基本思路位移法的基本思路是首先确定原结构的基本未知量,加入附加联系从而得基本结构,令各附加联系发生与结构相同的结点位移;再根据在荷载等外因和各结点位移共同作用下,各附加联系上的反力偶或反力均等于零的条件,建立方程,求出未知位移;最后求出结构反力和内力。
(2)位移法是建立在力法的基础之上的原因因为位移法的基本结构是两端固定的或一端固定一端铰支的单跨超静定梁。
位移法进行计算是以这些基本结构为基础的,需要用力法算出单跨超静定梁在杆端发生各种位移时以及荷载等因素作用下的内力,才能继续进行位移法以后的求解。
2.位移法的基本未知量与超静定次数有关吗?答:位移法的基本未知量与超静定次数无关。
因为位移法的基本未知量是指独立的结点的角位移和独立的结点的线位移,而这两个量与超静定次数并无关系。
3.位移法的典型方程是平衡条件,那么在位移法中是否只用平衡条件就可以确定基本未知量,从而确定超静定结构的内力?在位移法中满足了结构的位移条件(包括支承条件和变形连续条件)没有?在力法中又是怎样满足结构的位移条件和平衡条件的?答:(1)在位移法中只用平衡条件就可以确定基本未知量,从而确定超静定结构的内力。
(2)在位移法中已满足结构的位移条件(包括支承条件和变形连续条件)。
因为在位移法的假设和取基本未知量时,结构的支承条件和变形连续条件就已经考虑进去了,所以位移法中结构的位移条件自动满足,故只需要平衡条件就可以确定基本未知量了。
(3)力法的典型方程实质上就是满足结构的位移条件(包括支承条件和变形连续条件)。
力法是在满足平衡条件下进行分析的,只要结构不破坏,平衡条件会自动满足。
4.在什么条件下独立的结点线位移数目等于使相应铰结体系成为几何不变所需添加的最少链杆数?答:不考虑受弯直杆的轴向变形(即受弯直杆两端距离不变)的条件下,独立的结点线位移数目等于使相应铰结体系成为几何不变所需添加的最少链杆数。
习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。
题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。
(b)(a)20kN10kN40kN20kN/m40kN题3-1图3-2 试不计算反力而绘出梁的M 图。
(b)5kN/m40kN(a)题3-2图习题44-1 作图示刚架的M 、Q 、N 图。
(c)(b)(a)20kN /m2kN /m题4-1图4-2 作图示刚架的M 图。
P(e)(d)(a)(b)(c)20k N /m4kN题4-2图4-3 作图示三铰刚架的M 图。
(b)(a)题4-3图4-4 作图示刚架的M 图。
(a)题4-4图4-5 已知结构的M 图,试绘出荷载。
(b)(a)题4-5图4-6 检查下列刚架的M 图,并予以改正。
(e)(g)(h)P(d)(c)(a)(b)(f)题4-6图习题55-1 图示抛物线三铰拱轴线方程x x l l fy )(42-=,试求D 截面的内力。
题5-1图5-2 带拉杆拱,拱轴线方程x x l lfy )(42-=,求截面K 的弯矩。
C题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的内力。
习题66-1 判定图示桁架中的零杆。
(c)(b)题6-1图6-2 用结点法计算图示桁架中各杆内力。
(b)题6-2 图6-3 用截面法计算图示桁架中指定各杆的内力。
(b)题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。
(a)题6-4图6-5 用适宜方法求桁架中指定杆内力。
(c)(b)(a)P题6-6图习题88-1 试作图示悬臂梁的反力V B 、M B 及内力Q C 、M C 的影响线。
1、杆系结构中梁、刚架、桁架及拱的分类,是根据结构计算简图来划分的。
