机械设计(9.3.2)--流体动压润滑的基本理论思考题
- 格式:pdf
- 大小:73.71 KB
- 文档页数:2
练习题一一、填空题1.按照摩擦界面的润滑状态,可将摩擦分为干摩擦、边界摩擦、液体摩擦和混合摩擦2.已知某三线螺纹中径为9.5mm,螺距为1mm,则螺纹的导程为3mm3.螺纹连接防松的实质就是防止螺纹副的相对转动,按照防松方法的工作原理可将其分为三类,分别是摩擦防松、机械防松和永久防松4.受轴向工作载荷的紧螺栓连接中,螺栓受到的总拉力F0与预紧力F’、残余预紧力F"和工作拉力F之间的关系为b.A.F0=F’+F b F0= F’+Cb/ (Cb+Cm)F C、F,=F'+F"5.导向平键的工作面是键的两侧面,导向平键连接的主要失效形式是工作面的磨损6.V带传动中带工作中最大应力产生在紧边进入小带轮处,其值为:@max=@1+@b1+@c7.齿轮传动中选取齿宽系数时,一般采用硬齿面齿轮时齿宽系数b采用软齿面齿轮时齿宽系效,齿轮相对于轴承对称布置时的齿宽系数a齿轮悬臂布置时的齿宽系数。
a、大于:b、小于: C、等于,8.一减速齿轮传动,主动轮1用45号钢调质,从动轮用45号钢正火,则它们齿面接触应力的关系是@h1 b @h2, 齿根弯曲应力的关系是@F1 a @F2,a、> b=. c.<9.按国家标准GB/292-1993规定,代号为32208的滚动轴承类型为圆锥滚子轴承,其内径为40 mm其精度为_ P0级。
10.下列各种联轴器中,属于弹性联轴器的是d,属于可移式刚性联轴器的是a.属于固定式刚性联轴器的是b和ca万向联轴器:b.凸缘联轴器:C套简联轴器:d弹性柱销联轴器,11.联轴器和离合器都是用来实现轴与轴之间的连接,传递运动和动力,但联轴器与离合器的主要区别在于联轴器要在停车后才实现轴与轴的结合或分离,而离合器可使工作中的轴随时实现结合或分离12.当动压润滑条件不具备,且边界膜遭破坏时,就会出现液体摩擦、边界摩擦和干摩擦问时存在的现象,这种摩擦状态称为混合摩擦13.一公称直径为d=16mm的螺纹副,螺纹头数n=2. 螺纹p=4mm螺纹中径d2=D2=14mm 牙侧角B=15%, 螺纹副材料的当量摩擦系数f=0.08~0.10,经计算该螺纹副a自锁性要求。
《流体机械原理》思考题1.绘制水轮机的分类图表2.绘制水泵的分类图表3.水轮机的主要过流部件有哪些?各部分的主要作用是什么?作用原理是什么?有哪些主要的形式?P30 P57(原理)(与ppt对照看)答:水轮机的主要过流部件有:引水室,导水机构,转轮,尾水管。
①引水室的作用是将水流按所需要的速度(大小和方向)引入转轮。
其原理是引水室内速度矩保持不变。
主要形式:开式引水室,闭式引水室。
②导水机构作用是控制和调节水轮机的流量,以改变水轮机的功率,适应负荷的变化;在非蜗壳式引水室中,导水机构还用来改变水流方向,以适应转轮需要。
其原理是导叶转动,改变了水流的方向及过水断面的大小,从而改变流量大小。
主要形式:径向导水机构(圆柱式),斜向或圆锥式导水机构,轴向或圆盘式导水机构。
③转轮作用是改变水流方向并产生能量。
其原理是水流对转轮叶片做功,使水的动能和压力能转换为转轮机械能。
主要形式:混流式,斜流式,轴流式(定桨式和转桨式)。
④尾水管作用是将离开转轮的水引导至下游并利用转轮出口水流的部分能量。
原理是能量守恒(伯努利方程)原理。
主要形式:直锥式,弯管,肘形。
4. 水泵的主要过流部件有哪些?各部分的主要作用是什么?作用原理是什么?有哪些主要的形式? P32 P62(原理)(与ppt 对照看)答:水泵的主要过流部件有:吸水室,叶轮,压水室(扩压元件)。
① 吸水室作用是按要求的速度和方向将流体引入叶轮。
其原理是吸水室中速度矩不变和连续性原理。
主要形式:直锥管形(包括喇叭形),弯管形,半螺旋形,环形。
