第5章 流体动压润滑与静压润滑.
- 格式:ppt
- 大小:1.23 MB
- 文档页数:57
流体动压润滑理论(简介)在摩擦副两表面间被具有一定粘度的流体完全分开。
将固体间的外摩擦转化为流体的内摩擦。
以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低,这就是流体润滑。
它的发展与人们对滑轮和摩擦的研究密切相关发展简史1.流体动压现象)当动环回转时,由于静环表面有很多微孔,动环的转动使其表面与静环表面上的微孔形成收敛缝隙流体膜层,使每一个孔都像一个微动力滑动轴承。
也就是说,当另一个表面在多孔端面上滑动时,会在孔的上方及其周边产生流体动压力,这就是流体动压效应。
(实例)流体动压润滑——流体动压润滑是依靠运动副两个滑动表面的形状,在其相对运动时,形成产生动压效应的流体膜,从而将运动表面分隔开的润滑状态。
特点)a.流体的粘度,一般遵循粘性切应力与切应变率成比例规律b.楔形润滑膜,依靠运动副的两个滑动表面的几何形状,在相对运动时产生收敛型流体楔,形成足够的承载压力,以承受外载荷。
形成动压润滑的条件:a.润滑剂有足够的粘度b.足够的切向运动速度(或者轴颈在轴承中有足够的转速)c.流体楔的几何形状为楔形(轴在轴承中有适当的间隙)2.流体动压润滑理论)在摩擦副两表面间被具有一定粘度的流体完全分开。
将固体间的外摩擦转化为流体的内摩擦。
以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低。
滑动轴承运动副间要现成流体薄膜,必须使运动副锲形间隙中充满能够吸附于运动副表面的粘性流体,并且运动副表面相对运动可以带动润滑流体由大端向间隙小断运动,从而建立起布以承受载荷。
它的发展与人们对滑轮和摩擦的研究密切相关。
流体润滑具有极低的摩擦阻力,摩擦系数在0.001~0.008或更低(气体润滑),并能有效地降低磨损。
流体润滑的分类:根据液体压力形成的方式可分为流体静压润滑和流体动压润滑。
流体静压润滑是从外部供给具有一定压力的流体来平衡外载荷。
流体动压润滑是由摩擦表面几何形状和相对运动,借助粘性流体的动力学产生动态压力,用此润滑膜的动压来平衡外载荷。
一.润滑分类基本上,可以近似认为润滑膜厚越厚,承载能力越高。
因而不同的润滑类型大致可以根据工作时润滑膜的膜厚来区分。
1.流体动压润滑:中高速,面接触(滑动轴承),动压效应形成流体润滑膜。
膜厚1~100μ.[流体动压润滑形成条件:a.磨擦表面具有收敛楔;b.轴颈具有足够的转速;c.润滑油具有适当的粘度;d.外载不得超过最小油膜所能承受的限度。
外加两个重要假设:一定温度时,流体粘度不变;摩擦表面视为刚体.]2.流体静压润滑:各种速度,面接触,外压强制流体送入摩擦面间形成静压膜。
膜厚1~100μ.3.弹性流体动压润滑(弹流润滑):中高速,点线接触(滚动轴承),动压效应形成流体润滑膜。
膜厚0.1~1μ.[丢弃动压润滑的简化考虑:流体、摩擦面均视为弹性体;粘度是压力的函数]4.薄膜润滑:低速,点线接触高精度摩擦副,动压效应形成流体润滑膜。
膜厚10~100nm.5.边界润滑:低速重载,高精度摩擦副,润滑油和金属表面反应生成理化润滑膜。
膜厚1~50nm.6.干摩擦(润滑):无润滑或自润滑。
表面氧化膜或气体吸附形成。
膜厚1~10nm.如想量化判断具体工况是什么润滑类型,看参数:膜厚比αα=h。
/(σ1^2+σ2^2)^0.5h。
为接触表面间的最薄润滑膜厚度;σ1、σ2分别为两摩擦表面粗糙度的均方根值。
一般说来,当α<1时,会产生粘着;1≤α≤3时,摩擦副处于部分弹性流体动压润滑状态,有可能发生粘着磨损;α>3时,摩擦副处于全膜润滑状态,可认为不会发生粘着磨损。
