形心重心计算公式
- 格式:docx
- 大小:15.91 KB
- 文档页数:4
材料力学形心计算公式材料力学是研究物质的内部结构和性质以及物质受力和变形规律的一门学科。
在材料力学中,形心是一个重要的概念,它可以帮助我们更好地理解物体的受力和变形情况。
在本文中,我们将介绍材料力学中形心的概念以及形心计算公式。
首先,让我们来了解一下形心的概念。
形心是一个物体几何形状的特征点,它可以用来描述物体的质量分布情况。
对于一个平面图形而言,形心通常是指该图形在均匀质量分布下的质心位置。
而对于一个立体物体而言,形心则是指该物体在均匀质量分布下的重心位置。
形心的计算可以帮助我们分析物体受力和变形的情况,对于工程设计和科学研究具有重要意义。
接下来,让我们来介绍一些常见图形的形心计算公式。
对于一个平面图形而言,常见的形心计算公式包括矩形、三角形、梯形和圆形等。
以矩形为例,其形心的计算公式为:\[ X = \frac{b}{2} \]\[ Y = \frac{h}{2} \]其中,\( X \) 和 \( Y \) 分别表示矩形的形心坐标,\( b \) 和 \( h \) 分别表示矩形的宽度和高度。
对于三角形而言,其形心的计算公式为:\[ X = \frac{a}{3} \]\[ Y = \frac{h}{3} \]其中,\( X \) 和 \( Y \) 分别表示三角形的形心坐标,\( a \) 和 \( h \) 分别表示三角形的底边长和高度。
对于梯形和圆形,其形心的计算公式也可以通过数学推导得出。
这些形心计算公式可以帮助我们在工程设计和科学研究中更好地分析和应用形心的概念。
除了平面图形外,对于立体物体而言,形心的计算也具有重要意义。
常见的立体物体包括长方体、圆柱体和球体等。
这些立体物体的形心计算公式可以通过积分或几何推导得出,它们可以帮助我们更好地理解立体物体的质量分布情况。
在工程设计中,形心的计算可以帮助我们确定物体的受力和变形情况,从而指导工程设计和结构分析。
在科学研究中,形心的计算也可以帮助我们深入理解物体的内部结构和性质,为科学研究提供重要参考。
对称图形对称位置的形心推导
当截面具有两个对称轴时,二者的交点就是该截面的形心。
据此,可以很方便的确定圆形、圆环形、正方形。
形心是一个对称轴的截面,一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。
把均匀平面薄片的重心叫做这平面薄片所占的平面图形的形心。
形心计算公式是∫∫Dxdxdy=重心横坐标×D的面积,∫∫Dydxdy=重心纵坐标×D的面积。
形心就是截面图形的几何中心,质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。
z轴上的形心=对y轴的静距/图形面积。
面的形心就是截面图形的几何中心,质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。
n维空间中一个对象X的几何中心或形心是将X分成矩相等的两部分的所有超平面的交点。
如果一个物件质量分布平均,形心便是重心。
形心重心的理论计算公式式中V=∑Vi。
在均质重力场中,均质物体的重心、质心和形心的位置重合。
五、均质等厚薄板的重心(平面组合图形形心)公式:令式中的∑A i.x i=A.x c=S y;∑A i.y i=A.y c=S x则S y、S x分别称为平面图形对y轴和x轴的静矩或截面一次矩。
六、物体重心位置的求法工程中,几种常见的求物体重心的方法简介如下:1、对称法凡是具有对称面、对称轴或对称中心的简单形状的均质物体,其重心一定在它的对称面、对称轴和对称中心上。
对称法求重心的应用见下图。
2、试验法对于形状复杂,不便于利用公式计算的物体,常用试验法确定其重心位置,常用的试验法有悬挂法和称重法。
(1)、悬挂法利用二力平衡公理,将物体用绳悬挂两次,重心必定在两次绳延长线的交点上。
悬挂法确定物体的重心方法见图(2)、称重法对于体积庞大或形状复杂的零件以及由许多构件所组成的机械,常用称重法来测定其重心的位置。
例如,用称重法来测定连杆重心位置。
如图。
设连杆的重力为G ,重心C点与连杆左端的点相距为Xc,量出两支点的距离L,由磅秤读出B端的约束力F B,则由∑M A(F)=0 F B.L-G.x c=0x c=F B.L/G(3)、分割法:工程中的零部件往往是由几个简单基本图形组合而成的,在计算它们的形心时,可先将其分割为几块基本图形,利用查表法查出每块图形的形心位置与面积,然后利用形心计算公式求出整体的形心位置。
此法称为分割法。
下面是平面图形的形心坐标公式:(4)、负面积法:仍然用分割法的公式,只不过去掉部分的面积用负值。
3、查表法在工程手册中,可以查出常用的基本几何形体的形心位置计算公式。
下面列出了几个常用的图形的形心位置计算公式和面积公式。
四、求平面图形的形心举例例1 热轧不等边角钢的横截面近似简化图形如图所示,求该截面形心的位置。