② 叶轮的作用是改变流体流动方向并对流体做功。
其原理是功能转换原理。
主要形式:离心式,混流式,斜流式,轴流式。
③ 压水室的作用是将从叶轮流出的流体收集起来并送往下一级或管道中,同时将其部分速度能转换成压力能以进一步提高压力。
原理是连续性定理和动量矩守恒定理。
主要形式:蜗壳,环形吸出室,叶片式扩压器(径向导叶),无叶扩压器,组合式,空间导叶,轴向导叶。
《机械设计》教材讨论题、思考题及习题绪论讨论题0-1就文中的三个实例分析每部机器,哪部分为原动部分、传动部分和执行部分?分别分析它们是否满足机器的三个特征?并从中举例说明机构、机械零件及构件的含义。
思考题0-1什么是机器?什么是机构?它们各有何特征?一台完整的机器由哪几部分组成?并举例说明。
0-2什么是机械零件、通用零件、专用零件、部件、标准件?指出下列零件各属于哪一类:螺栓,齿轮,轴,曲轴,汽门弹簧,轧根,飞机螺旋桨,汽轮机叶片,滑动轴承,滚动轴承,联轴器。
0-3本课程研究的对象和主要内容是什么?0-4本课程的性质与任务是什么?和前面学过的课程相比较,本课程有什么特点?第一章机械零件设计的基础知识及设计方法简介思考题1-1机械设计的内容和一般程序是什么?1-2机械零件常规设计计算方法有哪几种?各使用于何种情况?1-3机械零件应满足哪些基本要求?设计的一般步骤是什么?1-4机械零件的主要失效形式有哪些?什么是机械零件的工作能力?工作能力准则有哪些?1-5合理地选择许用安全系数有何重要意义?影响许用安全系数的因素有哪些?设计时应如何选择?1-6作用在机械零件上的载荷有几种类型?何谓静载荷、变载荷、名义载荷和计算载荷?1-7作用在机械零件中的应力有哪几种类型?何谓静应力、变应力?静载荷能否产生变应力?1-8何谓材料的疲劳极限、疲劳曲线、金属材料的疲劳曲线分成哪几种类型?各有何特点?指出疲劳曲线的有限寿命区和无限寿命区,并写出有限寿命区疲劳曲线方程,材料试件的有限寿命疲劳极限SN如何计算?说明寿命系数K N的意义。
1-9材料的极限应力图是如何作出的?简化极限应力图又是如何作出的?它有何用途?1-10影响零件疲劳强度的主要因素有哪些?零件的简化极限应力图与材料试件的简化极限应力图有何不同?如何应用?1-11表面接触疲劳点蚀是如何产生的?根据赫兹公式(Hertz),接触带上的最大接触应力应如何计算?说明赫兹公式中各参数的含义。
第4章 摩擦、磨损、润滑一、选择题1.现把研究有关摩擦、磨损与润滑的科学与技术统称为()。
A.摩擦理论B.磨损理论C.润滑理论D.摩擦学【答案】D2.当温度升高时,润滑油的粘度()。
A.随之升高B.随之降低C.保持不变D.升高或降低视润滑油性质而定【答案】B二、填空题1.按摩擦状态不同,摩擦可分为______、______、______及______。
【答案】干摩擦;边界摩擦;流体摩擦;混合摩擦2.机械零件的磨损过程一般分为______、______及______三个阶段。
【答案】跑合磨损;稳定磨损;剧烈磨损3.按建立压力油膜的原理不同,流体润滑主要有______、______及______三种类型。
【答案】流体静力润滑;流体动力润滑;弹性流体动力润滑4.获得流体动压油膜的必要条件是______、______及______。
【答案】两滑动表面间必须具有收敛状的楔形油楔;移动件必须有足够的相对速度,且其速度方向应使润滑油从楔形大口流入,从小口流出;油具有一定的黏度,且供油充分5.在______润滑状态下,磨损可以避免,而在______及______润滑状态下,磨损则不可避免。
【答案】流体;边界;混合6.磨损按破坏机理不同,可分为______、______、______及______四种基本类型。