使用一般矿物油润滑和一般加工质量的几种常见的摩擦副,其膜厚比范围约为:滚动轴承,α=1~2.4;齿轮传动,α=0.6~1.8;凸轮机构,α=0.3~1.2。
二.流体润滑关键因素液体的动压润滑主要考虑粘温关系;气体润滑主要考虑密度——压力关系;弹流润滑中粘温、粘压、压缩性(密度)都是重要因素。
1.润滑油a.流体(润滑油)粘度:流体抵抗剪切变形能力的度量,表征流体流动时的内摩擦大小。
润滑方法基础润滑原理第一节概述定义:在相对运动摩擦副之间加入某种具有一定承载能力和低剪切抗力的物质,用来控制或降低摩擦,磨损,以达到降低能耗,延长摩擦副使用寿命的目的,这种方法就称为润滑,这类物质就称为润滑剂.设备合理地润滑是减少摩擦阻力、降低磨损的根本措施,决定机械设备运行效率和使用寿命的主要因素.机械设备不同—工作条件不同—重要程度不同—采用的润滑方法应不同.要求:根据设备实际情况,以相应的润滑原理为依据,采用较为合理的润滑方法和润滑设备进行合理润滑,以达到最佳的润滑效果和投资效益。
掌握各种润滑机理,是进行合理润滑的前提.润滑的作用:1、降低摩擦阻力摩擦副表面之间加入润滑剂,形成润滑剂表面膜,将摩擦副两表面物质的直接作用完全或部分地转变为各表面与润滑剂膜以及润滑剂膜的内部作用;实质:将摩擦副的外摩擦部分地或全部地转变成润滑剂的内摩擦;2、减少磨损润滑剂表面膜的隔离作用,使得摩擦副两表面的直接接触、相互作用的面积、深度、程度都大大降低.3、降低温度和冷却作用1)减摩作用,提高了机械效率,减少摩擦热的产生;2)循环润滑,将—部分摩擦热带走;有效地降低了摩擦副温升,起到了对摩擦副工作表面降温冷却的作用.4、防止腐蚀和保护金属表面润滑剂吸附在金属摩擦剧表面,将金属表面与环境的有害介质分隔开。
5、清洁冲洗作用利用液体润滑剂的流动性,可以把摩擦面间的磨损微粒或有外来硬质颗粒带走,以减少磨料磨损.润滑剂循环过滤,可以提高冲洗效果。
6、密封作用润滑剂在气缸和活塞之间不但起到减摩的作用,而且由于油膜的存在还能增强密封效果。
润滑脂对于形成密封有特殊的作用,可以防止水湿、灰尘、杂质对摩擦副或机械设备内部的侵入.7、阻尼缓冲减振作用润滑剂充满在摩擦副间隙之间形成润滑剂膜,可以起到缓冲和减振的作用,减少作噪音、冲击负荷.第二节润滑的分类一、根据所采用润滑剂的物质形态可以分为:1、气体润滑润滑材料空气、蒸汽、氮气等,采用高压的方法在摩擦副表面之间形成气体压力润滑膜,达成润滑的目的.如气压导轨、惯性陀螺仪、高速磨头的轴承等。
流体润滑的基本原理之流体动力润滑流体润滑研究和发展机器在运动时,运动的零部件之间必定会发生摩擦从而造成磨损,而润滑是减小摩擦、减轻甚至避免磨损的直接措施。
人类进入工业社会以后,润滑已逐渐发展成为一门重要的技术,井已成为工业部门和学术机构重要的研究领域。
19世纪未流体润滑现象被首次发现,几乎同时流体润滑理论也被提出来了。
二战期间军事装备的需求促使润滑技术高速发展,也对润滑理论,持别是流体润滑理论提出了更高的要求。
战后各工业国立即投入大量人力物力,开展有关方面的研究。
现在比较成熟的流体润滑原理主要包括三个方面内容,它们是:1.流体动力润滑2.流体静压润滑3.弹性流体动力润滑流体动力润滑原理1.1:定义流体动力润滑是利用流体的黏附性,使流体黏附在摩擦表面,并在摩擦副做相对运动时被带入两摩擦副的摩擦表面之间。
如果两摩擦副的表面形成收敛的楔形空间,则被带入摩擦副的两摩擦表面中的流体就会形成一定的压力,这种压力会随着摩擦副的运动速度和流体的粘度发生改变。
