原子钟频率标准
- 格式:ppt
- 大小:2.39 MB
- 文档页数:55
铷原子频标基于铷原子能级跃迁结合光抽运技术形成的铷原子振荡器。
由晶体振荡器(VCO)输出的信号经过倍频综合后得到铷原子谐振器相关的微波激励信号。
谐振器将该信号相关处理(铷原子跃迁判定)后产生误差信号,再经伺服电路反馈给压控晶体振荡器,使压控晶振频率锁定在铷谐振器的中心频率,从而实现以铷原子跃迁为参考的晶体振荡器。
铷原子钟溯源同步到GPS卫星铯原子钟上,输出频率几乎没有漂移,所以不需送上级计量部门进行周期校准,性能接近铯钟,但却远远低于铯钟的价格,而且不存在铯钟那样铯束管寿命短需要高成本更换的问题。
铷原子钟非常适合应用于SDH数字同步网的1,2级节点时钟,为电力、电信、广电、时统、计量校准、雷达设备等提供高精度的时间和频率基准。
主要特点1内置铷振荡器2.日平均频率准确度<2×10P-12P3.时间实时显示4.驯服、保持自动切换5.GPS失锁后依靠铷钟高精度守时6.低相噪频率信号输出7.测频精度<2×10P-12P/天8.具备TRAIM算法的GPS接收机铷频率标准不需要真空系统、致偏磁铁和原子束,因而体积小、质量小、预热时间短、价格便宜,但准确度差、频率漂移比较大,仅能用作二级标准。
铷频率标准可通过GPS进行快速驯服和外秒同步,克服铷振荡器本身的漂移,可被看作是一个基本的同步时钟单元。
通过设计和工艺的改进,产品的可靠性和批量生产也得到保证,现已具备产业化的条件。
可以预计,这种带外秒驯服的高性能小型化铷钟将应用于无人值守等苛刻环境,将大大拓展铷钟的应用领域。
铷原子频率标准常常被分为普通型、军用型、航天型。
SYN3102型铷原子频率标准产品概述SYN3102型铷原子频率标准是是西安同步电子科技有限公司研发生产的一款高性能铷原子频率标准源,选用国外进口的高精度铷原子振荡器,提供精确的频率(量值)信号,能够为计量、通信、国防等部门提供高精度频率标准信号。
产品功能1)提供一路标准的10MHz正弦信号;产品特点a)锁定快;b)低相噪;c)高可靠性;d)可长期连续稳定工作。
CPT原子钟,即基于相干布局囚禁(Coherent(Population(Trapping)原理实现的原子钟,是一种芯片级原子钟。
CPT原子钟的型号包括但不限于以下几种:
1.SA.45S:由美国Symmetricom公司发布,整机功耗为115mW,体积为16cm³,频
率稳定度为2×10−10τ−1/2,启动时间为120s。
2.SA.53m/SA.55m:由Microchip公司发布,该系列原子钟充分借助CSAC和前代
SA.3Xm产品的CPT技术,是微型原子振荡器的新进展。
3.SYN010H:国产芯片级原子钟,采用国产元器件和工艺研制而成,工作温度范围-
40℃~+75℃,可在该温度范围内保证PPb量级的频率精度。
其外形及安装尺寸兼容SA.45s,具有低功耗、小尺寸、快启动的优点,可广泛应用于多种便携式设备及无人值守时频设备中。
这些原子钟型号各有其特点和优势,选择时需要根据具体的应用场景和需求进行考虑。
量子测量术语1 范围本文件规定了量子测量相关的基本术语和定义。
本文件适用于量子测量相关标准制定、技术文件编制、教材和书刊编写以及文献翻译等。
2 规范性引用文件本文件没有规范性引用文件。
3 通用基础3.1量子测量quantum measurement利用量子的最小、离散、不可分割特性及量子自旋、量子相干、量子压缩、量子纠缠等特性,大幅提升经典测量性能的测量。
3.2量子计量quantum metrology基于基本物理常数定义国际单位制基本单位,利用量子系统、量子特性或量子现象复现测量单位量值或实现直接溯源到基本物理常数的测量,可用于其他高精度测量研究。
3.3量子传感quantum sensing利用量子系统、量子特性或量子现象实现的传感技术。
3.4量子态quantum state量子系统的状态。
3.5量子费希尔信息quantum Fisher information量子费希尔信息是经典费希尔信息的扩展,表征了量子系统状态对待测参数的敏感性,可用于确定参数测量的最高精度。
