三视图与直观图(讲义及答案)
- 格式:docx
- 大小:416.22 KB
- 文档页数:10
高三数学空间几何体的三视图与直观图试题答案及解析1.一个多面体的三视图如图所示,则该多面体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图,正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:V正方体-2V棱锥侧2×2×2−2×.故选:A.【考点】三视图求解几何体的体积.2.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..3.某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为()A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图,知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.长方体中EH=4,HG=4,GK=5,所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π,选A.4.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【答案】D【解析】由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示,可知左视图为等腰三角形,且轮廓线为实线,故选D.5.一个正方体截去两个角后所得几何体的正视图、侧视图如图所示,则其俯视图为()【答案】C【解析】依题意可知该几何体的直观图如图所示,故其俯视图应为C.6.某几何体的三视图如图所示,则该几何体的体积为A.12B.18C.24D.30【答案】C【解析】由三视图可知该几何体是一个底面为直角三角形的直三棱柱的一部分,其直观图如上图所示,其中,侧面是矩形,其余两个侧面是直角梯形,由于,平面平面,所以平面,所以几何体的体积为:故选C.【考点】1、空间几何体的三视图;2、空间几何体的体积.7.一块石材表示的几何体的三视图如图2所示,将石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B【解析】由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径,则,故选B.【考点】三视图内切圆球三棱柱8. [2013·四川高考]一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台【答案】D【解析】由正视图和侧视图可知,该几何体不可能是圆柱,排除选项C;又由俯视图可知,该几何体不可能是棱柱或棱台,排除选项A、B.故选D.9.[2013·宁波质检]如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥平面A1B1C1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为()A.2B.C.2D.4【答案】A【解析】由题意可知,该三棱柱的侧视图应为矩形,如图所示.在该矩形中,MM1=CC1=2,CM=C1M1=·AB=.所以侧视图的面积为S=2.10.某几何体的三视图如图所示,则该几何体的体积的最大值为 .【答案】【解析】该几何体是类似墙角的三棱锥,假设一条直角的棱长为x,则三条直角棱长分别为.所以体积为.当且仅当时取等号.【考点】1.三视图.2.函数最值问题.3.空间想象能力.11.(2012•广东)某几何体的三视图如图所示,它的体积为()A.12πB.45πC.57πD.81π【答案】C【解析】由三视图可知,此组合体上部是一个母线长为5,底面圆半径是3的圆锥,下部是一个高为5,底面半径是3的圆柱故它的体积是5×π×32+π×32×=57π故选C12. (2014·咸宁模拟)某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A.92+14πB.82+14πC.92+24πD.82+24π【答案】A【解析】由几何体的三视图知该几何体的下半部分是长方体,上半部分是半径为2,高为5的圆柱的一半.所以长方体的表面积为(去掉一个上底面)2(4×4+4×5)+4×5=92.半圆柱的两个底面积为π×22=4π,半圆柱的侧面积为π×2×5=10π,所以整个组合体的表面积为92+4π+10π=92+14π. 13.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为【答案】D【解析】条件对应的几何体是由底面棱长为r的正四棱锥沿底面对角线截出的部分与底面为半径为r的圆锥沿对称轴截出的部分构成的。
高三数学空间几何体的三视图与直观图试题答案及解析1.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为.【答案】2.【解析】由已知几何体的视图可知,几何体为四棱锥,其中SA垂直于平面ABCD,SA=2,四边形ABCD为直角梯形,AD=1,BC=2,AB=2,所以四棱锥的体积为【考点】三视图求几何体的体积.2.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.B.C.D.【答案】B【解析】由三视图知,原几何体是由一个长方体与一个三棱柱组成,其体积为,故选B.【考点】根据三视图还原几何体,求原几何体的体积,容易题.3.若某多面体的三视图(单位: cm)如图所示, 则此多面体的体积是()A.cm3B.cm3C.cm3D.cm3【答案】C【解析】由三视图可得,该几何体相当于一个正方体切去一个三个侧棱长为1的三棱锥.所以该几何体的体积为.故选C.【考点】1.三视图.2.空间想象力.3.几何体的体积.4. (2014·孝感模拟)一个几何体的三视图如图所示,其中俯视图与侧视图均为半径是2的圆,则这个几何体的表面积是( )A.16πB.14πC.12πD.8π【答案】A【解析】由三视图可知,该几何体是球挖去半球.其中两个半圆的面积为π×22=4π.个球的表面积为×4π×22=12π,所以这个几何体的表面积是12π+4π=16π.5.如图,某几何体的三视图都是等腰直角三角形,则几何体的体积是()A.8B.7C.9D.6【答案】C【解析】由三视图可知,几何体是底面为等腰直角三角形,有一侧棱与底面垂直(垂足在非直角处)的三棱锥,其底面面积为×6×3=9,三棱锥的高为3,所以三棱锥的体积=×9×3=9.6.已知某几何体的三视图(如图),正视图和侧视图均为两个相等的等边三角形,府视图为正方形,则几何体的体积为()A.B.4C.9D.9【答案】C【解析】由三视图可知,几何体由两个同底之正四棱锥组成所以其体积为V=2××32×3×=9 7.一空间几何体的三视图如图所示,该几何体的体积为12π+,则正视图中x的值为( )A.5B.4C.3D.2【答案】C【解析】三视图,由正四棱锥和圆柱组成,故选C.8.如图,一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积为()A.1B.2C.3D.4【答案】B【解析】由题意,棱锥的高为,底面面积为,∴.【考点】三视图,体积.9.某几何体的三视图如题(6)所示,其侧视图是一个边长为1的等边三角形,俯视图是两个正三角形拼成的菱形,则这个几何体的体积为()A.1B.C.D.【答案】C【解析】这是由两个三棱锥拼成的几何体,其体积为.选C.【考点】三视图及几何体的体积.10.―个几何体的三视图如图所示(单位:),则该几何体的体积为.【答案】18+9【解析】由三视图可知,此几何体为两个相切的球上方放了一个长方体组成的组合体,所以其体积为:V=3×6×1+2××=18+911.一个空间几何体的三视图如图所示,该几何体的表面积为__________.【答案】152【解析】几何体为一个三棱柱,底面为一个等腰三角形,底边长为6,底边上高为4,腰长为5.棱柱的高为8.因此表面积为【考点】三视图12.某三棱锥的三视图如图所示,则这个三棱锥的体积为;表面积为.【答案】;.【解析】由三视图知几何体如下图,为一个三棱锥,且三棱锥的一个侧面与底面垂直,底面三角形的一条边长为,该边上的高为,∴几何体的体积.它的表面积为.【考点】由三视图求面积、体积.13.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是_______.【答案】【解析】由题意可得该几何体是一个三棱锥,体积.【考点】1.三视图的知识.2.立几中的线面关系.3.三棱锥的体积公式.14.一个空间几何体的三视图如图所示,其正视图、侧视图、俯视图均为等腰直角三角形,且直角边长都为1,则这个几何体的体积是【答案】【解析】由三视图,可知该几何体是三棱锥,并且侧棱,,,则该三棱锥的高是,底面三角形是直角三角形,所以这个几何体的体积==.【考点】由三视图求几何体的体积.15.一个几何体的三视图如图所示,则该机合体的体积为( )A.B.C.D.【答案】B【解析】分析可得该几何体是底面为菱形的四棱锥,则高底面面积,所以.故选B【考点】三视图四棱锥体积16.一个几何体的三视图如图所示,则该几何体的体积是【答案】【解析】通过三视图的观察可得,该几何体是一个四棱柱,底面是一个直角梯形,其上下底分别为2,3,梯形的高为2.四棱柱的高为2.所以几何体的体积为.【考点】1.三视图的知识.2.几何体的体积.3.空间想象力.17.某长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4B.4C.6D.8【答案】D【解析】割补可得其体积为2×2×2=8.18.某几何体的三视图如图所示,则该几何体的体积是________.【答案】16π-16【解析】由三视图知,该几何体是由一个底面半径为2,高为4的圆柱内挖去一个底面边长为2,高为4的正四棱柱后剩下的部分,∴V=(π×22-22)×4=16π-16.19.已知正方体ABCD-A1B1C1D1,M为棱A1B1的中点,N为棱A1D1的中点.如图是该正方体被M,N,A所确定的平面和N,D,C1所确定的平面截去两个角后所得的几何体,则这个几何体的正视图为().【答案】B【解析】对于选项A,由于只是截去了两个角,此切割不可能使得正视图成为梯形.