当流体的粘度一定时,摩擦副的运动速率越大,则流体形成的压力就越大;当摩擦副的运动速率一定时,流体的粘度越大,则流体形成的压力就越大。
进入摩擦表面的流体会像一个楔子,由于摩擦副在不断的做相对运动,所以会产生一定的压力,迫使流体向楔子一样楔入两摩擦表面,从而将两摩擦表面分隔开来,阻止两摩擦表面直接接触。
简单地说,流体动力润滑是利用相对运动的摩擦表面间的相对速度、流体的粘滞行和摩擦副之间的楔形墙体,迫使流体压缩而产生压力膜将两表面完全分隔开,并依靠流体产生的压力来平衡外载荷。
两个作相对运动物体的摩擦表面,用借助于相对速度和流体的粘滞性而产生的粘性流体膜将两摩擦表面完全隔开,由流体膜产生的压力来平衡外载荷,称为流体动力润滑。
所用的粘性流体可以是液体(如润滑油)也可以是气体(如空气等),相应地称为液体动力润滑和气体动力润滑。
流体动力润滑是依靠表面运动而产生的动力学效应。
设备润滑类别
<1> 流体润滑
摩擦表面完全为连续的润滑剂膜所分隔开,由低摩擦的润滑剂承受载荷,磨损轻微。
流体润滑包括以下四种:
1. 流体动压润滑
依靠运动副两个滑动表面的形状,在其相对运动时形成一层具有足够压力的流体膜,将摩擦表面分隔开的一种润滑状态。
2. 流体静压润滑
利用外部的流体压力源或供油装置,将具有一定压力的流体润滑剂输送到支承的油腔内,形成具有足够压力的流体润滑膜,将表面分隔开并承受载荷的一种润滑状态,又称为外供压润滑。
3. 流体动静压润滑
兼有流体动压和流体静压润滑的作用,可使支承表面之间在静止、启动、停止、稳定运动或是工况交变状况下均能保持流体润滑作用。
4. 弹性流体动压润滑
两相对运动表面间的弹性变形与润滑剂的压力-粘度、温度-粘度效应对其摩擦与油膜厚度起重要作用的润滑状态。
<2> 混合润滑
同时有以上几种润滑状态存在的情况。
<3> 边界润滑
摩擦表面的微凸体接触较多,润滑剂的流体润滑作用减少,甚至完全不起作用,载荷几乎全部通过微凸体及润滑剂和表面之间相互作用所生成的边界润滑膜来承受。
边界润滑膜可分为物理吸附膜、化学吸附膜、化学反应膜、沉积膜及固体润滑剂膜等。
<4> 无润滑或干摩擦
摩擦表面之间润滑剂的流体润滑作用已经不复存在,载荷由表面上存在的固体膜及氧化膜或金属基体承受时的状态。
流体润滑分类
◆流体动压润滑:在两个做相对运动物体的摩擦表面上,借助于摩擦表面的几何形状
和相对运动而产生具有一定压力的粘性流体膜,将两摩擦表面完全隔开,由流体膜产生的压力来平衡外载荷。
◆弹性流体动压润滑:相对运动表面的弹性变形与流体动压作用都对润滑油的润滑性
能起着重要作用的一种润滑状态。
⏹流体静压润滑是从外部供给具有一定压力的流体来平衡外载荷。
流体动压润滑是由
摩擦表面几何形状和相对运动,借助粘性流体的动力学产生动态压力,用此润滑膜的动压来平衡外载荷,弹性流体动压润滑理论是研究在点、线接触条件下,两弹性物体间的流体动力润滑膜的力学性质。
(一)流体润滑在摩擦副对偶表面之间,有一层一定厚度(一般在1. 5~2μm以上)的粘性流体润滑膜,由这层润滑膜的压力平衡外载荷,使两对偶表面不直接接触,在两对偶表面作相对运动时,只在流体分子间产生摩擦,这就是流体润滑。
在流体润滑中,根据润滑膜压力产生的方法,润滑方式可分为以下几种。
1.流体动压润滑流体动压润滑,系由摩擦副对偶表面的几何形状和相对运动,并借助粘性流体的内摩擦力作用而产生润滑膜压力,从而平衡外载。
雷诺在1886年应用流体力学中纳维一斯托克斯方程推导出计算流体润滑膜压力分布的方程,以后称为雷诺方程,该方程成功地揭示了润滑膜压力的形成机理,从而为流体动压润滑奠定了理论基础。
流体动压润滑膜压力,通常由以下四个效应决定。
(1)动压效应图1a可说明流体动压润滑膜的形状特征及所产生的动压效应。