3.6海森堡极限Heisenberg limit根据海森堡不确定性关系,在给定的量子态下,量子系统的某个指定的可观测物理量受其非对易物理量测量不确定性的制约所能达到的测量精度极限。
3.7标准量子极限standard quantum limit由量子力学原理决定的噪声极限,即多粒子系统处于真空态时两个正交分量的量子噪声相等且满足海森堡最小不确定关系。
3.8散粒噪声shot noise散粒噪声,或称泊松噪声,是一种遵从泊松过程的噪声。
对于电子或光子,其散粒噪声来源于电子或者光子离散的粒子本质。
3.9量子真空涨落quantum vacuum fluctuation真空能量密度的随机扰动,是海森堡不确定原理导致的结果。
3.10量子噪声quantum noise测量过程中由于量子系统的海森堡不确定性引发的噪声。
3.11量子投影噪声quantum projection noise测量过程中由于量子投影测量结果的随机性所引发的噪声。
第2章原子钟概述2.1原子钟的定义原子钟,是一种利用原子、分子能级差为基准信号来校准晶体振荡器或激光器频率,以使其输出标准频率信号的一种装置。
它利用原子能级跃迁产生的光信号,通过光电转化、信号处理后获得用来修正晶振或激光器频率的负反馈纠偏信号,使其输出稳恒振荡频率,这种输出频率可以用来精确计量时间。
根据采用的原子种类和技术手段的不同,原子钟可以分为很多种。
因为特定原子能级之间的能极差是很稳定的,所以原子钟的准确度很高,可以达到千万年仅差一秒或者更高的水平。
2.2原子钟的发展历程在原子钟出现以前,最准确的计时工具是以晶体振荡器为代表的电子钟表和挂钟为代表的机械力学钟表,它们几乎可以满足人们的如常生活需要,但是在对计时准确度要求较高的科研或生产领域还是不能满足要求。
原子钟的发展,最早可以追溯到1938年,美国哥伦比亚大学的拉比(Rabi)和他的学生发明了分子束磁共振技术。
他们用磁共振技术观察到了原子超精细能级间的跃迁,指出当一束原子通过一个振动的电磁场时,电磁场的振动频率越接近超精细能级间的跃迁频率,原子从电磁场吸收的能量就会越多,从而使更多原子跃迁。
他们由此提出应用反馈回路可以调节电磁场的振动频率,直到所有原子都可以跃迁。
这就是实现原子钟的基本理论基础。
通过使电磁场振动频率与原子精细能级跃迁频率共振,用电磁场的共振频率调节晶体振荡器的频率,就能使晶振频率严格跟随电磁场振动频率,实现频率输出的准确性和稳定性。
再通过相应的控制、调节系统,就能使晶振输出准确、稳恒的振动频率,用这个频率为基准,就可以实现精确时。
1949年,在美国诞生了以氨分子为样品的世界上第一台原子钟,其输出频率为23.8GHz。
与当时最精确的石英钟相比,它已经相当精确了。
但是它由众多器件构成,体型巨大,对于大应用领域来说,实用性不强。
1955年,在英国国家物理实验室建成了第一台铯原子钟。
1960年,拉姆齐(N.Ramsey)等人成功研制出第一台氢原子钟,通常人们把它叫做氢微波激射器(H maser)。
原子钟稳定的与误差
原子钟是一种高精度的时间计量工具,利用原子能级跳跃时辐射出来的电磁波来控制和校准石英钟,因此具有极高的稳定度。
一般来说,原子钟的稳定度通常在2E-15左右,日均误差只有2E-11秒左右或
2E-10秒左右。
由于原子钟使用的原子跃迁频率非常稳定,因此其计时精度非常高,能够达到很高的时间计量精度。
尽管如此,原子钟也不是完美的,仍然存在一些误差和不稳定因素。
例如,环境温度、电磁噪声、机械振动等都可能对原子钟的精度产生影响。
此外,原子钟的制造工艺、材料质量、老化等因素也可能导致误差。
因此,为了获得更准确的计时结果,需要对原子钟进行定期校准和维护。
同时,原子钟也需要与其他高精度时间计量工具进行比对,以确保其精度和可靠性。
原子钟的精确值
一、引言
原子钟是目前最精确的时间测量工具,其精确度高达每秒钟误差不到一秒。
本文将深入探讨原子钟的精确值。
二、什么是原子钟?