【答案】黏着磨损;磨粒磨损;表面疲劳磨损;腐蚀磨损7.弹性流体动力润滑计算是在流体动力润滑基础上又计入的主要因素有______及。
【答案】弹性变形;压力对黏度的影响8.工业用润滑油的黏度主要受______及______的影响。
【答案】温度;压力9.工业用润滑油的黏度因______而降低;在一定压强下,又因______而提高。
【答案】温度升高;压力增加10.润滑油的黏度是度量液体______的物理量。
【答案】内摩擦大小11.流体的黏性定律是______。
【答案】流体作层流运动时,油层的切应力r与其速度梯度成正比12.黏度指数M越大的油,其黏度受______变化越小。
流体动压润滑理论(简介)在摩擦副两表面间被具有一定粘度的流体完全分开。
将固体间的外摩擦转化为流体的内摩擦。
以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低,这就是流体润滑。
它的发展与人们对滑轮和摩擦的研究密切相关发展简史1.流体动压现象)当动环回转时,由于静环表面有很多微孔,动环的转动使其表面与静环表面上的微孔形成收敛缝隙流体膜层,使每一个孔都像一个微动力滑动轴承。
也就是说,当另一个表面在多孔端面上滑动时,会在孔的上方及其周边产生流体动压力,这就是流体动压效应。
(实例)流体动压润滑——流体动压润滑是依靠运动副两个滑动表面的形状,在其相对运动时,形成产生动压效应的流体膜,从而将运动表面分隔开的润滑状态。
特点)a.流体的粘度,一般遵循粘性切应力与切应变率成比例规律b.楔形润滑膜,依靠运动副的两个滑动表面的几何形状,在相对运动时产生收敛型流体楔,形成足够的承载压力,以承受外载荷。
形成动压润滑的条件:a.润滑剂有足够的粘度b.足够的切向运动速度(或者轴颈在轴承中有足够的转速)c.流体楔的几何形状为楔形(轴在轴承中有适当的间隙)2.流体动压润滑理论)在摩擦副两表面间被具有一定粘度的流体完全分开。
将固体间的外摩擦转化为流体的内摩擦。
以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低。
滑动轴承运动副间要现成流体薄膜,必须使运动副锲形间隙中充满能够吸附于运动副表面的粘性流体,并且运动副表面相对运动可以带动润滑流体由大端向间隙小断运动,从而建立起布以承受载荷。
它的发展与人们对滑轮和摩擦的研究密切相关。
流体润滑具有极低的摩擦阻力,摩擦系数在0.001~0.008或更低(气体润滑),并能有效地降低磨损。
流体动压润滑理论(简介)在摩擦副两表面间被具有一定粘度的流体完全分开。
将固体间的外摩擦转化为流体的内摩擦。
以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低,这就是流体润滑。
它的发展与人们对滑轮和摩擦的研究密切相关发展简史1.流体动压现象)当动环回转时,由于静环表面有很多微孔,动环的转动使其表面与静环表面上的微孔形成收敛缝隙流体膜层,使每一个孔都像一个微动力滑动轴承。
也就是说,当另一个表面在多孔端面上滑动时,会在孔的上方及其周边产生流体动压力,这就是流体动压效应。
(实例)流体动压润滑——流体动压润滑是依靠运动副两个滑动表面的形状,在其相对运动时,形成产生动压效应的流体膜,从而将运动表面分隔开的润滑状态。
特点)a.流体的粘度,一般遵循粘性切应力与切应变率成比例规律b.楔形润滑膜,依靠运动副的两个滑动表面的几何形状,在相对运动时产生收敛型流体楔,形成足够的承载压力,以承受外载荷。
形成动压润滑的条件:a.润滑剂有足够的粘度b.足够的切向运动速度(或者轴颈在轴承中有足够的转速)c.流体楔的几何形状为楔形(轴在轴承中有适当的间隙)2.流体动压润滑理论)在摩擦副两表面间被具有一定粘度的流体完全分开。
将固体间的外摩擦转化为流体的内摩擦。