当下表面相对上表面以速度u运动时,沿运动方向的间隙逐渐减小,剪切流动引起的润滑剂从大口流向小口的流量也逐渐减小,不符合流量连续条件,只有产生如图所示的润滑膜压力分布,由压差流动减小大口流入流量和增大小口流出流量,才能保证流过各断面的流量相等,从而满足流量连续条件。
(2)伸缩效应图1b可以说明伸缩效应。
当对偶表面由于弹性变形或其它原因使其速度沿运动方向逐渐减小时,剪切流动引起的流量沿运动方向也逐渐减小,因流量连续必然会产生如图所示的润滑膜压力分布(在通常的润滑间题中,伸缩效应并不显著)。
(3)变密度效应图1c可以说明变密度效应。
当润滑剂密度沿运动方向逐渐降低时,即使各断面的体积流量相同,其质量流量沿运动方向仍是逐渐减小的,因质量守恒,则必然产生如图所示的润滑膜压力分布。
密度的变化可以是润滑剂通过间隙时由于温度逐渐升高而造成的,也可以是外加热源使表面温度变化而产生的。
虽然变密度效应产生的润滑膜压力并不高,但是这种作用可以使相互平行的对偶表面具有一定的承载能力。
(4)挤压效应图1d表示两个平行表面在法向力作用下相互接近,使润滑膜厚度逐渐减小而产生压差流动,此称挤压效应。
轴承的润滑形式动压润滑与静压润滑1、动压润滑利用轴的高速旋转和润滑油的粘性,将有带进楔形空间建立起压力油膜。
油膜将轴进颈和轴表面分开。
要想形成液体动压润滑,必须满足下列条件:①、合理选择润滑油粘度;②、多支承的轴承,应严格控制同轴度误差;③、轴颈、轴承应有精确的几何形状和较高的表面光洁度;④、轴颈应保持一定的线速度,以建立足够的楔压力;⑤、轴颈和轴承配合后应有一定的间隙,该间隙通常等于轴颈的1/1000 ~ 3/1000。
动压润滑的形成大致经过三个过程:①轴承在静止时由于自重而处于最低位置,润滑油被轴颈挤出,轴颈与轴承侧面之间形成楔形油隙;②当轴颈沿箭头方向旋转时,由于油的粘性和金属表面的附着力,油层随着轴一起旋转。
有层经过楔形缝隙时,由于油的分子受到挤压和本身的动能,对轴产生压力,将轴向上抬起;③当轴达到一定速度时,油对轴的压力增大,轴与轴承表面完全a b c2、液体静压润滑及其工作原理液体静压润滑是利用外界油压系统供给一定压力的润滑油,使轴颈与轴承处于完全液体摩擦状态。
油膜的形成与轴的转速及油压大小无关,从而使轴承在不同工作状态下获得稳定的液体润滑。
这种轴承承载能力大,回转精度高,工作平稳,抗振性好,大多用于高精度机械设备中。
液体静压轴承是借助液压系统把具有压力的液体送到轴和轴承的配合间隙中,利用液体静压力支承回转轴的一种滑动轴承,它由供油系统、节流器和轴承三部分组成。
节流器是液体静压滑动轴承的重要元件,常用的有两种型式:(1)固定节流器,其通流面积固定不变。
(2)可变节流器,其通流面积可按工作需要进行调整。
液体静压轴承(静压轴承)的工作原理如图所示。
一定压力p的压力油,经过4个节流器,其阻力分别为R G1、R G2、R G3、R G4,分别输入4个油腔即油腔1、油腔2、油腔3、油腔4,油腔压力分别为Pr1、Pr2、Pr3、Pr4。
有腔中的油又经过间隙h0流回油池。
当轴没有受到载荷时,如果4个节流器阻力相同,则4个油腔的压力也相同,即Pr1=Pr2=Pr3=Pr4,主轴被浮在轴承中心,其间被一层薄薄的油膜隔开,达到了良好的液体摩擦。
流体动压润滑原理引言流体动压润滑原理是一种应用于机械工程中的润滑技术,通过利用流体的动态特性来减小机械摩擦,降低磨损和能量损失。
本文将详细介绍流体动压润滑的原理以及其在实际应用中的重要性和优势。
一、流体动压润滑的基本原理流体动压润滑是基于流体动力学原理的一种润滑方式。
当两个摩擦面相对运动时,介质流体被注入到摩擦面之间,形成一层润滑膜。
