成立.
=
sin +cos
=左边,所以原等式
sin -cos
考点二
三角函数式的求值(多考向探究)
考向1.给角求值问题
典例突破
例 3.(1)
3cos20 °-sin20 °
=
cos20 °cos70 °
.
π
1
(2)(2023 河南开封名校联考)已知锐角 α,β 满足 α+β= ,则
3
sin cos
π π
例如:α=(α+6)-6=(α-3)+3,α=(α+β)-β=β-(β-α),
2α=(α+β)+(α-β),2β=(α+β)-(α-β),2α+β=(α+β)+α,2α-β=(α-β)+α,
+ -
+ -
α= 2 + 2 ,β= 2 − 2 等.
(2)两角互余与互补关系
π
π
π π
4sin40 °
=4.
sin40 °
3
β= ,
2
∵α,β 均为锐角,则 sin αcos β>0,cos αsin β>0,
1
1
∴
+
sincos
cossin
=
2 3
(sin
3
αcos β+cos αsin
1
1
β)(
+
)
sincos
cossin
2 3
cossin
sincos
2 3
增素能 精准突破
考点一
三角函数式的化简与证明(多考向探究)