以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低。
滑动轴承运动副间要现成流体薄膜,必须使运动副锲形间隙中充满能够吸附于运动副表面的粘性流体,并且运动副表面相对运动可以带动润滑流体由大端向间隙小断运动,从而建立起布以承受载荷。
它的发展与人们对滑轮和摩擦的研究密切相关。
流体润滑具有极低的摩擦阻力,摩擦系数在0.001~0.008或更低(气体润滑),并能有效地降低磨损。
流体润滑的分类:根据液体压力形成的方式可分为流体静压润滑和流体动压润滑。
流体静压润滑是从外部供给具有一定压力的流体来平衡外载荷。
流体动压润滑是由摩擦表面几何形状和相对运动,借助粘性流体的动力学产生动态压力,用此润滑膜的动压来平衡外载荷。
《流体机械原理及结构》思考题及习题1、 流体具有的能量主要包括哪几个方面?2、 什么是流体机械?根据什么将流体机械分为叶片式流体机械和容积式流体机械?3、 试说明流体机械的效率用m l h t ηηη=η表示。
4、 总扬程为25m ,流量为3m 3/min,泄漏量为流量的3%的离心泵以1450rpm 的转速运转时,泵的轴功率为14.76kw ,机械效率取92.0m =η,试求下列值:(1)泵的有效功率;(2)泵的效率;(3)容积效率;(4)水力效率。
5、 水轮机效率实验时在某一导叶开度下测得下列数据:蜗壳进口处压力表读数P=22.6×104p a ,压力表中心高程H m =88.5m ,压力表所在钢管直径D=3.35m ,电站下游水位=85m ,流量q v =33m 3/s,发电机功率P g =7410Kw ,发电机效率ηg =0.966,试求机组效率及水轮机效率. 6、 水轮机和水泵的基本工作参数有哪些?各是如何定义的?7、 离心泵自井中取水,输送到压水池中,流量为100 m 3/h,吸水管与压水管直径均为150mm ,输水地形高度为32m ,若泵所需轴功率为14kw ,管路系统总阻力系数为10.5,试求离心泵装置的总效率. 8、 什么是流面、轴面?什么是轴面流线?9、 在分析叶片式流体机械内的流动时引入了哪些基本假设?试推导出叶片式流体机械的基本方程。
10、 何为反击系数?它有何意义?11、 什么在离心式叶轮出口附近的流动会产生滑移?滑移系数是怎样定义的,它与哪些因素有关? 12、 冲击式流体机械在什么情况下,其效率最高?试推导出此时效率的表达式。
13、 什么是往复式流体机械和回转式流体机械?试分别列举几种型式。
14、 流动相似必须满足的三个条件是什么? 15、 什么是单位参数和相对参数?16、 什么是比转速?它有什么重要意义?试分析比转速与叶轮形状和水力性能的关系。
17、 什么是水轮机的模型综合特性曲线和运转综合特性曲线?它们各有什么重要意义?18、 水轮机主要综合特性曲线包括哪些内容?5%出力储备线的意义何在?为什么轴流转浆式水轮机没有呢?19、 试分析不同比转速的水轮机模型综合特性曲线的等开度线和等效率曲线的形状和变化规律? 20、 何为泵的工作特性曲线和通用特性曲线?21、 何为水力机械的最有利工作条件?正确绘制出叶轮进、出口处的速度三角形。
《机械设计》教材讨论题、思考题及习题绪论讨论题0-1 就文中的三个实例分析每部机器,哪部分为原动部分、传动部分和执行部分?分别分析它们是否满足机器的三个特征?并从中举例说明机构、机械零件及构件的含义。
思考题0-1 什么是机器?什么是机构?它们各有何特征?一台完整的机器由哪几部分组成?并举例说明。
0-2 什么是机械零件、通用零件、专用零件、部件、标准件?指出下列零件各属于哪一类:螺栓,齿轮,轴,曲轴,汽门弹簧,轧辊,飞机螺旋桨,汽轮机叶片,滑动轴承,滚动轴承,联轴器。