故A不对;对于B,正视图是正方形符合题意,线段AM的影子是一个实线段,相对面上的线段DC1的投影是正方形的对角线,由于从正面看不到,故应作成虚线,故选项B正确;对于C,正视图是正方形,符合题意,有两条实线存在于正面不符合实物图的结构,故不对;对于D,正视图是正方形,符合题意,其中的两条实线符合俯视图的特征,故D不对.20.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图所示,则该棱柱的体积为()A.B.C.D.6【答案】B【解析】由三视图知该直三棱柱高为4,底面正三角形的高为3,所以正三角形边长为6,所以V=×36×4=36.故选B.【考点】1.三视图;2.柱体体积计算.21.某由圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为的扇形,则该几何体的体积为()A.B.C.D.【答案】D【解析】由题意知道,该几何体体积是圆柱体积的,即.【考点】1、三视图;2、几何体体积.22.右图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为2和4,腰长为4的等腰梯形,则该几何体的侧面积是( )A.B.C.D.【答案】B【解析】由三视图可得该几何体是一个圆台,其两底直径分别为2和4,母线长为4,所以该几何体的侧面积是,选B..【考点】三视图,圆台的侧面积.23.如图是一个组合几何体的三视图,则该几何体的体积是 .A.B.C.D.【答案】A【解析】由三视图还原可知该几何体是一个组合体,下面是一个半径为4,高为8的圆柱,,上面是一个三棱柱,故所求体积为.【考点】三视图,圆柱、三棱柱的体积公式.24.已知一个几何体的三视图如图所示,则该几何体的体积为___________【答案】【解析】该几何体为圆柱中挖去半个球而得的组合体,其体积为.【考点】三视图.25.一个几何体的三视图如图所示(单位长度:),俯视图中圆与四边形相切,且该几何体的体积为,则该几何体的高为 .【答案】【解析】由如图所示的几何体的三视图知:这个几何体是一个半径为的球和一个直四棱柱的结合体,且这个直四棱柱的底面是对角线分别为和的棱形,这个直四棱柱的高为,∴这个几何体的体积:V=,解得h=.【考点】1.三视图;2.几何体的面积和体积26.一个几何体的三视图如图所示,则该几何体的直观图可以是()【答案】D【解析】通过三视图的俯视图可知,该几何体是由两个旋转体组成,故选D.【考点】1.三视图的应用.27.如图为一个几何体的三视图正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图所示,则该几何体的表面积为()A.B.C.D.【答案】D【解析】由三视图可知,这是一个由半个圆柱和一个三棱柱构成的组合体,这个组合体仍为一个柱体。
第八章 立体几何专题27 空间几何体的结构及其三视图和直观图考点1 空间几何体的结构1. 【2020年高考全国Ⅲ卷文数9理数8】如图为某几何体的三视图,则该几何体的表面积是 ( )A .6+B.4+ C .6+D .4+【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形,根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△,根据勾股定理可得:AB AD DB ===,∴ADB △是边长为211sin 6022ADB S AB AD =⋅⋅︒==△∴该几何体的表面积是:632=⨯++,故选C .2. 【2018年高考全国Ⅲ卷理数】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【答案】A【解析】本题主要考查空间几何体的三视图.由题意知,俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A .考点2 三视图与直观图1. 【2020年高考全国Ⅱ卷理数7】右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为 ( )A .EB F .C .GD .H 【答案】A【解析】根据三视图,画出多面体立体图形,图中标出了根据三视图M 点所在位置,可知在侧视图中所对应的点为E ,故选:A .2. 【2020年高考浙江卷5】某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:3cm )是( )A .73B .143C .3D .6【答案】A【解析】如图,几何体是上下结构,下面是三棱柱,底面是等腰直角三角形,斜边为2,高为1,三棱柱的高是2,上面是三棱锥,平面11DA C ⊥平面111A B C ,且11DA DC =,三棱锥的高是1,∴几何体的体积11172122112323V =⨯⨯⨯+⨯⨯⨯⨯=.故选A .3. 【2020年高考北京卷4】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( )A .6B .6+C .12D .12+【答案】D【解析】由题意正三棱柱的高为2,底面的边长为2,该三棱柱的表面积为22132221222⨯+⨯⨯⨯=+故选D .4. 【2018年高考全国Ⅲ卷理数】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .2【答案】B【解析】根据圆柱的三视图以及其本身的特征,知点M 在上底面上,点N 在下底面上,且可以确定点M 和点N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为√42+22=2√5,故选B .5. 【2017年高考全国Ⅲ卷理数】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10B.12C.14D.16【答案】B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.6. 【2017年高考北京卷理数】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A.B.C.D.2【答案】B【解析】几何体是四棱锥P ABCD-,如图.最长的棱长为补成的正方体的体对角线,即该四棱锥的最长棱的长度为l==故选B.7. 【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)18+(B)54+(C)90 (D)81【答案】B【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积S=⨯⨯+⨯⨯+⨯⨯=+B.2362332354。
高一数学空间几何体的三视图与直观图试题答案及解析1.已知一个几何体的三视图如图所示.(Ⅰ)求此几何体的表面积;(Ⅱ)在如图的正视图中,如果点为所在线段中点,点为顶点,求在几何体侧面上从点到点的最短路径的长.【答案】(1);(2)【解析】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素的位置关系和数量关系;(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理;(3)圆锥、圆柱、圆台的侧面是曲面,计算侧面积或长度时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和. 试题解析:(Ⅰ)由三视图知:此几何体是一个圆锥加一个圆柱,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.所以. 6分(Ⅱ)沿点到点所在母线剪开圆柱侧面,如图:则,所以从点到点在侧面上的最短路径的长为. 12分【考点】空间几何体的表面积.2.如果一个水平放置的图形的斜二测直观图是一个底面为,腰和上底均为的等腰梯形,那么原平面图形的面积是_______-【答案】【解析】如图,根据斜二测画法,可得原平面图形是直角梯形,在直观图中,分别过顶点作底面的高,由于是等腰梯形,可得底面边长为,所以在平面图形中,可知DC=2,所以S= ( AD+BC)·DC=.【考点】直观图和平面图的关系.3.下列命题中正确的是()A.空间三点可以确定一个平面B.三角形一定是平面图形C.若A、B、C、D既在平面α内,又在平面β内,则平面α和平面β重合D.四条边都相等的四边形是平面图形【答案】B【解析】不在同一直线的三点确定一个平面,故A错,B对;共线的四点可以构成无数个平面,故C错;正四面体的四个边都相等,但它不是平面图形,故D错.故选B.【考点】平面的基本性质.4.将棱长为2的正方体切割后得一几何体,其三视图如图所示,则该几何体的体积为___________.【答案】.【解析】由三视图可知,该几何体为正方体先切割得到的三棱柱后切割一三棱锥,如图所示,则其体积为.【考点】空间几何体的体积.5.某一几何体的三视图如图所示.按照给出的尺寸(单位:cm),(1)请写出该几何体是由哪些简单几何体组合而成的;(2)求出这个几何体的体积.【答案】(1) 正方体和直三棱柱;(2)10cm3.【解析】(1)画出已知三视图的直观图,就很容易获得此几何体是由哪些简单几何体组合而成的;(1)既然几何体是由简单几何体组合而成的,那就只需先求得各个简单几何体的体积,然后相加即得所求几何体的体积.试题解析:(1)如图是题中所给几何体的直观图,所以这个几何体可看成是由正方体及直三棱柱的组合体.(2)由,,可得.所求几何体的体积:【考点】1.三视图;2.直观图;3.体积公式.6.某向何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是一个长方体和一个半圆柱组成的几何体,所以体积为。
