直线与方程章末复习课
- 格式:docx
- 大小:141.22 KB
- 文档页数:2
【课题】:《直线与方程》小结与复习【教学目标】:(1)知识与技能:通过小结与复习,帮助学生梳理本章知识内容,掌握本章的基础知识,强化知识间的内在联系;通过例题讲解和进一步的训练,提高学生灵活运用本章知识解决问题的能力.(2)过程与方法:在问题探究的过程中,让学生体会用代数的表达式来研究几何的思想方法,加深对本章知识的理解,培养学生分析问题解决问题的能力。
(3)情感态度与价值观:通过精心设计适宜的教学情境,让学生在师生和谐、互动的氛围中,轻松地、主动地掌握基本知识和基本技能;在问题探究的过程中,培养学生积极进行数学交流、勇于探索的科学精神。
【教学重点】:本章知识内容的梳理以及知识、方法的运用【教学难点】:本章知识的灵活运用【课前准备】:Powerpoint或投影片【教学过程设计】:PB 的倾斜角最大,PC 的倾斜角次之,PA 的倾斜角最小.这点可用三角形的外角性质去帮助理解.设PA 的倾斜角为α1,PC 的倾斜角为α,PB 的倾斜角为α2,α1<α<α2,12,,2παααπ<<,正切函数为增函数。
12tan tan tan ααα<<,∴152k -≤≤-解法二:可以实实在在地去求解,再来判断k 的取值范围.过A 、B 两点的直线为30x y --=,若要使直线y=kx +k +2与线段AB有交点,则方程组302x y y kx k --=⎧⎨=++⎩在[][]0,33,0x y ∈∈-或上有解,得5031k x k --≤=≤-,∴152k -≤≤-【思考】为什么只考虑[]0,3x ∈,是否还应当去考虑[]3,0y ∈-呢?例2.设△ABC 的顶点A(1,3),边AB 、AC 上的中线所在直线的方程分别为210x y -+=,y=1,求△ABC 中AB 、AC 各边所在直线的方程.【讲评】为了搞清△ABC 中各有关元素的位置状况,我们首先根据已知条件,画出单图,帮助思考问题.设AC 的中点为F ,AC 边上的中线BF :y=1.AB 边的中点为E ,AB 边上中线CE :210x y -+=.设C 点坐标为(m ,n).在A 、C 、F 三点中,A 点已知,C 点未知,F 虽为未知但其在中线BF 上,满足y=1这一条件.则12132FFm x n n y+⎧=⎪⎪⇒=-⎨+⎪=⎪⎩∵C 点在中线CE 上,应当满足CE 的方程,则m -2n +1=0.∴m=-3. ∴C 点为(-3,-1).用同样的思路去求B 点:设B 点为(a ,b),显然b=1.又B 点、A 点、E 点中,E 为中点,C 点为(a ,1),131(,)22a E ++即1(,2)2aE +,E 在CE 上,∴1+a4102-+=解得5a =,∴B 点为(5,1). 下面由两点式,就很容易的得到AB ,AC 所在直线的方程 :20,:270AC x y AB x y -+=+-=.〖评析〗这题思路较为复杂,做完后应当从中领悟到两点: (1)中点公式要灵活应用;(2)如果一个点在直线上,则这点的坐标满足这条直线的方程,这观念必须牢牢地树立起来.四、拓展训练1.已知点A(1,1)和点B(3,3),则在x 轴上必存在一点P ,使得从A 出发的入射光线经过点P 反射后经过点B ,点P 的坐标为__________. 2.已知点M (4,2)与N (2,4)关于直线l 对称,则直线l 的方程为对学生运用知识解决问题的能力进行训练,提倡学生进练习与测试1.如果直线0=++C By Ax 的倾斜角为45,则有关系式( )A.B A = B.0=+B A C.1=AB D.以上均不可能 2.直线,031=-+-k y kx 当k 变动时,所有直线都过定点( )A .(0,0)B .(0,1)C .(3,1)D .(2,1)3.过点(1,3)且与原点距离为1的直线有( )A.3条B. 2条C. 1条D. 0条4.设直线0123201832,06232=+-=+-=++y mx y m x y x 和围成直角三角形,则m 的取值是( )A .01或±B .或094-C .941,0或--D .941-或- 5.如果0<ac 且0<bc ,那么直线0=++c by ax 不通过( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 6.直线l 与直线0632=-+y x 关于点)1,1(-对称,则直线l 的方程是( )A 、0223=+-y xB 、0732=++y xC 、01223=--y xD 、0832=++y x7.与两平行直线:1l :;093=+-y x l 2:330x y --=等距离的直线方程为 . 8.一束光线从点(1,1)A -出发,经x 轴反射到点(2,3)O ,光线经过的最短路程是 . 9.直线()0232=++-t y x t 不经过第二象限,则t 的取值范围是 .10.已知两直线01012211=++=++y b x a y b x a 和都通过点()3,2P ,则经过两点()()222111,,b a Q b a Q 、的直线方程是 .11.