0-3 本课程研究的对象和主要内容是什么?0-4 本课程的性质与任务是什么?和前面学过的课程相比较,本课程有什么特点?第一章机械零件设计的基础知识及设计方法简介思考题1-1 机械设计的内容和一般程序是什么?1-2 机械零件常规设计计算方法有哪几种?各使用于何种情况?1-3 机械零件应满足哪些基本要求?设计的一般步骤是什么?1-4 机械零件的主要失效形式有哪些?什么是机械零件的工作能力?工作能力准则有哪些?1-5 合理地选择许用安全系数有何重要意义?影响许用安全系数的因素有哪些?设计时应如何选择?1-6 作用在机械零件上的载荷有几种类型?何谓静载荷、变载荷、名义载荷和计算载荷?1-7 作用在机械零件中的应力有哪几种类型?何谓静应力、变应力?静载荷能否产生变应力?1-8 何谓材料的疲劳极限、疲劳曲线、金属材料的疲劳曲线分成哪几种类型?各有何特点?指出疲劳曲线的有限寿命区和无限寿命区,并写出有限寿命区疲劳曲线方程,材料试件的有限寿命疲劳极限 rN如何计算?说明寿命系数K N的意义。
1-9 材料的极限应力图是如何作出的?简化极限应力图又是如何作出的?它有何用途?1-10 影响零件疲劳强度的主要因素有哪些?零件的简化极限应力图与材料试件的简化极限应力图有何不同?如何应用?1-11 表面接触疲劳点蚀是如何产生的?根据赫兹公式(Hertz),接触带上的最大接触应力应如何计算?说明赫兹公式中各参数的含义。
《机械设计》复习思考题解答机械零件的强度复习思考题1、静应⼒与变应⼒的区别?静应⼒与变应⼒下零件的强度计算有何不同?静应⼒只受静载荷作⽤⽽变应⼒则可能受到静载荷作⽤也可能受到动载荷作⽤静应⼒:1)脆性材料取抗拉强度极限2)塑性材料取屈服极限变应⼒:均取疲劳极限2、稳定循环变应⼒的种类有哪些?画出其应⼒变化曲线,并分别写出最⼤应⼒σmax、最⼩应⼒σmin、平均应⼒σm、应⼒幅σa与应⼒循环特性γ的表达式。
静应⼒,⾮对称循环应⼒,对称循环应⼒,脉动循环应⼒3、静应⼒是否⼀定由静载荷产⽣?变应⼒是否⼀定由变载荷产⽣?是;不⼀定4、机械零件疲劳破坏的特征有哪些?机械零件疲劳强度与哪些因素有关?整体断裂,表⾯破坏,变形量过⼤,破坏正常⼯作中引起的失效应⼒集中,尺⼨⼤⼩,表⾯状态5、如何由σ-1、σ0和σs三个试验数据作出材料的简化极限应⼒图?以σ-1、在y轴上确定点A,以σs在x轴上确定点C,定坐标点B (σ0/2,σ0/2),连接AB两点作直线,过C点作与OC成45°⾓的直线交线AB于点E就可以得到简化的极限应⼒图6、相对于材料,影响机械零件疲劳强度的主要因素有哪些?综合影响因素Kσ的表达式为何?如何作零件的简化极限应⼒图?1应⼒集中,尺⼨⼤⼩,表⾯状态(K)=σ-1/σ-1eσ-1材料对称循环弯曲疲劳极限σ-1e零件对称循环弯曲疲劳极限7、应⼒集中、零件尺⼨和表⾯状态是否对零件的平均应⼒σm和应⼒幅均有影响?有8、按Hertz(接触应⼒)公式,两球体和圆柱体接触时的接触强度与哪些因素有关?作⽤于接触⾯上的总压⼒,初始接触线长度,初始接触线处的曲率半径,材料泊松⽐,材料的弹性模量9.何谓机械零件的失效?何谓机械零件的⼯作能⼒?零件由于某种原因丧失⼯作能⼒或达不到设计要求的性能称为失效;在⼀定的使⽤寿命时间内零件的各性能可以满⾜机械⼯作的各项要求的能⼒。
10.机械零件常⽤的计算准则有哪些?强度刚度寿命振动稳定性可靠性11、在静强度条件下,塑性材料的极限应⼒是___屈服极限应⼒_______;⽽脆性材料的极限应⼒是______抗拉极限应⼒_____。
流体动压润滑原理引言流体动压润滑原理是一种应用于机械工程中的润滑技术,通过利用流体的动态特性来减小机械摩擦,降低磨损和能量损失。
本文将详细介绍流体动压润滑的原理以及其在实际应用中的重要性和优势。
一、流体动压润滑的基本原理流体动压润滑是基于流体动力学原理的一种润滑方式。
当两个摩擦面相对运动时,介质流体被注入到摩擦面之间,形成一层润滑膜。