高三数学空间几何体的三视图与直观图试题答案及解析1.某几何体的三视图如图所示,则该几何体的体积是()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是圆锥的四分之一,其底半径为,高为,所以其体积为,故选.【考点】1.三视图;2.几何体的体积.2.若某三棱柱截去一个三棱锥后所剩几何体的三视图如下图所示,则此几何体的体积等于()A.B.C.D.【答案】C【解析】由三视图可知,空间几体体的直观图如下图所示:所求几何体的体积故选C.【考点】1、三视图;2、空间几何体的体积.3.如图,一个几何体的三视图(正视图、侧视图和俯视图)为两个等腰直角三角形和一个边长为1的正方形,则其外接球的表面积为A.πB.2πC.3πD.4π【答案】C【解析】原几何体为有一条侧棱垂直于底面的四棱锥,且底面是边长为1的正方形,垂直于底面的侧棱长也为1,因此,该几何体可以补形为一个棱长为1的正方体,其外接球就是这个正方体的外接球,直径为正方体的对角线长,即2R=,故R=故外接球表面积为:4πR2=3π.【考点】三视图,几何体的外接球及其表面积4.如图所示,一个三棱锥的三视图是三个直角三角形(单位: cm),则该三棱锥的外接球的表面积为________cm2.【答案】29π【解析】从三棱锥的三视图可知,三棱锥有两侧面与底面垂直,把三棱锥补成长,宽,高分别为4,2,3的长方体,设外接球的半径为R,由42+22+32=4R2得,S=4πR2=29π(cm2).球5.某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为()A.4B.2C.D.8【答案】D【解析】由三视图可知,该几何体如图所示,其底面为正方形,正方形的边长为2.HD=3,BF =1,将相同的两个几何体放在一起,构成一个高为4的长方体,所以该几何体的体积为×2×2×4=8.6.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()【答案】D【解析】由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示,可知左视图为等腰三角形,且轮廓线为实线,故选D.7.一个几何体的三视图如图所示,已知这个几何体的体积为,= .【答案】【解析】由三视图知,原几何体是一个四棱锥,底面是面积为的矩形,高为,所以,解得.【考点】三视图,空间几何体的体积.8.如图,水平放置的正三棱柱的主视图是一边长为2的正方形,则该三棱柱的左视图的面积为.【答案】【解析】左视图为一个矩形,长宽分别为,因此面积为.【考点】三视图9.若一个正三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为() A.B.C.D.【答案】B【解析】依题意得,该正三棱柱的底面正三角形的边长为2,侧棱长为1.设该正三棱柱的外接球半径为R,易知该正三棱柱的底面正三角形的外接圆半径是2sin 60°×=,所以R2=+=,则该球的表面积为4πR2=.10.图中的网格是边长为1的小正方形,在其上用粗线画出了某多面体的三视图,则该多面体的体积为________.【答案】16【解析】从三视图可知,这是一个四棱锥,.【考点】三视图.11.如图所示,一个空间几何体的正视图和左视图都是边长为的正方形,俯视图是一个直径为的圆,那么这个几何体的体积为 ( )A.B.C.D.【答案】B【解析】几何体是圆柱,.【考点】三视图,圆柱的体积.12.一个几何体的三视图如图所示,其中正视图是一个正三角形,则该几何体的体积为( )A.1B.C.D.【答案】B【解析】由三视图可知,此几何体为三棱锥,如图,其中正视图为,是边长为2的正三角形,,且,底面为等腰直角三角形,,所以体积为,故选B.13.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1B.C.D.【答案】C【解析】由题意知,正视图的最大面积为对角面的面积,最小面积为,而,故选C.【考点】三视图.14.已知某几何体的三视图如右图所示,其中俯视图是圆,且该几何体的体积为;直径为2的球的体积为.则()A.B.C.D.【答案】C【解析】由题意,该几何体是一个圆柱挖去一个圆锥得到的几何体,,,∴.选B.【考点】三视图,体积.15.三棱锥S-ABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为()A.B.C.D.【答案】B【解析】过B作BD⊥AC于点D,则BD=2,CD=2,所以BC=,因为SC⊥平面ABC,所以SC⊥BC,所以SB=,故选B.【考点】三视图、直线与平面垂直的性质.16.一个几何体的三视图如图,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是由一个半圆柱和一个三棱锥拼接而成,且半圆柱的底面是半径为的半圆,高为,其底面积为,故其体积为,三棱锥的底面是一个直角三角形,三棱锥的高也为,其底面积为,故其体积为,所以该几何体的体积为,故选A.【考点】1.三视图;2.组合体的体积17.右图为某几何体的三视图,则该几何体的体积为 .【答案】【解析】所求几何体为一个底面半径为1,高为1的圆柱与半径为1的四分之一的球的组合体,所以体积为【考点】三视图18.一个空间几何体的三视图如图所示,该几何体的体积为______.【答案】96【解析】几何体为一个三棱柱,底面为一个等腰三角形,底边长为6,底边上高为4,棱柱的高为8.因此所求体积为【考点】三视图19.把边长为1的正方形ABCD沿对角线BD折起,形成三棱锥C-ABD,它的主视图与俯视图如右上图所示,则二面角 C-AB-D的正切值为.【答案】【解析】如图所示,做BD,AB的中点分别为点E,F.则有CE面ABD,由于EF为等腰直角三角形ABD的中位线,故EF AB,则为二面角 C-AB-D的代表角,所以,故填.【考点】二面角三视图20.已知水平放置的△ABC的直观图△A′B′C′(斜二测画法)是边长为a的正三角形,则原△ABC 的面积为()A.a2B.a2C.a2D.a2【答案】D【解析】斜二测画法中原图面积与直观图面积之比为1∶,则易知S= ( a)2,∴S=a2.21.一个空间几何体的三视图如图所示,则该几何体的体积为()A.πcm3B.3πcm3C.πcm3D.πcm3【答案】D【解析】由三视图可知,此几何体为底面半径为1cm、高为3cm的圆柱上部去掉一个半径为1cm的半球,所以其体积为V=3π-π=π(cm 3).22. 右图为一简单组合体,其底面ABCD 为正方形,PD ⊥平面ABCD ,EC ∥PD ,且PD =AD =2EC =2.(1)请画出该几何体的三视图; (2)求四棱锥B-CEPD 的体积.【答案】(1)见解析 (2)2【解析】解:(1)该组合体的三视图如图所示.(2)∵PD ⊥平面ABCD , PD ⊂平面PDCE ,∴平面PDCE ⊥平面ABCD. ∵四边形ABCD 为正方形,∴BC ⊥CD ,且BC =DC =AD =2. 又∵平面PDCE∩平面ABCD =CD , BC ⊂平面ABCD. ∴BC ⊥平面PDCE.∵PD ⊥平面ABCD ,DC ⊂平面ABCD , ∴PD ⊥DC.又∵EC ∥PD ,PD =2,EC =1,∴四边形PDCE 为一个直角梯形,其面积: S 梯形PDCE = (PD +EC)·DC =×3×2=3, ∴四棱锥B-CEPD 的体积V B-CEPD =S 梯形PDCE ·BC =×3×2=2.23. 某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【答案】A【解析】将三视图还原成直观图为:上面是一个正四棱柱,下面是半个圆柱体.所以V=2×2×4+×22×π×4=16+8π.24.某几何体的三视图如图所示,则其体积为________.【答案】【解析】由三视图还原几何体为半个圆锥,高为2,底面半圆的半径r=1.∴体积V=×(π×12×2)=.25.如图所示为一个几何体的直观图、三视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形).(1)求四棱锥P-ABCD的体积;(2)若G为BC上的动点,求证:AE⊥PG.【答案】(1)(2)见解析【解析】(1)由几何体的三视图可知,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,且PA=4 ,BE=2 ,AB=4.∴VP-ABCD =PA·S四边形ABCD=×4 ×4×4=.(2)∵=,∠EBA=∠BAP=90°,∴△EBA∽△BAP,∴∠BEA=∠PBA.∴∠BEA+∠BAE=∠PBA+∠BAE=90°,∴PB⊥AE又∵BC⊥平面APEB,∴BC⊥AE.∵BC∩PB=B,∴AE⊥平面PBC.∵PG⊂平面PBC,∴AE⊥PG.26.如图所示,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为________.【答案】9【解析】由题意知,此几何体是三棱锥,其高h=3,相应底面面积为S=×6×3=9,∴V=Sh=×9×3=9.27.某几何体的三视图如图所示,主视图和侧视图为全等的直角梯形,俯视图为直角三角形.则该几何体的表面积为( )A. B. C. D【答案】B【解析】此几何体直观图如图所示。
专题五立体几何第一讲空间几何体的三视图、表面积与体积考点一空间几何体的三视图与直观图1.三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.原图形面积S与其直观图面积S′之间的关系S′=错误!S。
[对点训练]1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()[解析]两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A.故选A。
[答案]A2.(2018·河北衡水中学调研)正方体ABCD-A1B1C1D1中,E 为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()[解析]过点A,E,C1的截面为AEC1F,如图,则剩余几何体的左视图为选项C中的图形.故选C。
[答案]C3.(2018·江西南昌二中模拟)一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为()A.8 B.4 C.4错误!D.4错误![解析]由三视图可知该几何体的直观图如图所示,由三视图特征可知,P A⊥平面ABC,DB⊥平面ABC,AB⊥AC,P A=AB =AC=4,DB=2,则易得S△P AC=S△ABC=8,S△CPD=12,S梯形ABDP =12,S△BCD=错误!×4错误!×2=4错误!,故选D。