当摩擦面运动时,润滑膜中的流体会受到压力的作用,产生动压力。
这种动压力可以有效地减小摩擦力,降低磨损和能量损失。
二、流体动压润滑的工作原理1. 流体动压润滑的工作原理可以用流体动力学的基本原理来解释。
当两个摩擦面之间存在一层流体润滑膜时,摩擦面的相对运动会使流体膜中的流体发生剪切。
根据流体剪切力的原理,流体膜中的流体会产生阻力,使摩擦面之间的相对运动受到阻尼作用,从而减小了摩擦力和磨损。
2. 流体动压润滑的工作原理还可以通过流体静压力的原理来解释。
当摩擦面之间的流体膜被注入后,流体在摩擦面上形成了一个封闭的液体膜,并受到定向压力的作用。
这种定向压力是由于流体在摩擦面上的静压力产生的。
当摩擦面相对运动时,静压力会产生动态压力,从而减小了摩擦力和磨损。
三、流体动压润滑的应用流体动压润滑广泛应用于机械工程中,特别是在高速、高负荷和高精度要求的设备中。
以下是一些流体动压润滑的典型应用:1. 轴承润滑流体动压润滑在轴承中起着至关重要的作用。
通过在轴承内部注入润滑油或润滑脂,形成一层流体膜,可以有效减小轴承的摩擦和磨损,延长轴承的使用寿命。
2. 涡轮机械在涡轮机械中,流体动压润滑可以有效地降低叶轮和导向叶片之间的摩擦,提高机械的效率和可靠性。
3. 液力传动装置流体动压润滑在液力传动装置中起着重要的作用。
通过在液力传动装置内部注入润滑油,形成一层流体膜,可以有效减小传动装置的摩擦和磨损,提高传动效率和可靠性。
4. 液压系统在液压系统中,流体动压润滑可以减小液压泵和液压缸之间的摩擦和磨损,提高系统的工作效率和可靠性。
流体动压润滑理论(简介)在摩擦副两表面间被具有一定粘度的流体完全分开。
将固体间的外摩擦转化为流体的内摩擦。
以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低,这就是流体润滑。
它的发展与人们对滑轮和摩擦的研究密切相关发展简史时间人物经典理论及现象1883年塔瓦(Tower)流体动压现象1886年雷诺(Reynold)流体动压润滑理论及雷诺方程1.流体动压现象)当动环回转时,由于静环表面有很多微孔,动环的转动使其表面与静环表面上的微孔形成收敛缝隙流体膜层,使每一个孔都像一个微动力滑动轴承。
也就是说,当另一个表面在多孔端面上滑动时,会在孔的上方及其周边产生流体动压力,这就是流体动压效应。
(实例)流体动压润滑——流体动压润滑是依靠运动副两个滑动表面的形状,在其相对运动时,形成产生动压效应的流体膜,从而将运动表面分隔开的润滑状态。
特点) a.流体的粘度,一般遵循粘性切应力与切应变率成比例规律 b.楔形润滑膜,依靠运动副的两个滑动表面的几何形状,在相对运动时产生收敛型流体楔,形成足够的承载压力,以承受外载荷。
形成动压润滑的条件:a.润滑剂有足够的粘度 b.足够的切向运动速度(或者轴颈在轴承中有足够的转速) c.流体楔的几何形状为楔形(轴在轴承中有适当的间隙)2.流体动压润滑理论)在摩擦副两表面间被具有一定粘度的流体完全分开。
将固体间的外摩擦转化为流体的内摩擦。
以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低。
滑动轴承运动副间要现成流体薄膜,必须使运动副锲形间隙中充满能够吸附于运动副表面的粘性流体,并且运动副表面相对运动可以带动润滑流体由大端向间隙小断运动,从而建立起布以承受载荷。
它的发展与人们对滑轮和摩擦的研究密切相关。
流体润滑具有极低的摩擦阻力,摩擦系数在0.001~0.008或更低(气体润滑),并能有效地降低磨损。
流体润滑的分类:根据液体压力形成的方式可分为流体静压润滑和流体动压润滑。