当摩擦面运动时,润滑膜中的流体会受到压力的作用,产生动压力。
这种动压力可以有效地减小摩擦力,降低磨损和能量损失。
二、流体动压润滑的工作原理1. 流体动压润滑的工作原理可以用流体动力学的基本原理来解释。
当两个摩擦面之间存在一层流体润滑膜时,摩擦面的相对运动会使流体膜中的流体发生剪切。
根据流体剪切力的原理,流体膜中的流体会产生阻力,使摩擦面之间的相对运动受到阻尼作用,从而减小了摩擦力和磨损。
2. 流体动压润滑的工作原理还可以通过流体静压力的原理来解释。
当摩擦面之间的流体膜被注入后,流体在摩擦面上形成了一个封闭的液体膜,并受到定向压力的作用。
这种定向压力是由于流体在摩擦面上的静压力产生的。
当摩擦面相对运动时,静压力会产生动态压力,从而减小了摩擦力和磨损。
三、流体动压润滑的应用流体动压润滑广泛应用于机械工程中,特别是在高速、高负荷和高精度要求的设备中。
以下是一些流体动压润滑的典型应用:1. 轴承润滑流体动压润滑在轴承中起着至关重要的作用。
通过在轴承内部注入润滑油或润滑脂,形成一层流体膜,可以有效减小轴承的摩擦和磨损,延长轴承的使用寿命。
2. 涡轮机械在涡轮机械中,流体动压润滑可以有效地降低叶轮和导向叶片之间的摩擦,提高机械的效率和可靠性。
3. 液力传动装置流体动压润滑在液力传动装置中起着重要的作用。
通过在液力传动装置内部注入润滑油,形成一层流体膜,可以有效减小传动装置的摩擦和磨损,提高传动效率和可靠性。
4. 液压系统在液压系统中,流体动压润滑可以减小液压泵和液压缸之间的摩擦和磨损,提高系统的工作效率和可靠性。
一2,人们常说的机械的含义是什么机器和机构各指的是什么答:机械是机器和机构的总称。
机器是人类进行生产以减轻体力劳动和提高生产率的主要工具。
有两个或两个以上构件通过活动联接形成的构件系统称为机构.3,什么是部件什么是零件什么是构件答:为完成同一使命在结构上组合在在一起并协同工作的零件成为部件。
组成机器的不可拆的基本单元称为机械零件。
构件是机械系统中实际存在的可更换部分,它实现特定的功能,符合一套接口标准并实现一组接口。
6:机器设计应满足哪些基本要求机械零件设计应满足哪些基本设计要求答:(1),在使用方面,机器应能在给定的工作期限内具有高的工作可靠性,并能始终正常工作;在经济方面,应从机器费用,产品制造成本等多种因素中综合衡量,以能获得最大经济效益的方案为最佳设计方案;机器外观造型应比例协调,大方,给人以时代感,美感,安全感;限制噪声分贝数。
(2)工作可靠,又要成本低廉,应正确选择材料,合理规定公差等级以及认真考虑零件的加工工艺性和装配工艺性。
7,机械零件的计算可分为哪两种它们大致可包含哪些内容答:可分为设计计算和校核计算两种。
设计计算根据零件的工作情况和选定的工作能力准则拟定出安全条件,用计算方法求出零件危险截面的尺寸,然后根据结构与工艺条件和尺寸协调的原则,使结构进一步具体化。
校核计算是先参照已有实物,图纸和经验数据初步拟定零件的结构布局和有关尺寸,然后根据工作能力准则核验危险截面是否安全二3,什么是静载荷,变载荷,名义载荷,计算载荷什么是静应力和变应力答:不随时间变化或变化缓慢的载荷称为静载荷。
随时间作周期性变化或非周期变化的载荷称为变载荷。
根据额定功率用力学公式计算出的载荷称为名义载荷。
不随时间变化或变化缓慢的应力称为静应力。
随时间变化的应力称为变应力。
7,受交变接触应力作用的零件其失效是何性质提高接触疲劳强度的主要措施有哪些答:表面疲劳磨损或者称为点蚀。
措施:将外接触改为内接触;在结构设计上将点接触改为线接触;提高零件表面硬度;在一定范围内提高接触表面的加工质量;采用粘度较高的润滑油。
流体动压润滑理论(简介)在摩擦副两表面间被具有一定粘度的流体完全分开。
将固体间的外摩擦转化为流体的内摩擦。
