非线性有限元及弹塑性力学
- 格式:ppt
- 大小:191.00 KB
- 文档页数:32
非线性有限元分析1 概述在科学技术领域内,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。
但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。
对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。
这类问题的解决通常有两种途径。
一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。
但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。
因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。
特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。
已经发展的数值分析方法可以分为两大类。
一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。
其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。
但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。
另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。
如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。
诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。
但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。
1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。
弹塑性力学第七章塑性力学的基本方程与解法一、非弹性本构关系的实验基础拿一根工程上最常用的低碳钢的试件,在拉伸试验机上就可得到如图7.1所示的应力应变曲线。
图中A为比例极限,当变形状态未超过A点时材料处于线弹性状态;B为弹性极限,AB段的变形虽然还是弹性的,即卸载时能按原来的加载曲线返回,但应力应变之间不再是线性关系。
C,D分别为上、下屈服极限,超过C点后材料进入塑性变形状态,卸载时不再按原来的加载曲线返回,而且当载荷完全卸除后还有残余变形。
由C到D是突然发生的,由于材料屈服引起应力突然下降,而应变继续增加。
由D到H是一接近水平的线段,称为塑性流动段。
对同一种材料D点的测量值比较稳定,而C点受试件截面尺寸、加载速率等影响较大。
如果载荷在使材料屈服之后还继续增加,则进入图中曲线右部的强化段。
即虽然材料已经屈服,但只有当应力继续增加时,应变才能继续增大。
在图中b点之后,试件产生颈缩现象,最后试件被拉断。
如果在塑性流动段的D′点,或强化段的H′点卸载,将能观测到沿着与OA平行的直线返回,当载荷为零是到达O′点或O′′点,即产生残余变形。
图7.1 低碳钢单向拉伸应力应变曲线有些高强度的合金钢并没有象低碳钢那样的屈服段,其单向拉伸的应力应变曲线如图7.2所示。
这种情况下屈服极限规定用产生0.2%塑性应变所对应的应力来表示,σ。
记为0.2图7.2 高强度合金钢单向拉伸应力应变曲线第七章 塑性力学的基本方程与解法如果以超过屈服极限的载荷循环加载,所得试验结果则象图7.3所示。
在实验中还发现,对于某些材料(图7.4),如果在加载(拉伸)屈服后完全卸载到O ′′点,然后接着反向加载(压缩),则其反向屈服点对应的应力绝对值s σ′′不仅小于s σ′,而且小于初始屈服应力的绝对值σ′。
这是德国的包辛格(Bauschinger, J.)最早发现的,称为包辛格效应。
图7.3 循环加载曲线示意图 图7.4 包辛格效应 当材料进入塑性状态后,如果不是单调加载,则应力和应变之间不仅不是单值函数的关系,而且当时的应变不仅和当时的应力有关,还和整个加载的历史有关。
第一章非线性代数方程组的数值解法1.1 直接迭代法1.2 牛顿法和修正牛顿法1.3 拟牛顿法1.4 增量方法1.5 增量弧长法非线性问题可分为三类:材料非线性不管那类非线性问题,最终都归结为一组非线性方程Ψ(a )=0,a 为待求的未知量。
对许多问题,用某些方法可将Ψ(a )=0改造成Ψ(a ) =P (a )-R =K (a ) a -R =0的形式。
对非线性问题的方程Ψ(a )=0,一般只能用数值方法求近似解答。
、几何非线性和边界非线性。
我们只讨论前两类问题。
其实质是,用一系列线性方程组的解去逼近所讨论非线性方程组的解。
本章将简单介绍有限元分析中常见的各种求解非线性方程组的数值方法。
1.1 直接迭代法当用某些方法将Ψ(a )=0改造成迭代格式Ψ(a ) =P (a )-R =K (a ) a -R =0后a 1= K (a 0)-1R如果问题是收敛的,a 1将比a 0有所改善。
a n +1= K (a n )-1R Δa n =a n +1-an 当设范数为i n a a ∆∆max =或设范数为2/1T ])[(n n n a a a ∆∆∆=收敛条件则为10 <<≤αα∆n n a a ,设一初始未知量a 0,则由它可得如此反复迭代可得4如果考虑到每步迭代Ψ(a n ) =P (a n )-R =K (a n ) a n -R ≠0将Ψ(a n )视为不平衡力(或失衡力)并作为衡量收敛的标准应指出的是,对单变量情况,如讲义图示,直接迭代实质是“割线”法10 )( <<≤ββR a Ψn 1.1 直接迭代法1.2 牛顿法和修正牛顿法如果将非线性方程如果将非线性方程ΨΨ((a a ) =0) =0在在a an 附近展开,则又如果[Ψ’(a )]n 的逆存在,则Δa n 近似等于记K (a n )=[Ψ’(a )]n ,P n =Ψ(a n )Δa n ≈-[Ψ’(a )]n -1Ψ(a n )则Δa n ≈-K T (a n )-1 P n ,a n +1=a n +Δa n 切线矩阵不平衡力如此逐步计算,即可得到非线性方程的解答,这就是牛顿-拉夫森法。
2022年6月第25期Jun. 2022No.25教育教学论坛EDUCATION AND TEACHING FORUM【特别关注】“弹塑性力学与有限元”课程教学实施思考——土木水利专业学位研究生核心课程禹海涛1,赵慧玲2(1.同济大学 土木工程学院,上海 200092;2.上海大学 力学与工程科学学院,上海 200444)[摘 要] “弹塑性力学与有限元”是土木水利专业学位研究生核心课程。
该课程具有复杂的理论体系,需要有较深厚的数学力学基础知识,具有较高的教学与培养要求。
目前,学生基础参差不齐、课程辅助教学缺乏等现实存在的问题不利于课程教学内容的实施;因此,保证和促进课程教学实施的措施需要深入思考。
从巩固学生基础、优化设置课程内容、丰富教学模式及考核方式等多个角度,探讨了课程教学实施的措施与建议,为同类研究生培养单位教师提升“弹塑性力学与有限元”课程的教学效果提供借鉴。
[关键词] 弹塑性力学与有限元;教学实施;实践能力[课题项目] 2021年度上海大学“研究生教育培养质量提升”(2021GY12)[作者简介] 禹海涛(1983—),男,河南驻马店人,工学博士,同济大学土木工程学院教授,博士生导师,主要从事土木工程专业研究;赵慧玲(1982—),女,山西长治人,博士,上海大学力学与工程科学学院副教授(通信作者),主要从事土木工程专业研究。
[中图分类号] G642.0 [文献标识码] A [文章编号] 1674-9324(2022)25-0001-04 [收稿日期] 2022-03-04科学技术的飞速发展对高素质科技人才的需求越来越迫切。
研究生教育是高素质人才培养的重要基础。
《国家中长期教育改革和发展规划纲要(2010—2020年)》指出:“提高质量是高等教育发展的核心任务,是建设高等教育强国的基本要求。
”提高人才的专业素养是提升高等教育质量的重要任务之一。
土木工程作为一门传统的工科专业,具有较强的实践性与应用性。