已知直线l 过点(1,2),且与x ,y 轴正半轴分别交于点A 、B (1)求△AOB 面积为4时l 的方程;(2)求l 在两轴上截距之和为+3l 的方程.12.△ABC 中,A (0,1),AB 边上的高线方程为x +2y -4=0,AC 边上的中线方程为2x +y -3=0,求AB ,BC ,AC 边所在的直线方程.答案与解析: 1—6.BCBCCD .7.设所求直线方程为03=+-c y x ,则10|3|10|9|+=-c c ,解得3=c ,故所求直线方程为3x-y+3=0.8.点B (2,3)关于x 轴的对称点是C (2,-3),光线经过的最短路程与A ,C 两点的距离相等,故光线经过的最短路程为5.9.因为直线()0232=++-t y x t 不经过第二象限,所以232--t >0且2t-<0,解得∈t )23,0(. 10.因为两直线01012211=++=++y b x a y b x a 和都通过点()3,2P ,所以013201322211=++=++b a b a 和,即点()()222111,,b a Q b a Q 、的坐标都满足方程2x+3y+1=0,从而经过两点()()222111,,b a Q b a Q 、的直线方程是2x+3y+1=0.11.设直线l 的方程为),1(2-=-x k y k<0,则直线l 在x ,y 轴上的截距分别为k21-,2-k. ① 当△AOB 面积为4时,4)2)(21(21=--k k,解得k=-2,从而直线l 的方程为2x+y-4=0;②当l 在两轴上截距之和为+3(k21-)+(2-k )= +3,解得2-=k ,从而求得直线l 的方程2x-y-2-2=0.12.因为AB 边与AB 边上的高线方程x +2y -4=0垂直,所以由点斜式得AB 边所在的直线方程为x y 21=-,即012=+-y x ;AC 边的中点M 在AC 边上的中线方程2x +y -3=0上,可设)23,(a a M -,则)45,2(a a C -,由点C 在AB 边上的高线方程x +2y -4=0上可求得1=a ,所以C (2,1),又联立AB 边所在的直线方程012=+-y x 和AC 边上的中线方程2x +y -3=0求得)2,21(B ,于是由两点式即可求得BC ,AC 边所在的直线方程0732=-+y x ,y =1.故AB ,BC ,AC 边所在的直线方程分别是012=+-y x ,0732=-+y x ,y =1.。
直线与方程章节复习1. 掌握直线的倾斜角的概念、斜率公式;2. 掌握直线的方程的几种形式及其相互转化,以及直线方程知识的灵活运用;.各公式的灵活运用;理解直线五种方程形式之间的联系与区别,能根据具体的已知条件选择一.直线的倾斜角与斜率1.倾斜角的定义 ,倾斜角α的范围 ,斜率公式k = ,或 .二.直线的方程1. 点斜式:00()y y k x x -=-2. 斜截式:y kx b =+3. 两点式:112121y y x x y y x x --=-- 4. 截距式:1x y a b+= 5. 一般式:0Ax By C ++=三.两直线的位置关系系数间的关系 斜率之间的关系1. 两直线平行:2. 两直线相交: ⑴两直线垂直: ⑵两直线相交3. 两直线重合:四.距离1. 两点之间的距离公式 ,2. 点线之间的距离公式 ,3. 两平行直线之间的距离公式 .二、例题讲解:※ 典例分析例1 已知直线l 的斜率为k ,倾斜角为a ,若-1<k<1,则a 的取值范围为例2求经过直线3260x y ++=和2570x y +-=的交点,且在两坐标轴上的截距相等的直线方程.例3已知两直线1:40l ax by -+=,2:(1)l a x y -+0b +=,求分别满足下列条件的,a b 的值. ⑴直线1l 过点(3,1)--,并且直线1l 与直线2l 垂直;⑵直线1l 与直线2l 平行,并且坐标原点到12,l l 的距离相等.※ 动手试试练1. 方程(1)210()a x y a a R --++=∈所表示的直线( ).A .恒过定点(2,3)-B .恒过定点(2,3)C .恒过点(2,3)-和(2,3)D .都是平行直线练2.设直线l 的方程为(2)3m x y m ++=,根据下列条件分别求m 的值. ⑴l 在x 轴上的截距为2-;⑵斜率为1-.三、总结提升:1. 点(3,9)关于直线3100x y +-=对称的点的坐标是( ).A .(1,3)-- B.(17,9)-C .(1,3)-D .(17,9)-2.已知点(3,)m 到直线40x -=的距离等于1,则m =( ).A B . C . D 3.已知(3,)P a 在过(2,1)M -和(3,4)N -的直线上,则a = .4. 将直线(2)y x =-绕点(2,0)按顺时针方向旋转30o ,所得的直线方程是 .5.已知直线12:220,:1l x ay a l ax y +--=+-a -0=.⑴若12//l l ,试求a 的值;⑵若12l l ⊥,试求a 的值。