以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低,这就是流体润滑。
它的发展与人们对滑轮和摩擦的研究密切相关发展简史时间人物经典理论及现象1883年塔瓦(Tower)流体动压现象1886年雷诺(Reynold)流体动压润滑理论及雷诺方程1.流体动压现象)当动环回转时,由于静环表面有很多微孔,动环的转动使其表面与静环表面上的微孔形成收敛缝隙流体膜层,使每一个孔都像一个微动力滑动轴承。
也就是说,当另一个表面在多孔端面上滑动时,会在孔的上方及其周边产生流体动压力,这就是流体动压效应。
(实例)流体动压润滑——流体动压润滑是依靠运动副两个滑动表面的形状,在其相对运动时,形成产生动压效应的流体膜,从而将运动表面分隔开的润滑状态。
特点) a.流体的粘度,一般遵循粘性切应力与切应变率成比例规律 b.楔形润滑膜,依靠运动副的两个滑动表面的几何形状,在相对运动时产生收敛型流体楔,形成足够的承载压力,以承受外载荷。
形成动压润滑的条件:a.润滑剂有足够的粘度 b.足够的切向运动速度(或者轴颈在轴承中有足够的转速) c.流体楔的几何形状为楔形(轴在轴承中有适当的间隙)2.流体动压润滑理论)在摩擦副两表面间被具有一定粘度的流体完全分开。
将固体间的外摩擦转化为流体的内摩擦。
以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低。
滑动轴承运动副间要现成流体薄膜,必须使运动副锲形间隙中充满能够吸附于运动副表面的粘性流体,并且运动副表面相对运动可以带动润滑流体由大端向间隙小断运动,从而建立起布以承受载荷。
它的发展与人们对滑轮和摩擦的研究密切相关。
流体润滑具有极低的摩擦阻力,摩擦系数在0.001~0.008或更低(气体润滑),并能有效地降低磨损。
流体润滑的分类:根据液体压力形成的方式可分为流体静压润滑和流体动压润滑。
机械设计基础机械设计中的流体力学问题在机械设计中,流体力学是一个重要的领域,涉及到各种液体和气体在机械系统中的行为和特性。
了解流体力学问题对于机械设计师来说至关重要,因为它们对于机械系统的性能和效率有着直接的影响。
本文将探讨机械设计中常见的流体力学问题,并讨论一些解决这些问题的方法。
1. 流体的静力学问题在机械系统中,静态流体的行为是一项基本问题。
了解液体或气体静态平衡的原理和应用可以帮助我们设计和理解各种液压和气压系统。
例如,在设计液压系统时,需要确保系统中各个部件的液体静态压力平衡,以避免系统失效或泄漏。
2. 流体的动力学问题在机械系统中,流体的动态行为也是一个重要问题。
当液体或气体在机械系统中流动时,需要考虑诸如流速、流量、压力降等参数。
对于液体流动,我们通常使用伯努利方程和流量公式来计算和分析流体力学问题。
对于气体流动,可以使用类似的方法,但需要考虑气体的可压缩性和其他特性。
3. 管道和管路系统设计中的流体力学问题在设计管道和管路系统时,流体力学问题是必须要考虑的。
这涉及到管道的尺寸、形状、摩擦阻力以及流体在管道中的流速和流量。
为了最大限度地提高系统的效率,我们需要通过优化管道的设计来减小流体的压力损失和能量损失。
4. 流体力学仿真和数值模拟随着计算机技术的发展,流体力学仿真和数值模拟在机械设计中变得越来越重要。
通过使用计算流体力学(CFD)软件,我们可以模拟和分析复杂的流体力学问题,如湍流、多相流和热传导。
这些仿真和模拟结果可以帮助我们更好地了解流体力学问题,并优化机械系统的设计。
总之,在机械设计中,流体力学问题是一个不可忽视的重要领域。
通过深入了解流体的静力学和动力学行为,设计师可以有效地解决流体力学问题,优化设计并提高机械系统的性能和效率。
同时,借助计算流体力学仿真和数值模拟工具,我们可以更好地理解和分析复杂的流体力学问题,为机械设计师提供更准确的设计指导。