(正确)2、定向支座总是存在—个约束反力矩(正确)和一个竖向约束反力。
(错误)3静力和动力荷载的区别,主要是取决于它随时间变化规律、加载速度的快慢。
其定性指标由结构的自振周期来确定。
(正确)4、铰结点的特性是被连杆件在连接处既不能相对移动,(正确)又不能相对转动。
(错误)5、线弹性结构是指其平衡方程是线性的,(正确)变形微小,(正确)且应力与应变之间服从虎克定律。
(正确)1、学习本课程的主要任务是:研究结构在各种外因作用下结构内力与()计算,荷载作用下的结构反应;研究结构的()规则和()形式等问题。
正确答案:位移,动,组成,合理2、支座计算简图可分为刚性支座与弹性支座,其中刚性支座又可分为()、()、()和()。
正确答案:链杆,固定铰支座,固定支座,滑动支座3、永远作用在结构上的荷载称为固定荷载,暂时作用在结构上的荷载称为()它包括()、()、()、()和()等正确答案:活载,风,雪,人群,车辆,吊车4、刚节点的特性是被连接的杆件载连接处既无()又不能相对();既可传递(),也可传递()正确答案:移动,转动,力,力矩第二章平面体系的几何构成分析1、图中链杆1和2的交点O可视为虚铰。
()O正确答案:正确2、两刚片或三刚片组成几何不变体系的规则中,不仅指明了必需的约束数目,而且指明了这些约束必须满足的条件。
()正确答案:正确3、在图示体系中,去掉1-5,3-5,4-5,2-5,四根链杆后,的简支梁12,故该体系具有四个多余约束的几何不变体系。
()12345正确答案:错误4、几何瞬变体系产生的运动非常微小并很快就转变成几何不变体系,因而可以用作工程结构。
()正确答案:错误5、图示体系是几何不变体系。
()正确答案:错误2-2几何组成分析1.正确答案:几何不变,且无多余联系。
2.(图中未编号的点为交叉点。
)A B CDEF正确答案:铰接三角形BCD视为刚片I,AE视为刚片II,基础视为刚片III;I、II间用链杆AB、EC构成的虚铰(在C点)相连,I、III间用链杆FB和D处支杆构成的虚铰(在B点)相联,II、III 间由链杆AF和E处支杆构成的虚铰相联3.(图中未画圈的点为交叉点。
第6章 结构位移计算6.1 复习笔记【知识框架】【重点难点归纳】一、结构位移的基本概念(见表6-1-1) ★★表6-1-1 结构位移的基本概念二、刚体的虚功原理 ★★★平衡方程是一种直接的受力分析方法,而虚功原理是一种间接手法。
虚功原理是(任意平衡力系)在(任意可能位移)上所做的总虚功为零。
根据虚设对象不同,刚体的虚功原理分两种应用形式(虚力原理、虚位移原理),具体见表6-1-2。
表6-1-2 刚体的虚功原理三、变形体系的虚功原理(见表6-1-3) ★★★表6-1-3 变形体系的虚功原理四、位移计算的一般公式单位荷载法 ★★★★★基于化整为零、积零为整的原则,结构位移的计算从局部变形入手,通过虚力原理中的单位荷载法推导其拉伸、剪切、弯曲变形公式,再对这些局部变形公式进行叠加,得到整体变形公式,最后通过虚功方程推导出位移计算公式,见表6-1-4。
表6-1-4 单位荷载法求变形体系的位移注:为虚设单位荷载在支座处引起的反力;、N、Error!S分别为单位荷载在截面引起的弯矩、轴力、剪力。
拟求位移Δ可以引申理解为广义位移,将结构位移广义化,可以求解两点之间的广义位移。
广义位移、广义单位荷载和外力虚功三者之间满足:W=1·Δ。
单广义位移分类及单位荷载施加方式见表6-1-5。
表6-1-5 单广义位移分类及单位荷载施加方式五、静定结构在荷载作用下的位移计算(见表6-1-6) ★★★★表6-1-6 静定结构在荷载作用下的位移计算注:G为材料的切变模量;A为杆件截面的面积;k为切应力沿截面分布不均匀而引用的改正系数(考试作为已知条件)。
六、图乘法(见表6-1-7) ★★★★★。