解:方法一(分割法):根据图形的组合情况,可将该截面分割成两个矩形Ⅰ,Ⅱ,C1和C2分别为两个矩形的形心。
1、形心
形心是几何构形的中心,没有物理含义,是对几何构形上所有点的位置的一种等
效,设形心位置为c r r ,则计算公式如下
c rdv r V =⎰
r r 或i
ci x dv x V
=⎰
2、质心
质心是用来等效物体质量分布的一个几何点,由计算物体动量引出,这里假设物体密度为常数
m m d d d vdv rdv m r V r dt dt dt
ρρρ====⎰⎰p r r r r m rdv r V ⇒=⎰r r 或i mi x dv x V
=⎰ 可见,当物体质量分布均匀时质心与形心重合。
若物体密度并非常数,则 m rdv r dv
ρρ⇒=⎰⎰r r 3、重心
重心是用来等效物体重力作用的一个几何点,由计算物体对坐标原点的重力矩引出,这里假设物体密度为常数
()o g g g g M g r i dv g rdv i gVr i ρρρ=⨯=⨯=⨯⎰⎰r r r r r r
g rdv r V ⇒=⎰r r
可见在重力场中,对于质量分布均匀的物体,重心、质心、形心三者重合。
T字型截面形心计算公式
T字型截面的形心是指截面所有形状的重心,它是计算截面抵抗弯曲力和剪切力的重要参数。
计算T字型截面形心的公式如下:χ = [(b1*d1^2/2) + (b2*d2^2/2)] / [(b1*d1) + (b2*d2)]
其中,χ为形心距底板距离的比例系数,b1和b2分别为T字型截面上下底板的宽度,d1和d2分别为T字型截面上下底板到形心的距离。
解释:公式的分子部分故名思义是对应矩的计算,即以底板作为基准面,分别计算上下板的对应矩(moment),然后加起来。
而分母部分是对应力的计算,即底面积乘以距离,也就是总的力矩。
这个公式的计算方法是先通过横截面图形上套用静力学平衡原理求得图形的惯性矩,然后再通过求和、平均,求得形心的位置。
这个公式常用于建筑物结构、机械设计以及船舶工程等领域。
形心积分公式形心积分公式是数学中的一个重要概念,它在曲线的弧长、曲线的面积等问题中有着广泛的应用。
本文将介绍形心积分公式的定义和应用,并结合具体例子进行解析,帮助读者更好地理解和应用这一公式。
形心积分公式是指通过对曲线上的点进行加权求和,得到曲线的形心坐标的一种数学方法。
形心坐标即曲线所围成的图形的中心位置,也称为质心或重心。
形心积分公式的一般形式为:\[ X = \frac{\int_{a}^{b} x \cdot ds}{\int_{a}^{b} ds} \]\[ Y = \frac{\int_{a}^{b} y \cdot ds}{\int_{a}^{b} ds} \]其中,\( (x, y) \) 表示曲线上的点的坐标,\( ds \) 表示曲线上的一个微小线段,\( a \) 和 \( b \) 表示曲线上的起点和终点。
形心积分公式的意义在于,通过对曲线上的每个点进行加权求和,可以得到曲线形状的中心位置。
在计算形心时,我们通常将曲线分成无数个微小线段,在每个微小线段上取一点,然后对这些点进行加权求和,最终得到形心坐标。
下面我们通过一个具体的例子来说明形心积分公式的应用。
假设有一段曲线,其方程为 \( y = x^2 \),我们希望计算这段曲线的形心坐标。
我们需要对曲线进行参数化,以便进行积分计算。
令 \( x = t \),则\( y = t^2 \),其中 \( t \) 的取值范围为 \( [0, 1] \)。
将 \( x \) 和\( y \) 分别代入形心积分公式中,得到:\[ X = \frac{\int_{0}^{1} t \cdot \sqrt{1 + (dx/dt)^2} \cdot dt}{\int_{0}^{1} \sqrt{1 + (dx/dt)^2} \cdot dt} \]\[ Y = \frac{\int_{0}^{1} t^2 \cdot \sqrt{1 + (dx/dt)^2} \cdot dt}{\int_{0}^{1} \sqrt{1 + (dx/dt)^2} \cdot dt} \]其中,\( dx/dt = 1 \)。
形心重心计算公式形心和重心是两个不同的概念,在几何中具有不同的定义和计算方法。
形心(Centroid)形心是指一个物体或一个几何图形的几何中心,也被称为几何中心或质心。
它是物体或图形对称性的中心点,可以通过将图形切分成小的区域然后计算每个小区域的中心来确定。
对于一个平面图形而言,形心是该图形内部所有点的平均值。
形心可以用于许多计算,例如计算物体的平衡点、计算物体的质量分布等。
重心(Center of Mass)重心是指物体的质量中心。
物体的重心是物体质量分布的平均位置,也可以理解为物体质量对于各个部分质量的加权平均。
通过计算物体各个部分的质量与位置的乘积之和,再除以总质量,可以得到物体的重心位置。