希望本文对你理解机械设计中的流体力学问题有所帮助,如果你有任何问题或者需要进一步的讨论,请随时与我联系。
第四章 流体动力学基础 复习思考题1. 在 流动中,伯努利方程不成立。
D(A) 恒定 (B) 理想流体 (C) 不可压缩 (D) 可压缩 2. 在总流伯努利方程中,速度 v 是 速度。
B(A) 某点 (B) 断面平均 (C) 断面形心处 (D) 断面上最大 3. 文透里管用于测量 。
D(A) 点流速 (B) 压强 (C) 密度 (D) 流量 4. 毕托管用于测量 。
A(A) 点流速 (B) 压强 (C) 密度 (D) 流量5. 密度 ρ = 800kg/m 3 的油在管中流动,若压强水头为2m 油柱,则压强为 N/m 2。
C(A) 1.96×104 (B) 2×103 (C) 1.57×104 (D) 1.6×103 6. 应用总流能量方程时,两断面之间 。
D(A) 必须是缓变流 (B) 必须是急变流 (C) 不能出现急变流 (D) 可以出现急变流 7. 应用总流动量方程求流体对物体合力时,进、出口的压强应使用 。
B (A) 绝对压强 (B) 相对压强 (C) 大气压强 (D) 真空值8. 伯努利方程中 gv p z 22αγ++表示 。
B(A) 单位质量流体具有的机械能 (B) 单位重量流体具有的机械能 (C) 单位体积流体具有的机械能 (D) 通过过流断面的总机械能9. 粘性流体恒定总流的总水头线沿程变化规律是 。
A(A) 沿程下降 (B) 沿程上升 (C) 保持水平 (D) 前三种情况都有可能 10. 粘性流体恒定总流的测压管水头线沿程变化规律是 。
D(A) 沿程下降 (B) 沿程上升 (C) 保持水平 (D) 前三种情况都有可能 11. 动能修正系数α = 。
C(A) A vuA A ⎰⎰d 1 (B) A v u A A ⎰⎰⎪⎭⎫ ⎝⎛d 12(C) A v u A A ⎰⎰⎪⎭⎫ ⎝⎛d 13(D) A v u A A ⎰⎰⎪⎭⎫ ⎝⎛d 1412. 动量修正系数α0 = 。
10-3 第十章 液体动压润滑基本理理论
1、简述形成稳定动压油膜的条件?
答:1)两摩擦表面之间必须能够形成收敛的楔形间隙;
2)两摩擦表面之间必须有充足的、具有一定粘度的润滑油;
3)两摩擦表面之间必须有足够的相对运动速度。
2、径向液体动压润滑轴承和液体静压润滑轴承的承载机理有何不同?
径向液体动力润滑轴承的承载机理是轴承与轴颈以一定的相对运动速度将润滑油带入两摩擦表面间的收敛间隙,形成动压油膜把两摩擦表面分开,油膜压力与外载平衡。
液体静压轴承是利用油泵将具有一定压力的润滑油通过一套供油系统将润滑油输入两滑动表面间,使两表面分离,形成油膜并承载。
3、如何选择普通径向滑动轴承的宽径比?宽径比选取过大时会发生什么现象?宽径比常用的范围是0.5~1.5。
宽径比选得小时可提高轴承运转平稳性,端泄流量大,功耗小,油的温升较低,但轴承承载能力要降低。
宽径比选得过大时,轴承宽度较大,易造成轴颈与轴承局部磨损严重。
4、相对间隙ψ对轴承性能有何影响?在设计时如果出现温升过高,应如何调整ψ的取值?
相对间隙ψ对轴承的承载能力、摩擦功耗和温升都有重要影响。
ψ取大值时,则润滑油的流量增加,温升降低;ψ取小值时,则温升增加。
5、液体动力润滑油轴承在热平衡计算时为何要限制油的入口温度?
在热平衡计算时限制油的入口温度是因为润滑油都是循环使用。
如果温度过低,必须加大存油容积,以保证能有较长时间使回油油温降低到所要求的入口温度。
入口温度过高,油在循环时带走热量少,散热效果降低。
6、设计液体动压向心滑动轴承时,在其最小油膜厚度不够可靠的情况下,应调整哪些参数方可能实现液体润滑?
增加润滑油粘度,增加转动速度,适当增加相对间隙。