[答案]D4.如图所示,一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积为________.[解析]直观图的面积S′=错误!×(1+1+错误!)×错误!=错误!.故原平面图形的面积S=错误!=2+错误!.[答案]2+错误看到三视图,想到常见几何体的三视图,进而还原空间几何体.(2)看到平面图形直观图的面积计算,想到斜二侧画法,想到原图形与直观图的面积比为错误!.由三视图还原到直观图的3步骤(1)根据俯视图确定几何体的底面.(2)根据正(主)视图或侧(左)视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置.(3)确定几何体的直观图形状.考点二空间几何体的表面积与体积1.柱体、锥体、台体的侧面积公式(1)S柱侧=ch(c为底面周长,h为高);(2)S锥侧=错误!ch′(c为底面周长,h′为斜高);(3)S台侧=错误!(c+c′)h′(c′,c分别为上下底面的周长,h′为斜高).2.柱体、锥体、台体的体积公式(1)V柱体=Sh(S为底面面积,h为高);(2)V锥体=错误!Sh(S为底面面积,h为高);(3)V台=错误!(S+错误!+S′)h(不要求记忆).3.球的表面积和体积公式S表=4πR2(R为球的半径),V球=43πR3(R为球的半径).[对点训练]1.(2018·浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2 B.4 C.6 D.8[解析]由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1 cm,2 cm,高为2 cm,直四棱柱的高为2 cm.故直四棱柱的体积V=1+22×2×2=6 cm3.[答案]C2.(2018·哈尔滨师范大学附中、东北师范大学附中联考)某几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积是()A.错误!+2B.错误!+2C.错误!+3 D。
§8.1 空间几何体的三视图、直观图、表面积与体积第1讲空间几何体的结构、三视图和直观图考纲考情1.能画出柱、锥、台、球等简易组合体的三视图,并能识别三视图所表示的立体模型.会用斜二测画法画出它们的直观图.2.了解平行投影与中心投影,了解空间图形的不同表示形式.主干知识·整合知识点一空间几何体的结构特征1.多面体(1)棱柱的侧棱都________,上下底面是______且______的多边形.(2)棱锥的底面是任意多边形,侧面是有一个________的三角形.(3)棱台可由________________的平面截棱锥得到,其上下底面是________且_____的多边形.2.旋转体(1)圆柱可以由______绕其任一边旋转得到.(2)圆锥可以由直角三角形绕其__________________旋转得到.(3)圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由______于圆锥底面的平面截圆锥得到.(4)球可以由半圆或圆绕____________旋转得到.对点快练1.下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点2.下图所示的几何体中,是棱柱的为________(填写所有正确的序号).知识点二空间几何体的三视图1.三视图的名称几何体的三视图包括________、________、________.2.三视图的画法(1)画三视图时,重叠的线只画一条,挡住的线要画成虚线.(2)三视图的正视图、侧视图、俯视图分别是从几何体的______方、______方、______方观察几何体得到的正投影图.对点快练3.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()4.如图所示,图①②③是图④所示的几何体的三视图,若图①是正视图,则图②是________,图③是________.知识点三空间几何体的直观图空间几何体的直观图常用________画法来画,其规则是:1.原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为____,z′轴与x′轴和y′轴所在平面______.2.原图形中平行于坐标轴的线段,直观图中仍分别____________.平行于x轴和z轴的线段在直观图中保持原长度________,平行于y轴的线段在直观图中长度变为__________.对点快练5.用斜二测画法画一个水平放置的水平图形的直观图为如图所示的一个正方形,则原来的图形是()热点命题·突破热点一空间几何体的结构特征例1给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.变式训练给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1C.2 D.3热点二空间几何体的三视图考向1由直观图判断三视图例2如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤考向2由三视图还原直观图例3某三棱锥的三视图如图所示,则该三棱锥的体积为()A. 16 B.13 C.12D.1考向3由部分视图确定剩余视图例4已知某组合体的正视图与侧视图相同,如图所示,其中AB=AC,四边形BCDE为矩形,则该组合体的俯视图可以是________(把你认为正确的图的序号都填上).总结反思三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.变式训练(1)如图,在正四棱柱ABCD-A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P-BCD 的正视图与侧视图的面积之比为()A.1 1 B.21C.2 3 D.32(2)一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是()(3)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是________.热点三空间几何体的直观图例5如图所示,四边形A′B′C′D′是一平面图形的水平放置的斜二测画法的直观图,在斜二测直观图中,四边形A′B′C′D′是一直角梯形,A′B′∥C′D′,A′D′⊥C′D′,且B′C′与y′轴平行,若A′B′=6,D′C′=4,A′D′=2.求这个平面图形的实际面积.变式训练已知平面△ABC的直观图A′B′C′是边长为a的正三角形,求原△ABC的面积.课堂总结1.对于基本概念和能用公式直接求棱柱、棱锥、棱台与球的表面积的问题,要结合它们的结构特点与平面几何知识来解决,这种题目难度不大.2.在绘制三视图时,若相邻两物体的表面相交,表面的交线是它们的分界线.在三视图中,分界线和可见轮廓线都用实线画出,被挡住的轮廓线画成虚线.并做到“长对正、高平齐、宽相等”.3.能够由空间几何体的三视图得到它的直观图;也能够由空间几何体的直观图得到它的三视图.提升空间想象能力.参考答案主干知识·整合知识点一空间几何体的结构特征1.(1)互相平行互相平行全等(2)公共顶点(3)平行于棱锥底面相互平行相似2.(1)矩形(2)一条直角边所在直线(3)平行(4)直径所在直线对点快练1.【答案】B【解析】A错,如图1;B正确,如图2,其中底面ABCD是矩形,可证明∠P AB,∠PCB 都是直角,这样四个侧面都是直角三角形;C错,如图3;D错,由棱台的定义知,其侧棱必相交于同一点.2.【答案】③⑤【解析】根据棱柱的结构特征可知③⑤是棱柱.知识点二空间几何体的三视图1.正视图侧视图俯视图2.(2)正前正左正上对点快练3.【答案】B【解析】由正视图、俯视图得原几何体的形状如图所示,则该几何体的侧视图为B.4.【答案】侧视图俯视图【解析】根据三视图的概念知图②是侧视图,图③是俯视图.知识点三空间几何体的直观图斜二测1. 45°或135°垂直2. 平行于坐标轴不变原来的一半对点快练5.【答案】A【解析】由直观图的画法可知,落在y轴上的对角线的长度为2 2.热点命题·突破热点一空间几何体的结构特征例1【答案】②③④⑤【解析】①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体AC 1中的三棱锥C 1-ABC ,四个面都是直角三角形;⑤正确,由棱台的概念可知.变式训练 【答案】A【解析】①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图1所示;③不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.例2 【答案】 B【解析】 正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①;侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③. 例3 【答案】 A【解析】 由三视图可得该几何体的直观图为三棱锥A -BCD ,将其放在长方体中如图所示,其中BD =CD =1,CD ⊥BD ,三棱锥的高为1,所以三棱锥的体积为13×12×1×1×1=16.故选A .例4 【答案】 ①②③④【解析】 直观图如图1的几何体(上部是一个正四棱锥,下部是一个正四棱柱)的俯视图为①;直观图如图2的几何体(上部是一个正四棱锥,下部是一个圆柱)的俯视图为②;直观图如图3的几何体(上部是一个圆锥,下部是一个圆柱)的俯视图为③;直观图如图4的几何体(上部是一个圆锥,下部是一个正四棱柱)的俯视图为④.变式训练【答案】(1)A (2)C (3)33【解析】(1)根据题意,三棱锥P -BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高,故三棱锥P -BCD 的正视图与侧视图的面积之比为11.(2)A ,B ,D 选项满足三视图作法规则,C 不满足三视图作法规则中的宽相等,故C 不可能是该锥体的俯视图.(3)由正视图知,底面三角形是腰长为2,底边为23的等腰三角形,三棱锥的高为1,所以该三棱锥的体积V =13×(12×23×1)×1=33.例5 解:根据斜二测直观图画法规则可知该平面图形是直角梯形,且AB =6,CD =4保持不变. 由于C ′B ′=2A ′D ′=2 2.所以CB =4 2. 故平面图形的实际面积为12×(6+4)×42=20 2.变式训练 解:如图所示,△A ′B ′C ′是边长为a 的正三角形,作C ′D ′∥A ′B ′交y ′轴于点D ′,则D ′到x ′轴的距离为32a ,∵∠D ′A ′B ′=45°,∴A ′D ′=62a , 由斜二测画法的法则知,在△ABC 中,AB =A ′B ′=a ,AB 边上的高是A ′D ′的二倍,即为6a ,∴S △ABC =12a ·6a =62a 2.。
