第3章 误差与数据处理
- 格式:ppt
- 大小:748.00 KB
- 文档页数:55
修正值=)(4321l l l l ∆+∆+∆+∆- =)1.03.05.07.0(+-+-- =0.4)(m μ 测量误差: l δ=4321lim 2lim 2lim 2lim 2l l l l δδδδ+++±=2222)20.0()20.0()25.0()35.0(+++± =)(51.0m μ±3-2 为求长方体体积V ,直接测量其各边长为mm a 6.161=,mm 44.5b =,mm c 2.11=,已知测量的系统误差为mm a 2.1=∆,mm b 8.0-=∆,mm c 5.0=∆,测量的极限误差为mm a 8.0±=δ,mm b 5.0±=δ,mm c 5.0±=δ, 试求立方体的体积及其体积的极限误差。
abc V = ),,(c b a f V = 2.115.446.1610⨯⨯==abc V)(44.805413mm =体积V 系统误差V ∆为:c ab b ac a bc V ∆+∆+∆=∆)(74.2745)(744.274533mm mm ≈=立方体体积实际大小为:)(70.7779530mm V V V =∆-=222222lim )()()(c b a V cf b f a f δδδδ∂∂+∂∂+∂∂±= 222222)()()(c b a ab ac bc δδδ++±=)(11.37293mm ±=测量体积最后结果表示为:V V V V lim 0δ+∆-=3)11.372970.77795(mm ±=3—3 长方体的边长分别为α1,α2, α3测量时:①标准差均为σ;②标准差各为σ1、σ2、 σ3 。
试求体积的标准差。
解:长方体的体积计算公式为:321a a a V ⋅⋅= 体积的标准差应为:232322222121)()()(σσσσa V a V a V V ∂∂+∂∂+∂∂=现可求出:321a a a V ⋅=∂∂;312a a a V ⋅=∂∂;213a a a V⋅=∂∂ 若:σσσσ===321 则有:232221232322222121)()()()()()(a V a V a V a V a V a V V ∂∂+∂∂+∂∂=∂∂+∂∂+∂∂=σσσσσ221231232)()()(a a a a a a ++=σ若:321σσσ≠≠ 则有:232212223121232)()()(σσσσa a a a a a V ++=3-4 测量某电路的电流mA I 5.22=,电压V U 6.12=,测量的标准差分别为mA I 5.0=σ,V U 1.0=σ,求所耗功率UI P =及其标准差P σ。
知识点:算术平均值及其实验标准差的计算(一)算术平均值的计算在相同条件下对被测量x进行有限次重复测量,得到一系列测量值x 1,x2,x3,……,xn,平均值为:(二)算术平均值实验标准差的计算若测量值的实验标准偏差为s(x) ,则算术平均值的实验标准偏差为增加测量次数,用多次测量的算术平均值作为测量结果,可以减小随机误差,或者说,减小由于各种随机影响引入的不确定度。
但随测量次数的进一步增加,算术平均值的实验标准偏差减小的程度减弱,相反会增加人力、时间和仪器磨损等问题,所以一般取n=3~20。
知识点:异常值的判别和剔除(一)什么是异常值异常值又称离群值,指在对一个被测量重复观测所获的若干观测结果中,出现了与其他值偏离较远的个别值,暗示他们可能来自不同的总体,或属于意外的、偶然的测量错误。
也称为存在着“粗大误差”。
例如:震动、冲击、电源变化、电磁干扰等意外的条件变化,人为的读数或记录错误,仪器内部的偶发故障等都可能是造成异常值的原因。
如果一系列测量值中混有异常值,必然会歪曲测量的结果,这时若能将该值剔除,可使结果更符合客观情况。
但不能无原则地剔除,损失了测得值的随机波动特性,数据失真。
所以必须正确地判别和剔除异常值。
【案例】检定员在检定一台计量器具时,发现记录的数据中某个数较大,她就把它作为异常值剔除了,并再补做一个数据。
【案例分析】案例中的那位检定员的做法是不对的。
在测量过程中除了当时已知原因的明显错误或突发事件造成的数据异常值可以随时剔除外,如果仅仅是看不顺眼或怀疑某个值,不能确定是否是异常值的,不能随意剔除,必须用统计判别法(如格拉布斯法等)判别,判定为异常值的才能剔除。
(二)判别异常值常用的统计方法(二)判别异常值常用的统计方法——考试重点为三个常用的异常值判定准则l.拉依达准则——又称3σ准则。
当重复观测次数充分大的前提下(n>>10),设按贝塞尔公式计算出的实验标准偏差为s,若某个可疑值xd 与n个结果的平均值之差(xd一)的绝对值大于或等于3s时,判定xd为异常值。