1. 原理:利用原子的振荡频率作为时间标准。
2. 原子钟分类:
(1)氢原子钟:利用氢原子的超精细结构线作为频率标准。
(2)铷原子钟:利用铷原子的基态与第二激发态之间跃迁所产生的微波辐射作为频率标准。
(3)铯原子钟:利用铯133同位素基态与第一激发态之间跃迁所产生的微波辐射作为频率标准。
三、如何保证原子钟的精确度?
1. 稳定性:保持温度稳定,避免外界干扰。
2. 精度:使用高质量的晶体管、电容器等元器件,以及高品质的电源和时钟信号。
3. 参考信号源:使用GPS等全球卫星导航系统提供参考信号源,以保证时间同步。
四、与其他时间测量工具相比,原子钟有何优势?
1. 精确度高:误差不到一秒。
2. 稳定性好:不受温度、压力等外界因素的影响。
3. 可追溯性强:时间标准由国家授权机构统一制定,可追溯到国际原子时。
五、原子钟在哪些领域应用广泛?
1. 通信领域:保证通信设备之间的时间同步。
2. 导航领域:提供精确的时间参考,以确定位置和速度。
3. 科学研究领域:提供高精度的时间标准,以研究宇宙演化、地球物理学等领域。
六、结论
原子钟是目前最精确的时间测量工具,其精确度高达每秒钟误差不到一秒。
为保证其精确度,需要保持稳定性、使用高品质元器件和参考信号源。
原子钟在通信、导航和科学研究等领域应用广泛。
原子钟原理原子钟是一种利用原子的振动频率来计时的高精度钟表,其原理是通过测量原子的振动周期来实现精准的时间计量。
原子钟的发明和应用,极大地推动了精密时间测量和导航定位技术的发展,对现代科学技术和生活产生了深远的影响。
原子钟的工作原理基于原子的稳定振动特性。
在原子内部,电子围绕原子核以特定的轨道运动,当原子受到外部电磁波的激发时,电子会跃迁到更高能级的轨道上,然后再返回到原来的轨道释放出特定频率的电磁辐射。
这一过程的频率非常稳定,可以作为时间基准来进行精确计时。
原子钟通常利用铯、铷或氢原子来进行计时。
以铯原子钟为例,它的工作原理是通过激发铯原子的电子跃迁来产生微波信号,然后利用微波信号的频率来稳定地计量时间。
铯原子钟的工作频率为9,192,631,770赫兹,这一频率被国际上认可的时间单位秒的定义所采纳。
原子钟的精度非常高,可以达到每天误差仅为1秒以内。
这种高精度的计时能力使得原子钟成为现代科学研究、卫星导航、通信、金融交易等领域不可或缺的时间基准。
在卫星导航系统中,原子钟的应用更是至关重要,因为卫星的精确定位和时间同步需要依赖于原子钟提供的高精度时间信号。
除了在科学研究和技术领域的应用外,原子钟在日常生活中也有着重要的作用。
例如,全球定位系统(GPS)就是依赖原子钟提供的时间信号来实现全球范围内的精准导航定位服务。
此外,在金融交易、电信网络、电子设备同步等领域,原子钟的高精度时间信号也扮演着不可或缺的角色。
随着科学技术的不断发展,原子钟的精度和稳定性还在不断提升。
未来,原子钟有望在更多领域发挥作用,为人类社会的发展和进步提供更可靠的时间基准。
同时,原子钟的发展也将推动原子物理、量子科学等领域的研究,为人类认识和利用原子的特性提供更多可能性。
总之,原子钟作为一种基于原子振动频率的高精度计时装置,其原理和应用对现代科学技术和生活产生了深远影响。
通过对原子的精准计量,原子钟为人类社会提供了可靠的时间基准,推动了科学研究和技术创新的发展,成为现代社会不可或缺的重要设备。