授课主题:三视图和直观图教学目标1.了解中心投影和平行投影的特征.2.能画出简单空间图形如长方体、球、圆柱、圆锥、棱柱等的简易组合的三视图,能识别上述的三视图所表示的立体模型.3.会用平行投影与中心投影两种方法,画出简单空间图形的三视图,了解空间图形的不同表示形式.4.掌握斜二测画法画水平放置的平面图形的直观图.5.会用斜二测画法画出长方体、球、圆柱、圆锥、棱柱等的直观图.教学内容1.投影由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,我们把光线叫做投影线,把留下物体的影子的屏幕叫做投影面.FMF 'M 'l2.平行投影(1)定义:我们把在一束平行光线照射下形成的投影,叫做平行投影.平行投影的投涉线是平行的.在平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影.(2)性质:若图形中的直线或线段不平行于投射线时,平行投影具有以下性质:①直线或线段的平行投影仍是直线或线段;②平行直线的平行投影是平行或重合的直线;③平行于投射面的线段,它的投影与这条线段平行且等长;④平行于投射面的平面图形,它的投影与这个图形全等;⑤在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比.(3)正投影概念:在平行投影中,如果投射线与投射面垂直,则称这样的平行投影为正投影.性质:①垂直于投射面的直线或线段的正投影是点;②垂直于投射面的平面图形的正投影是直线或直线的一部分.3.中心投影一个点光源把一个图形照射到一个平面上,这个图形的影子就是它在这个平面上的中心投影.中心投影的直观性强,看起来与人的视觉效果一致,常在绘画时使用,在立体几何中,一般用平行投影原理来画图.4.三视图(1)正视图:光线从几何体的前面向后面正投影得到的投影图形称为几何体称为正视图(主视图).(2)侧视图:光线从几何体的左面向右面正投影得到的投影图形称为几何体称为侧视图(左视图).(3)俯视图:光线从几何体的上面向下面正投影得到的投影图形称为几何体称为俯视图.将空间图形向这三个平面作正投影,然后把这三个投影按一定的布局放在一个平面内,这样构成的图形叫做空间图形的三视图.如右图为圆锥的三视图:俯视图左视图主视图5.三视图的对应关系正俯视图长相等、正侧视图图的高相等、俯侧视图图的宽相等,简称“长对正,宽平齐,高相等”或说“主左一样高,主俯一样长,俯左一样宽”.6.直观图定义:用来表示空间图形的平面图形,叫做空间图形的直观图.画法:斜二测画法和正等测画法.7.斜二测画法规则(1)在已知图形所在的空间中取水平平面,作相互垂直的轴Ox,Oy,再作Oz轴,使90xOz∠=︒,90yOz∠=︒.(三维空间中)(2)画直观图时,把Ox,Oy,Oz画成对应的轴O x O y O z'''''',,,使45x O y'''∠=︒或135︒,90x O z'''∠=︒,x O y'''所确定的平面表示水平平面.(二维平面上)(3)已知图形中,平行于x轴,y轴或z轴的线段,在直观图中分别画成平行于x'轴,'y轴或z'的线段.并使它们和所画坐标轴的位置关系,与已知图形中相应线段和原坐标轴的位置关系相同.(4)已知图形中平行于x轴和z轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度为原来的一半.画图完成后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图.题型一投影的概念例1判断对错(对的在括号内打“√”,错的打“×”):(1)矩形的平行投影一定是矩形;()(2)梯形的平行投影一定是梯形;()(3)平行四边形的平行投影可能是正方形;()(4)正方形的平行投影一定是菱形;()(5)两条相交直线的平行投影可能平行;()(6)如果一个三角形的投影仍是三角形,那么它的中位线的平行投影,一定是这个三角形的平行投影的中位线.()解析:利用平行投影的概念和性质进行判断.答案:(1)×(2)×(3)√(4)×(5)×(6)√点评:平面图形经过平行投影后一般要改变形状,平行直线的平行投影是平行或重合的直线.两条相交直线的平行投影不可能平行.巩固如图所示,在正方体ABCDA′B′C′D′中,E,F分别是A′A,C′C的中点,则下列判断中正确的是______.①四边形BFD′E在底面ABCD内的投影是正方形;②四边形BFD′E在面A′D′DA内的投影是菱形;③四边形BFD′E在面A′D′DA内的投影与在面ABB′A′内的投影是全等的平行四边形.解析:①四边形BFD′E的四个顶点在底面ABCD内的投影分别是点B、C、D、A,故投影是正方形,正确;②设正方体的棱长为2,则AE=1,取D′D的中点G,则四边形BFD′E在面A′D′DA内的投影是四边形AGD′E,由AE∥D′G,且AE=D′G,∴四边形AGD′E是平行四边形,但AE=1,D′E=5,故四边形AGD′E不是菱形.对于③,由②知是两个边长分别相等的平行四边形,从而③正确.答案:①③题型二画空间几何体的三视图例2画出如图所示几何体的三视图解析:三视图如下图所示.点评:三视图的画法关键是分清楚观察者的方向,应从正面、侧面、上面三个方向去观察图形,然后画出三视图.巩固画出右面几何体的三视图.解析:三视图如下:题型三由三视图还原成实物图例3下图所示的是三个立体图形的三视图,请说出其立体图形的名称.解析:由图可知甲的俯视图是圆,则该几何体是旋转体,又正视图和侧视图均是矩形,则甲是圆柱;乙的俯视图是三角形,则该几何体是多面体,又正视图和侧视图均是三角形,则该多面体的各个面都是三角形,则乙是三棱锥;丙的俯视图是圆(及圆心),则该几何体是旋转体,又正视图和侧视图均是三角形,则丙是圆锥.点评:根据三视图还原几何体要具备一定的空间想象能力,想象整个几何体的几何特征,从而判断三视图所描述的几何体.通常先判断是多面体还是旋转体,再结合正视图和侧视图确定具体的几何结构特征,最终确定是简单几何体还是简单组合体.巩固下图是由小正方体组成的几何图形的三视图,则组成它的小正方体的个数是________.解析:还原为实物图易知.答案:5题型四画水平放置的平面图形的直观图例1用斜二测画法画水平放置的正五边形的直观图.解析:建立坐标系xOy后,B,E两点不在平行于坐标轴的直线上,故需作BG⊥x轴于G,EH⊥x轴于H.(1)建立如图①所示的直角坐标系xOy,再建立如图②所示的坐标系x′O′y′,使∠x′O′y′=45°.(2)在图①中作BG⊥x轴于G,EH⊥x轴于H,在坐标系x′O′y′中作O′H′=OH,O′G′=OG,O′A′=OA,O′F′=OF.过F′作C′D′∥x′轴且C′D′=CD.(3)在平面x′O′y′中,过G′作G′B′∥y′轴,且G′B′=BG,过H′作H′E′∥y′轴,且H′E′=HE,连接A′B′,B′C′,C′D′,D′E′,E′A′,得五边形A′B′C′D′E′,这就是正五边形ABCDE的平面直观图.点评:用斜二测画法画水平放置的平面图形一要注意坐标系的选取,二要注意平行于x轴的长度不变,平行于y 轴的长度变为原长度的一半.巩固(多解题)用斜二测画法画边长为4 cm的水平放置的正三角形的直观图.解析:解法一:(1)如图①所示,以BC边所在的直线为x轴,以BC边上的高线AO所在的直线为y轴.(2)画对应的x′轴,y′轴,使∠x′O′y′=45°.在x′轴上截取O′B′=O′C′=2 cm,在y′轴上截取O′A′=12OA.连接A′B′,A′C′,则三角形A′B′C′即为正三角形ABC的直观图,如图②所示.解法二:(1)如图③所示,以BC边所在的直线为y轴,以BC边上的高AO所在的直线为x轴.(2)画对应的x′轴、y′轴,使∠x′O′y′=45°.在x′轴上截取O′A′=OA,在y′轴上截取O′B′=O′C′=12OC=1 cm,连接A′B′,A′C′,则三角形A′B′C′即为正三角形ABC的直观图,如图④所示.题型五画空间几何体的直观图例5下图是已知几何体的三视图,用斜二测画法画出它的直观图.解析:由几何体的三视图知,这个几何体是一个简单组合体,它的下部是一个圆台,上部是一个圆锥,并且圆锥的底面与圆台的上底面重合,我们可以先画出下部的圆台,再画出上部的圆锥.(1)画轴.如图甲,画x轴,y轴,z轴,使∠xOy=45°,∠xOz=90°.(2)画圆台的两底面.选择椭圆模板中适当椭圆,画出底面⊙O,在z轴上截取OO′,使OO′等于三视图中相应高度,过O′作Ox的平行线O′x′,作Oy的平行线O′y′,利用O′x′与O′y′画出上底面⊙O′(与画⊙O一样).(3)画圆锥的顶点.在Oz上截取点P,使PO′等于三视图中相应的高度.(4)成图.连接P A′,PB′,A′A,B′B,整理得到三视图表示的几何体的直观图,如图乙.点评:利用斜二测画法画空间图形的直观图应遵循的基本原则:①画空间图形的直观图在要求不太严格的情况下,长度和角度可适当选取.为了增强立体感,被挡住的部分通常用虚线表示.②画法规则可简记为:两轴夹角为45°,竖轴垂直仍不变,平行不变,长度变,横竖不变,纵折半.③画空间几何体的直观图,要注意选取适当的原点,建系画轴.巩固根据下图所示的三视图想象物体原形,并画出物体的实物草图.解析:(1)由俯视图并结合其他两个视图可以看出,这个物体是由一个圆柱和一个正四棱柱组合而成,圆柱的下底面圆和正四棱柱的上底面正方形内切,它的实物草图如图①所示.(2)由三视图知,该物体下部分是一个长方体,上部分的表面是两个等腰梯形和两个等腰三角形,它的实物草图如图②所示.题型六 将直观图还原为平面图形例6 下图是一梯形OABC 的直观图,其直观图面积为S ,求梯形OABC的面积.解析:设O ′C ′=h ,则原梯形是一个直角梯形且高为2h .C ′B ′=CB ,O ′A ′=OA .过C ′作C ′D ⊥O ′A ′于D ,则C ′D =22h .