对于一个平面图形或平面物体而言,重心可以通过将图形或物体拆分成小的区域,并计算每个小区域的质量与位置的乘积之和,再除以总质量来确定。
下面以常见的二维几何图形为例,介绍如何计算形心和重心。
1.三角形对于一个三角形而言,可以将其分为三个小三角形。
假设三个顶点的坐标分别为A(x1,y1),B(x2,y2),C(x3,y3)。
形心的计算公式为:形心的x坐标=(x1+x2+x3)/3形心的y坐标=(y1+y2+y3)/3重心的计算公式为:重心的x坐标=(m1*x1+m2*x2+m3*x3)/(m1+m2+m3)重心的y坐标=(m1*y1+m2*y2+m3*y3)/(m1+m2+m3)其中,m1,m2,m3为各个小三角形的质量,也可以看作是各个小三角形的面积。
一般来说,可以假设各个小三角形的质量相同。
2.矩形对于一个矩形而言,可以将其视为四个小三角形。
假设矩形的左下角顶点坐标为A(x1,y1),右下角顶点坐标为B(x2,y2),右上角顶点坐标为C(x3,y3),左上角顶点坐标为D(x4,y4)。
形心的计算公式为:形心的x坐标=(x1+x2+x3+x4)/4形心的y坐标=(y1+y2+y3+y4)/4重心的计算公式为:重心的x坐标=(m1*x1+m2*x2+m3*x3+m4*x4)/(m1+m2+m3+m4)重心的y坐标=(m1*y1+m2*y2+m3*y3+m4*y4)/(m1+m2+m3+m4)其中,m1,m2,m3,m4为各个小三角形的质量,也可以看作是各个小三角形的面积。
工字钢形心位置计算公式
形心坐标计算公式:Dxdxdy=重心横坐标×D的面积,Dydxdy=重心纵坐标×D的面积。
形心就是截面图形的几何中心,质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。
n维空间中一个对象X的几何中心或形心是将X分成矩相等的两部分的所有超平面的交点。
非正式地说,它是X中所有点的平均。
如果一个对象具有一致的密度,或者其形状和密度具有某种对称性足以确定几何中心,那么它的几何中心和质量中心重合,该条件是充分但不是必要的。
§3-4 重心与形心一、重心的概念:1、重心的有关知识,在工程实践中就是很有用的,必须要加以掌握。
2、重力的概念:重力就就是地球对物体的吸引力。
3、物体的重心:物体的重力的合力作用点称为物体的重心。
无论物体怎样放置,重心总就是一个确定点,重心的位置保持不变。
二、重心座标的公式:(1)、重心座标的公式三、物体质心的坐标公式在重心坐标公式中,若将G=mg,G i=m i g代入并消去g,可得物体的质心坐标公式如下:四、均质物体的形心坐标公式若物体为均质的,设其密度为ρ,总体积为V,微元的体积为V i,则G=ρgV,G i=ρgV i,代入重心坐标公式,即可得到均质物体的形心坐标公式如下:式中V=∑Vi。
在均质重力场中,均质物体的重心、质心与形心的位置重合。
五、均质等厚薄板的重心(平面组合图形形心)公式:令式中的∑A i、x i=A、x c=S y;∑A i、y i=A、y c=S x则S y、S x分别称为平面图形对y轴与x轴的静矩或截面一次矩。
六、物体重心位置的求法工程中,几种常见的求物体重心的方法简介如下:1、对称法凡就是具有对称面、对称轴或对称中心的简单形状的均质物体,其重心一定在它的对称面、对称轴与对称中心上。
对称法求重心的应用见下图。
2、试验法对于形状复杂,不便于利用公式计算的物体,常用试验法确定其重心位置,常用的试验法有悬挂法与称重法。
(1)、悬挂法利用二力平衡公理,将物体用绳悬挂两次,重心必定在两次绳延长线的交点上。
悬挂法确定物体的重心方法见图(2)、称重法对于体积庞大或形状复杂的零件以及由许多构件所组成的机械,常用称重法来测定其重心的位置。
例如,用称重法来测定连杆重心位置。
如图。
设连杆的重力为G ,重心C点与连杆左端的点相距为Xc,量出两支点的距离L,由磅秤读出B端的约束力F B,则由∑M A(F)=0 F B、L-G、x c=0x c=F B、L/G(3)、分割法:工程中的零部件往往就是由几个简单基本图形组合而成的,在计算它们的形心时,可先将其分割为几块基本图形,利用查表法查出每块图形的形心位置与面积,然后利用形心计算公式求出整体的形心位置。
抛物叶形线的形心公式
形心计算公式:∫∫Dxdxdy=重心横坐标×D的面积,∫∫Dydxdy=重心纵坐标×D的面积。
形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。
多边形的中心(形心)由下式给出:
关于形心的性质:
1、一个凸对象的几何中心总在其内部。
一个非凸对象的几何中心可能在外部,比如一个环或碗的几何中心不在内部。
2、三角形的重心与三顶点连线,所形成的六个三角形面积相等。
3、顶点到重心的距离是中线的三分之二。
4、重心、外心、垂心、九点圆圆心四点共线。
5、重心、内心、奈格尔点、类似重心四点共线。
6、三角形的重心同时也是中点三角形的重心。