5
5
∵α∈
,
2
,
0
∴sin α=- 3 ,∴tan α=3- ,
5
4
∴tan 2α= 2 =ta n α
2
=-
3
.4
24
1 tan 2α
1
3 4
2
7
精品
10
5.已知α∈
2
,,sin α=
,则3 tan
5
α=
4
.
答案
1 7
解析 由已知得cos α=-4 ,∴tan α=3- ,
5
4.函数f(α)=acos α+bsin α(a,b∈R),可以化为f(α)=⑥ sain2 (αb+2φ1)
或f(α)=⑦ ac2osb(α2 -φ2) ,其中φ1、φ2可由a、b的值唯一确定. 5.在两角和的三角函数公式Sα+β,Cα+β,Tα+β中,当α=β时就得到二倍角的三角 函数公式:sin 2α=⑧ 2sin αcos α ,cos 2α=⑨ cos2α-sin2α ,tan 2α=⑩
A.- 3
2
答案
B.- 1
C1 .
D3.
2
2
2
C 原式=sin 45°·cos 15°-cos 45°·sin 15°=sin 1230°=
,故选C.
精品
7
2.sin 15°+cos 15°的值为 ( )
A. 1
2
答案
B. 6
C. 6
D3. 2
4
2
2
C sin 15°+cos 15°=2 sin(15°+45°)2= sin 60°2 6=