由题意知12C ′D (C ′B ′+O ′A ′)=S ,即24h (C ′B ′+O ′A ′)=S . 又原直角梯形面积为S ′=12·2h (CB +OA )=h (C ′B ′+O ′A ′)=4S 2=22S .所以梯形OABC 的面积为22S .点评:将水平放置的平面图形的直观图还原为原来的实际图形,其作法是运用斜二测画法,也就是使平行于x ′轴的线段的长度不变,而平行于y ′轴的线段长度变为原来的2倍.巩 固 如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+ 2 B.1+22C.2+22D .1+ 2解析:画出其相应平面图易求,故选A.答案:A1.观察图中的投影过程,回答问题.(1)它们的投影过程有什么不同?(2)图②、③是平行投影,它们有什么不同? (3)中心投影和平行投影有什么不同?解析:(1)图①的投影线交于一点.把光由一点向外散射形成的投影称为中心投影;图②、③的投影线平行,把在一束平行光线照射下形成的投影称为平行投影.(2)图③中的投影是正对着投影面.这种平行投影称为正投影;图②中的投影线不是正对着投影面,这种平行投影称为斜投影.它们的不同在于投影线是否正对着投影面.(3)与投影面平行的平面图形在平行投影下留下的影子与原平面图形是全等的平面图形;而在中心投影下留下的影子与原平面图形是相似的平面图形.2.(1):圆锥的正视图是等腰三角形,对吗?答案:错.要看如何放置,当底面正对你时是圆,底面水平时是等腰三角形.(2):底面水平的圆柱的左视图是矩形,对吗?答案:对.(3):水平放置的圆台的俯视图是一个与下底面大小相同的圆,对吗?答案:错.是两个同心圆.3.有一个几何体的三视图如下图所示,则这个几何体应是一个()A.棱台B.棱锥C.棱柱D.都不对答案:A4.一个几何体的正视图如图,它一定不是()A.棱柱B.棱台C.圆柱D.长方体答案:B5.对几何体三视图,下列说法中正确的是()A.正视图反映物体的长和宽B.俯视图反映物体的长和高C.侧视图反映物体的长和宽D.正视图反映物体的高和长答案:D6.两条相交直线的平行投影是()A.两条相交直线B.一条直线C.一条折线D.两条相交直线或一条直线答案:D7.如下图所示的几何体,其俯视图正确的是()答案:C8.下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④答案:D9.四个正方体按如图所示的方式放置,其中阴影部分为我们观察的正面,则该物体的三视图正确的为()答案:B10.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台答案:D11.下面两个几何体的侧视图和俯视图一样吗?解析:侧视图一样,俯视图不同.12.根据如图所示俯视图,找出对应的物体(1)对应________;(2)对应________;(3)对应________;(4)对应________;(5)对应________.答案:D A E C B13.如图,点O为正方体ABCDA′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是________(填所有可能的序号).答案:①②③1.在画三视图时,务必做到正视图、侧视图高平齐,正视图、俯视图长对正,俯视图、侧视图宽相等.2.若相邻两物体表面相交,表面的交线是它们的分界线,分界线和可见轮廓线用实线画出,不可见轮廓线用虚线画出.3.确定正视、俯视、侧视的方向,同一物体放置的方向不同,所画的三视图可能不同.1.梯形的直观图是()A.梯形B.矩形C.三角形D.任意四边形答案:A2.如图,直观图表示的平面图形是( )A .任意三角形B .锐角三角形C .直角三角形D .钝角三角形解析: A ′B ′∥y ′轴,B ′C ′∥x ′轴,∴相应的∠ABC =90°. 答案:C3.关于斜二测直观图的画法,以下说法不正确的是( )A .原图形中平行于x 轴的线段,其对应线段平行于x ′轴,长度不变B .原图形中平行于y 轴的线段,其对应线段平行于y ′轴,长度变为原来的12C .画与直角坐标系xOy 对应的x ′O ′y ′时,∠x ′O ′y ′必须是45°D .在画直观图时,由于选轴的不同,所得的直观图可能不同 答案:C4.利用斜二测画法得到的:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论,正确的是( )A .①②B .①C .③④D .①②③④解析:因平行性不改变,故②正确,①也正确;平行于y 轴的线段,长度变为原来的一半,故③,④不正确,从而选A.答案:A5.如图,用斜二测画法画一个水平放置的平面图形的直观图为一个正方形,则原来图形的形状是( )解析:直观图的正方形的对角线在y ′轴上且长度为2,故原来图形的对角线在y 轴上且长度为2 2.故选A. 答案:A6.对于一个底边在x 轴上的三角形,采用斜二测画法作出其直观图,其直观图的面积是原三角形面积的( )A .2倍 B.22倍 C.24倍 D.12倍 解析:直观图的底面边长与实际三角形底面边长相同,而直观图的高为12×h ×sin 45°=24h ,所以直观图的面积是实际三角形面积的24倍. 答案:C7.右图为水平放置的正方形ABCO,在直角坐标系中点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到O′x′轴的距离为()A.12 B.22C.1 D. 2解析:如图,为正方形ABCO在x′O′y′中的直观图,作B′D′⊥x′轴于D′,则在Rt△B′C′D′中,∠B′C′D′=45°,|B′C′|=1,∴B′D′=|B′C′|·sin 45°=1×22=22.即B′到x′轴的距离为22.答案:B8.下图中长方体的长、宽、高分别为5,4,3,侧视图矩形的面积为________.解析:长方体的侧视图是长为4,宽为3的长方形,故面积为3×4=12.答案:129.根据三视图想象物体原形,并画出物体直观图.解析:由几何体的三视图知道几何体是一个简单组合体,下部是个圆柱,上部是个圆台,且圆台下底与圆柱面重合.画法如图(1)所示,图(2)为三视图所表示的物体的直观图.10.有一个正六棱锥(底面为正六边形,侧面为全等的等腰三角形的棱锥),底面边长为3 cm,高为3 cm,画出这个正六棱锥的直观图.解析:(1)先画出边长为3 cm 的正六边形的水平放置的直观图,如图①所示;(2)过正六边形的中心O ′建立z ′轴,画出正六棱锥的顶点V ′,在z ′轴上截取O ′V ′=3 cm ,如图②所示; (3)连接V ′A ′、V ′B ′、V ′C ′、V ′D ′、V ′E ′、V ′F ′,如图③所示;(4)擦去辅助线,遮挡部分用虚线表示,即得到正六棱锥的直观图,如图④所示.11.如图,等腰直角△O ′A ′B ′是△OAB 的直观图,它的斜边长为O ′A ′=a ,求△OAB 的面积.解析:∵A ′,B ′在轴上,∴∠AOB =90°. 又O ′B ′=22a ,故OB =2a , ∴S △OAB =12a ·2a =22a 2.12.已知几何体的三视图如下,画出它的直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).解析:直观图如下图所示,画法略.13.如图所示,AB 和CD 两根木杆竖在平面上,有一灯使AB 和CD 这两根木杆有影子,试根据实物和影子确定灯的位置.解析:要确定灯的位置,就要了解灯光是向四面发散的,这样,致使两根木杆的影子如图所示,所以,灯的位置应在木杆AB顶部A和它的影子的顶部E的连线的那条直线上,同样,这个灯也在木杆CD顶部C和它的影子的顶部F的连线上.如下图,点O就是灯所放的位置.。
高三数学空间几何体的三视图与直观图试题答案及解析1.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为.【答案】2.【解析】由已知几何体的视图可知,几何体为四棱锥,其中SA垂直于平面ABCD,SA=2,四边形ABCD为直角梯形,AD=1,BC=2,AB=2,所以四棱锥的体积为【考点】三视图求几何体的体积.2.右图为某几何体的三视图,则该几何体的体积为【答案】【解析】由三视图知,该几何体是底面半径为1,高为1的圆柱与半径为1的球体组成的组合体,其体积为=.【考点】简单几何体的三视图,圆柱的体积公式,球的体积公式3.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为()A.B.C.D.【答案】C【解析】由三视图可知:该几何体是一个如图所示的三棱锥P-ABC,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4.设其外接球的球心为O,O点必在高线PE上,外接球半径为R,则在直角三角形BOE中,BO2=OE2+BE2=(PE-EO)2+BE2,即R2=(4-R)2+(3)2,解得:R=,故选C.【考点】三视图,球与多面体的切接问题,空间想象能力4.如图是一个几何体的三视图,则该几何体的表面积是____________【答案】28+12【解析】这是一个侧放的直三棱柱,底面是等腰直角三角形,侧棱长为6故表面积为2×(×2×2)+(2+2+2)×6=28+12.【考点】三视图,几何体的表面积.5.在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.【答案】24【解析】由题意割去的两个小长方体的体积为.【考点】三视图,几何体的体积..6.某空间几何体的正视图是三角形,则该几何体不可能是()圆柱圆锥四面体三棱柱【答案】A【解析】由于圆柱的三视图不可能是三角形所以选A.【考点】三视图.7.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是________.【答案】2(π+)【解析】由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积为2;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+).8.一个锥体的主(正)视图和左(侧)视图如图所示,下面选项中,不可能是该锥体的俯视图的是()【答案】C【解析】俯视图是选项C的锥体的正视图不可能是直角三角形.