要求:学生独立完成,以小组为单位,组内可商量,最终选出代表
回答问题。
知识清单
1.半角公式
2.辅助角公式
asin x+bcos x=
a2+b2sin(x+θ)
b
(其中 tan θ=a).
小试牛刀
α
1.已知 180°<α<360°,则 cos 的值等于(
2
A.-
1-cos α
2
1+cos α
2
B.
θ
又 cos2=a,
θ
∴sin4=-
答案:D
θ
1-cos
2
2 =-
1-a
2 .
解题方法(利用半角公式化简求值)
1.化简问题中的“三变”
(1)变角:三角变换时通常先寻找式子中各角之间的联系,通过拆、凑等
手段消除角之间的差异,合理选择联系它们的公式.
(2)变名:观察三角函数种类的差异,尽量统一函数的名称,如统一为弦
解:在 Rt△OBC中, OB=cos, BC=sin
DA
在Rt△OAD中,
tan 60 3
OA
3
3
3
DA
BC
sin
3
3
3
3
AB OB OA cos
sin
3
设矩形ABCD的面积为S,则
OA
3
S AB • BC cos sin sin
将①②两个等式的左右两边分别相除,得2 =
例 7 的结果还可以表示为
1-cos α
α ±
2
sin =__________________,