(浙江专用)2018版高中数学第三章直线与方程章末复习课学案新人教A 版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专用)2018版高中数学第三章直线与方程章末复习课学案新人教A版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专用)2018版高中数学第三章直线与方程章末复习课学案新人教A版必修2的全部内容。
第三章直线与方程章末复习课1。
直线的倾斜角与斜率(1)倾斜角与斜率从“形”和“数”两方面刻画了直线的倾斜程度,但倾斜角α是角度(0°≤α〈180°),是倾斜度的直接体现;斜率k是实数(k∈(-∞,+∞)),是倾斜程度的间接反映.在解题的过程中,用斜率往往比用倾斜角更方便.(2)倾斜角与斜率的对应关系:当α=90°时,直线的斜率不存在;当α≠90°时,斜率k=tan α,且经过两点A(x1,y1),B(x2,y2)(x1≠x2)的直线的斜率k AB=错误!。
(3)当α由0°→90°→180°(不含180°)变化时,k由0(含0)逐渐增大到+∞(不存在),然后由-∞(不存在)逐渐增大到0(不含0)。
2。
直线的五种方程及比较名称方程常数的几何意义适用条件点斜式y-y0=k(x-x0)(x0,y0)是直线上的一个定点,k是斜率直线不垂直于x轴斜截式y=kx+b k是斜率,b是直线在直线不垂直于x轴线,两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直和过原点的直线,一般式虽然可以表示任何直线,但要注意A2+B2≠0,必要时要对特殊情况进行讨论。
1
§ 3.3.3章未复习提高
1. 掌握直线的倾斜角的概念、斜率公式;
2. 掌握直线的方程的几种形式及其相互转化,以
及直线方程知识的灵活运用;
3. 掌握两直线位置关系的判定,点到直线的距离
公式及其公式的运用
.
一.直线的倾斜角与斜率 1.倾斜角的定义, 倾斜角α的范围, 斜率公式k =,或.
二.直线的方程
三.两直线的位置关系
四.距离
1. 两点之间的距离公式, 2. 点线之间的距离公式,
3. 两平行直线之间的距离公式.
二、新课导学:
※ 典例分析
例1如图菱形ABCD 的60O BAD ∠=,求菱形各边和两条对角线所在直线的倾斜角和斜率.
例2 已知在第一象限的ABC ∆中,(1,1),(5,1)A B , 60,45O O A B ∠=∠=.求 ⑴AB 边的方程;
⑵AC 和BC 所在直线的方程.
例3求经过直线326x y
++=和2570x y +-=的交点,且在两坐标轴上的截距
相等的直线方程.
例
4 已知两直线1:40l a x
b y -+=,
2:(1)l a x y -+
0b +=,求分别满足下列条件的,a b 的值.
⑴直线1l 过点(3,1)--,并且直线1l 与直线2l 垂
直;⑵直线1l 与直线2l 平行,并且坐标原点到12,l l 的距离相等.
例5 过点(4,2)P 作直线l 分别交x 轴、y 轴正半轴于,A B 两点,当AOB ∆面积最小时,求直线l 的方程.
2
※ 动手试试
练1. 设直线l 的方程为(2)3m x y m ++=,根据下列条件分别求m 的值.
⑴l 在x 轴上的截距为2-; ⑵斜率为1-.
练2.已知直线l 经过点(2,2)-且与两坐标轴围成单位面积的三角形,求该直线的方程.
练3.(对称问题)已知点A 的坐标为(-4,4),直
线l 的方程为3x +y -2=0,求:
(1)点A 关于直线l 的对称点A ′的坐标;
(2)直线l 关于点A 的对称直线l '的方程.
三、总结提升:
※ 学习小结
1.理解直线的倾斜角和斜率的要领,掌握过两点的斜率公式;掌握由一点和斜率写出直线方程的方法,掌握直线方程的点斜式、两点式、一般 式,并能根据条件熟练地求出直线方程.
2.掌握两条直线平行和垂直的条件,点到直线的距离公式;能够根据直线方程判断两直线的位置关系.
※ 自我评价 你完成本节导学案的情况为( ). A. 很好
B. 较好
C. 一般
D. 较差 ※ 当堂检测(时量:5分钟 满分:
10分)计分:
1. 点(3,9)关于直线3100x y +-=对称的点的坐标是( ).
A .(1,3)-- B.(17,9)- C .(1,3)- D .(17,9)-
2.方程(1)210()a x y a a R --++=∈所表示的直线( ).
A .恒过定点(2,3)-
B .恒过定点(2,3)
C .恒过点(2,3)-和(2,3)
D .都是平行直线 3.已知点(3,)m 到直线40x -=的距离等于1,则m =( ).
A B . C . D
4.已知(3,)P a 在过(2,1)M -和(3,4)N -的直线上,则a =.
5. 将直线2)y x =-绕点(2,0)按顺时针方向旋转30o ,所得的直线方程是. 1.已知直线12:220,:1l x ay a l ax y +--=+-a - 0=.
⑴若12//l l ,试求a 的值;
⑵若12l l ⊥,试求a 的值
2.两平行直线12,l l 分别过点1(1,0)P 和(0,5)P , ⑴若1l 与2l 的距离为5,求两直线的方程; ⑵设1l 与2l 之间的距离是d ,求d 的取值范围.。