另外直观图如图1的三棱锥(OP⊥面OEF,OE⊥EF,OP=OE=EF=1)的俯视图是选项A,直观图如图2的三棱锥(其中OP,OE,OF两两垂直,且长度都是1)的俯视图是选项B,直观图如图3的四棱锥(其中OP⊥平面OEGF,底面是边长为1的正方形,OP=1)的俯视图是选项D.9.如图所示,正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6B.8C.2+3D.2+2【答案】B【解析】如图,OB=2,OA=1,则AB=3.∴周长为8.10.某几何体的三视图如图所示,且该几何体的体积是2,则正(主)视图的面积等于()A.2B.C.D.3【答案】A【解析】由三视图可知该几何体是一个四棱锥,其底面积就是俯视图的面积S=(1+2)×2=3,其高就是正(主)视图以及侧(左)视图的高x,因此有×3×x=2,解得x=2,于是正(主)视图的面积S=×2×2=2.11.如图,三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥底面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图的面积为( )A. C.4 D.【答案】A【解析】侧视图也为矩形,底宽为原底等边三角形的高,侧视图的高为侧棱长,所以侧视图的面积为,故选B.【考点】三视图12.一个几何体的三视图如图所示,则该几何体内切球的体积为 .【答案】【解析】依题意可得该几何体是一个正三棱柱,底面边长为2,高为.由球的对称性可得内切球的半径为.由已知计算得底面内切圆的半径也为.所以内切球的体积为.【考点】1.三视图.2.几何体内切球的对称性.3.球的体积公式.4.空间想象力.13.已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的左视图面积的最小值是________.【答案】【解析】如图,正三棱柱中,分别是的中点,则当面与侧面平行时,左视图面积最小,且面积为.【考点】三视图.14.某几何体的三视图如图3所示,则其体积为________.【答案】【解析】原几何体可视为圆锥的一半,其底面半径为1,高为2,∴其体积为×π×12×2×=.15.已知正△ABC的边长为2,那么用斜二测画法得到的△ABC的直观图△A′B′C′的面积为()A.B.C.D.【答案】D【解析】∵正△ABC的边长为2,故正△ABC的面积S==设△ABC的直观图△A′B′C′的面积为S′则S′=S=•=故选D16.一个体积为12的正三棱柱的三视图如图所示,则这个三棱柱的侧视图的面积为()A.B.C.D.【答案】A【解析】依题意可得三棱柱的底面是边长为4正三角形.又由体积为.所以可得三棱柱的高为3.所以侧面积为.故选A.【考点】1.三视图的知识.2.棱柱的体积公式.3.空间想象力.17.某几何体的三视图如题(6)所示,其侧视图是一个边长为1的等边三角形,俯视图是两个正三角形拼成的菱形,则这个几何体的体积为()A.1B.C.D.【答案】C【解析】这是由两个三棱锥拼成的几何体,其体积为.选C.【考点】三视图及几何体的体积.18.一个四面体的顶点在空间直角坐系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()A.B.C.D.【答案】A【解析】设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O,A,B,C为顶点的四面体补成一正方体后,因为OA⊥BC,所以补成的几何体以zOx平面为投影面的正视图为A.19.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几体的体积为()A.6B.9C.12D.18【答案】B【解析】由三视图可知,此几何体为如图所示的三棱锥,其底面△ABC为等腰三角形且AB=BC,AC=6,AC边上的高为3,SB⊥底面ABC,且SB=3,因此此几体的体积为V=××6×3×3=920.如图所示,一个空间几何体的正视图和侧视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为 .【答案】【解析】由三视图知,该几何体是一个圆柱,其表面积为.【考点】三视图及几何体的表面积.21.在三棱锥中,,平面ABC,.若其主视图,俯视图如图所示,则其左视图的面积为【答案】【解析】左视图是一个直角三角形,其直角边分别是2与.所以面积为.【考点】1.三视图知识.2.三角形面积的计算.22.一个几何体的三视图如图所示,则这个几何体的体积是_________.【答案】【解析】由三视图还原几何体,该几何体为底面半径为,高为的圆柱,去掉底面半径为,高为的圆锥的剩余部分,则其体积为.【考点】1、三视图;2、几何体的体积.23.棱长为2的正方体被一平面截成两个几何体,其中一个几何体的三视图如图所示,那么该几何体的体积是( ).A.B.4C.D.3【答案】B【解析】如图,红色虚线表示截面,可见这个截面将正方体分为完全相同的两个几何体,则所求几何体的体积即是原正方体的体积的一半,.【考点】1.三视图;2.正方体的体积24.如图,一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积为()A.1B.2C.3D.4【答案】B【解析】由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为的正方形,故其底面积为,由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形,由于此侧棱长为,对角线长为,故棱锥的高为,此棱锥的体积为,故选B.【考点】由三视图求面积、体积.25.已知某几何体的三视图如右图所示,其中,正视图,侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C.D.【答案】C【解析】由已知的三视图可知原几何体是上方是三棱锥,下方是半球,∴,故选C.【考点】1.三视图;2.几何体的体积.26.如图是一个组合几何体的三视图,则该几何体的体积是.【答案】36+128π【解析】由三视图还原可知该几何体是一个组合体,下面是一个圆柱,上面是一个三棱柱,故所求体积为V=×3×4×6+16π×8=36+128π.27.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图可知,该几何体是三分之一个圆锥,其体积为.【考点】三视图及几何体的体积.28.某几何体的三视图(图中单位:cm)如图所示,则此几何体的体积是()A.36 cm3B.48 cm3C.60 cm3D.72 cm3【答案】B【解析】由三视图可知几何体上方是一长方体,下方是一放倒的直四棱柱,且四棱柱底面是等腰梯形,上底长为2 cm,下底长为6 cm,高为2 cm,故几何体的体积是2×2×4+×(2+6)×2×4=48(cm3),故选B.29.如图是某三棱柱被削去一个底面后的直观图、侧(左)视图与俯视图.已知CF=2AD,侧视图是边长为2的等边三角形,俯视图是直角梯形,有关数据如图所示.求该几何体的体积.【答案】3【解析】解:取CF中点P,过P作PQ∥CB交BE于Q,连接PD,QD,则AD∥CP,且AD=CP.所以四边形ACPD为平行四边形,所以AC∥PD.所以平面PDQ∥平面ABC.该几何体可分割成三棱柱PDQ-CAB和四棱锥D-PQEF,所以V=V-CAB+V D-PQEFPDQ=×22sin 60°×2+××=3.30.一个几何体的三视图如图所示,则该几何体的表面积是()A.6+8B.12+7C.12+8D.18+2【答案】C【解析】该空间几何体是一个三棱柱.底面为等腰三角形且底面三角形的高是1,底边长是2 ,两个底面三角形的面积之和是2,侧面积是(2+2+2)×3=12+6,故其表面积是12+8.31. 已知四棱锥P-ABCD 的三视图如右图所示,则四棱锥P-ABCD 的四个侧面中的最大面积是( ).A .6B .8C .2D .3【答案】A【解析】四棱锥如图所示:PM =3,S △PDC =×4×=2,S △PBC =S △PAD =×2×3=3,S △PAB =×4×3=6,所以四棱锥P-ABCD 的四个侧面中的最大面积是6.32. 若某几何体的三视图如图所示,则这个几何体的直观图可以是( ).【答案】B【解析】分别从三视图中去验证、排除.由正视图可知,A 不正确;由俯视图可知,C ,D 不正确,所以选B.33. 一个几何体的三视图如图所示,已知这个几何体的体积为,则h________.【答案】【解析】依题意可得四棱锥的体积为.所以可得.解得.故填.本小题的是常见的立几中的三视图的题型,这类题型关键是要能还原几何体的直观图形.所以培养空间的思想很重要.【考点】1.三视图的识别.2.空间几何体的直观图.34.图中的网格纸是边长为的小正方形,在其上用粗线画出了一四棱锥的三视图,则该四棱锥的体积为()A.B.C.D.【答案】C【解析】由三视图知,该几何体是一个四棱锥,且其底面为一个矩形,底面积,高为,故该几何体的体积,故选C.【考点】1.三视图;2.锥体的体积35.已知某几何体的三视图如图,其中主视图中半圆直径为2,则该几何体的体积____________【答案】24-【解析】由三视图可知,该几何体是有长方体里面挖了一个半圆柱体,可知,长方体的长为4,宽为3,高为2,那么圆柱体的高位3,底面的半径为1,则可知该几何体的体积为,故答案为.【考点】由三视图求面积、体积.36.把边长为的正方形沿对角线折起,连结,得到三棱锥,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为()A.B.C.D.【答案】B【解析】在三棱锥中,在平面上的射影为的中点,∵正方形边长为,∴,∴侧视图的面积为.【考点】1.三视图;2.三角形的面积.37.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的()A.外接球的半径为B.体积为C.表面积为D.外接球的表面积为【答案】D.【解析】由题意设外接球半径为,则,A错误;外接球的表面积为,D正确;此几何体的体积为,故B错误;此几何体的表面积为,C错误.【考点】三视图及球的表面积公式.38.一个几何体的三视图如图所示,则该几何体的体积为( )A.4B.8C.D.【答案】B【解析】有三视图可以看出,该几何体是一个三棱锥,它的体积为.【考点】三视图,几何体的体积.39.如图,直三棱柱的侧棱长和底面边长均为2,正视图和俯视图如图所示,则其侧视图的面积为()A.B.C.4D.2【答案】A【解析】由题意易知,直三棱柱的底面是边长为2的正三角形.其侧视图为矩形,矩形的高为2,宽为底面正三角形的高.易知边长为2的正三角形的高为.所以面积为.【考点】三视图40.如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是( )A.B.21C.D.24【答案】A【解析】还原几何体,得棱长为2的正方体和高为1的正四棱锥构成的简单组合体,如图所示,=,选A.【考点】1、几何体的表面积;2、三视图.41.某几何体的三视图如图所示,则它的表面积为()A.B.C.D.【答案】A【解析】易知该三视图的直观图是倒立的半个三棱锥,其表面积由底面半圆,侧面三角形和侧面扇形,所以,故选A.【考点】1.立体几何三视图;2.表面积和体积的求法.42.一几何体的三视图如图所示,则该几何体的体积为()A.200+9πB.200+18πC.140+9πD.140+18π【答案】A【解析】通过观察三视图,易知该几何体是由半个圆柱和长方体组成的,则半个圆柱体积;长方体的体积为,所以该几何体的最终体积,故选A.【考点】1.三视图的应用;2.简单几何体体积的求解.43.一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A.B.C.D.【解析】把原来的几何体补成以为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,,,.【考点】1.补体法;2.几何体与外接球之间的元素换算.44.一个几何体的三视图如图所示,其中府视图为正三角形,则侧视图的面积为()A.8B.C.D.4【答案】B【解析】由三视图可知:该几何体是一个正三棱柱,高为4,底面是一个边长为2的正三角形.因此,侧视图是一个长为4,宽为的矩形,.【考点】三视图与几何体的关系、几何体的侧面积的求法能力.45.某几何体的三视图如图所示,则它的侧面积为()A.B.C.24D.【答案】A【解析】由三视图得,这是一个正四棱台,由条件,侧面积.【考点】1.三视图;2.正棱台侧面积的求法.46.一个几何体的三视图如图所示,其中正视图与侧视图都是底边长为6、腰长为5的等腰三角形,则这个几何体的全面积为()A.B.C.D.【解析】由三视图知,该几何体是一个圆锥,且圆锥的底面直径为,母线长为,用表示圆锥的底面半径,表示圆锥的母线长,则,,故该圆锥的全面积为.【考点】三视图、圆锥的表面积47.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为的圆,且这个几何体是球体的一部分,则这个几何体的表面积为( )A.3πB.4πC.6πD.8π【答案】B【解析】此空间几何体是球体切去四分之一的体积,表面积是四分之三的球表面积加上切面面积,切面面积是两个半圆面面积.故这个几何体的表面积是.【考点】1、几何体的三视图; 2、球的表面积公式.48.右图是一个几何体的三视图,其中正视图和侧视图都是一个两底长分别为和,腰长为的等腰梯形,则该几何体的表面积是.【答案】【解析】从三视图可以看出:几何体是一个圆台,上底面是一个直径为4的圆,下底面是一个直径为2的圆,侧棱长为4.上底面积,下底面积,侧面是一个扇环形,面积为,所以表面积为.【考点】空间几何体的三视图、表面积的计算.49.某零件的正(主)视图与侧(左)视图均是如图所示的图形(实线组成半径为的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为的圆(包括圆心),则该零件的体积是 ( )A.B.C.D.【解析】由题意易知该几何体为一半球内部挖去一圆锥所成,故体积为.故选C.【考点】1.体积; 2.三视图.50.某四棱台的三视图如图所示,则该四棱台的体积是 ( )A.B.C.D.【答案】B【解析】由三视图可知,该四棱台的上下底面边长分别为和的正方形,高为,故,故选B.【考点】三视图与四棱台的体积51.若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为()A.B.C.D.【答案】B【解析】由已知底面是正三角形的三棱柱的正视图,我们可得该三棱柱的底面棱长为2,高为1,则底面外接圆半径,球心到底面的球心距,则球半径,则该球的表面积,故选B.【考点】由三视图求面积、体积.点评:本题考查的知识点是由三视图求表面积,其中根据截面圆半径、球心距、球半径满足勾股定理计算球的半径,是解答本题的关键.52.如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度随时间变化的可能图像是()A. B. C. D.【答案】B【解析】由三视图可知该几何体是圆锥,顶点在下,底面圆在上,在匀速注水过程中水面高度随着时间的增大而增大,且刚开始时截面积较小,所以高度变化较快,随着水面的升高,截面圆面积增大,高度变化速度减缓,因此函数的瞬时变化率逐渐减小,导数减小,图像为B项【考点】函数导数的定义点评:本题通过高度的瞬时变化率的变化情况得到函数的导数的大小,从而通过做出的切线斜率的变化得出正确图像53.已知一个三棱锥的主视图与俯视图如图所示,则该三棱锥的侧视图面积为()A.B.C.D.【答案】B【解析】根据题意,由于三棱锥的俯视图为直角三角形,正视图为直角三角形,且斜边长为2,直角边长为,那么结合图像可知其侧视图为底面边长为1,高为的三角形,因此其面积为,故选B.【考点】三棱锥点评:解决的关键是根据三棱锥的三视图来得到底面积和高进而求解侧视图,属于基础题。
三视图与直观图(讲义)
➢知识点睛
一、三视图
1.空间几何体的三视图是用正投影得到的,这种投影下与投影
面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括、、.
2.三视图的画法规则
①视图都反映物体的长度——“长对正”;
②视图都反映物体的高度——“高平齐”;
③视图都反映物体的宽度——“宽相等”.
3.三视图的特征总结
简单几何体
柱类:有两个视图为平行四边形
锥类:有两个视图为三角形
台类:有两个视图为梯形
处理步骤:
①定性,观察俯视图,结合正、侧视图,判断几何体的类型;
②定量,确定具体结构;
③作图,结合三视图验证;
④根据结构,找数据的对应关系;
⑤计算.
4.特殊几何体的三视图
①三棱锥
1
②正四棱锥
③普通台体
二、直观图
画空间几何体的直观图常用.
1.水平放置的平面图形的直观图的斜二测画法步骤:
①在已知图形中取互相垂直的x 轴、y 轴,两轴相交于点O,
画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′= ,它们确定的平面表示水平面.
②已知图形中平行于x 轴或y 轴的线段,在直观图中分别画
成于x′轴、y′轴的线段.
③已知图形中平行于x 轴的线段,在直观图中保持,
平行于y 轴的线段,长度变为.
2.画空间图形的直观图时,只需增加一个竖立的z′轴,且使
,并把竖直的线段画成与z′轴,长度
.
➢ 精讲精练 1.
一个几何体的三视图的形状都相同、大小均相等,那么这个几何体不可能是(
)
A. 球
B .三棱锥
C .正方体
D .圆柱
2.
已知一个几何体的三视图(单位:cm )如图所示,那么这个几何体的侧面积是
.
3. 如图是两个全等的正三角形,给定下列三个命题:①存在四棱锥,其正视图、侧视图如图;②存在三棱锥,其正视图、侧视图如图;③存在圆锥,其正视图、侧视图如图.其中真命题有( ) A .0 个
B .1 个
C .2 个
D .3 个
第 3 题图 第 4 题图
4.
一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,则该四棱锥的侧面积和体积分别是( ) A . 4 5 ,8 B . 4 5 ,
8
3 C . 4( 5 1),
8
3
D .8,8
5.某几何体的三视图如图所示,则该几何体的体积为()
A.4 B.14
3
C.
16
3
D.6
6.(1)画出该几何体的三视图.
(2)观察该几何体的三视图,画出示意图.
7.如图1,将正方体截去两个三棱锥,得到如图2 所示的几何体,
则该几何体的侧视图为()
图1 图2
A.B.C.D.
8.已知一个空间几何体的三视图如图所示,根据图中标出的尺
寸(单位:cm),可得这个几何体的体积为.
9.已知某组合体的正视图与侧视图相同,如图所示,其中
AB=AC,四边形BCDE 为矩形,则该组合体的俯视图可以是.(把你认为正确的图的序号都填上)
10.某几何体的三视图如图所示,则它的体积为()
A.12πB.45πC.57πD.81π11.某几何体的三视图如图所示,则其体积为.
12.已知某几何体的三视图如图所示,其中正视图、侧视图均由
直角三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得该几何体的体积为()
A.
2
π+
1
3 2
C.
2
π+
1
6 6
B.
4
π+
1
3 6
D.
2
π+
1
3 2
13.一个几何体的三视图如图所示,则该几何体的表面积为
.
14.如图是一个组合几何体的三视图,则该几何体的体积为
.
15.用斜二测画法画长、宽、高分别是4 cm,3 cm,2 cm 的长方
体ABCD-A'B'C'D'的直观图.
2 16. 关于斜二测画法所得直观图,下列说法正确的是( )
A. 等腰三角形的直观图仍为等腰三角形
B .正三角形的直观图一定为等腰三角形
C .梯形的直观图可能不是梯形
D .原图形的面积是直观图面积的2 倍
17. 如图表示水平放置的直观图,△O′A′B′是等腰直角三角形,画
出它原来的图形.
【参考答案】
➢知识点睛
一、三视图
1.正视图,侧视图,俯视图
2.①正、俯;②正、侧;③侧、俯
二、直观图
斜二测画法
1. ①45°或135°;②平行;③原长度不变,原来的一半
2. ∠x'O'z' = 90︒,平行,保持不变
➢精讲精练
1. D
2. (4 +
3. D
4. B
5. B
6.略
7. B
2) cm2
8.4cm3
9. ①②③④
10. C
11. 2 π 3
12. C
13. 38
14. 36 +108π
15.略
16.D
17.略。