第4课 分式及其运算
- 格式:ppt
- 大小:590.50 KB
- 文档页数:24
第三讲 分式及其运算第一部分 知识梳理一、分式的基本概念及性质1.概念一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式(B ≠0)。
①在分式 中A 称为分式的分子,B 称为分式的分母。
②对于任意一个分式,分母都不能为0,否则分式无意义。
③分式值为0的条件:在分母不等于0的前提下,分子等于0,则分数值为0。
2.分式的基本性质和变形应用(1)分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
(2)约分:把一个分式的分子和分母的公因式约去,这种变形称为分式的约分. 分式约分的步骤:①如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。
②分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。
3.最简分式一个分式的分子和分母没有公因式时,这个分式称为最简分式。
约分时,一般将一个分式化为最简分式。
二、分式的运算1.分式的四则运算①同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减。
②异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。
③分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
④分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。
三、分式方程1.概念分母中含有未知数的方程叫做分式方程。
2.解分式方程的基本思想将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程“转化”为整式方程。
3.解分式方程的基本方法(1)去分母法:去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程。
但要注意,可能会产生增根。
所以,必须验根。
①产生增根的原因:当最简公分母等于0时,这种变形不符合方程的同解原理,这时得到的整式方程的解不一定是原方程的解。
第一部分数与式专题03分式及其运算核心考点核心考点一分式的概念核心考点二分式的基本性质核心考点三分式的运算核心考点四分式的化简求值新题速递核心考点一分式的概念(2022·湖南怀化·中考真题)代数式25x,1π,224x+,x2﹣23,1x,12xx++中,属于分式的有()A.2个B.3个C.4个D.5个(2022·内蒙古包头·1x+在实数范围内有意义,则x的取值范围是___________.(2022·湖北黄石·中考真题)先化简,再求值:2269111a aa a++⎛⎫+÷⎪++⎝⎭,从-3,-1,2中选择合适的a 的值代入求值.注意1.分式可以表示两个整式相除,其中分子为被除式,分母为除式,分数线起除号和括号的作用。
2.分式的分子中可以含有字母,也可以不含字母,但分母中必须含有字母,这是区别分式和整式的重要依据。
3.在任何情况下,分式的分母的值都不为0,否则分式无意义。
知识点:分式的概念一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式,其中A 叫做分式的分子,B 叫做分式的分母。
(1)分式有意义的条件:分母不为零,即()0AB B≠(2)分式值为零:分子为零,且分母不为零。
即A B(0A =且0B ≠)【变式1】(2022·河北石家庄·一模)关于代数式M =2211121x x x x x ⎛⎫÷ ⎪⎝⎭--+++,下列说法正确的是()A .当x =1时,M 的值为0B .当x =﹣1时,M 的值为﹣12C .当M =1时,x 的值为0D .当M =﹣1时,x 的值为0【变式2】(2022·广东珠海·模拟预测)若21(1)ma =--(m 为正整数),且a 、b 互为相反数,b 、c 互为倒数,则2()m m ab b b c +--的值为()A .0B .1-C .2-D .0或2-【变式3】(2022·广东·华南师大附中三模)把代数式322363x x y xy -+分解因式,结果正确的是___________;若分式11x x +-的值为零,则x 的值为___________;若代数式26x x b -+可化为()21x a --,则b a -的值是___________.【变式4】(2022·广东·华南师大附中三模)把代数式322363x x y xy -+分解因式,结果正确的是___________;若分式11x x +-的值为零,则x 的值为___________;若代数式26x x b -+可化为()21x a --,则b a -的值是___________.【变式5】(2022·广东佛山·二模)平面直角坐标系中有两个一次函数1y ,2y ,其中1y 的图象与x 轴交点的横坐标为2且经过点()1,2,22y mx =-.(1)求函数1y 的关系式;(2)当2y 的图象经过两点11,22n ⎛⎫- ⎪⎝⎭和(),1n 时,求22n m +的值;(3)当1x >时,对于x 的每一个值,都有12y y <,求m 的取值范围.核心考点二分式的基本性质(2020·河北·中考真题)若a b ¹,则下列分式化简正确的是()A .22a ab b +=+B .22a ab b -=-C .22a a b b=D .1212aa b b =(2020·内蒙古呼和浩特·中考真题)分式22x x -与282x x -的最简公分母是_______,方程228122-=--x x x x的解是____________.(2021·广西梧州·中考真题)计算:(x ﹣2)2﹣x (x ﹣1)3224x x x -+.知识点:分式的基本性质分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。
八年级数学下册分式一、教科书内容和课程学习目标(一)教科书内容本章的主要内容包括:分式的概念,分式的基本性质,分式的约分与通分,分式的加、减、乘、除运算,整数指数幂的概念及运算性质,分式方程的概念及可化为一元一次方程的分式方程的解法。
全章共包括三节:16.1 分式16.2 分式的运算16.3 分式方程(二)本章知识结构框图三)课程学习目标本章教科书的设计与编写以下列目标为出发点:1.以描述实际问题中的数量关系为背景,抽象出分式的概念,体会分式是刻画现实世界中数量关系的一类代数式。
2.类比分数的基本性质,了解分式的基本性质,掌握分式的约分和通分法则。
3.类比分数的四则运算法则,探究分式的四则运算,掌握这些法则。
4.结合分式的运算,将指数的讨论范围从正整数扩大到全体整数,构建和发展相互联系的知识体系。
5.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想。
§16.1.1 从分数到分式一.教学目标(1)知识与技能目标:掌握分式概念,学会判别分式何时有意义,能用分式表示数量关系。
(2)过程与方法目标:经历分式概念的自我建构过程及用分式描述数量关系的过程,学会与人合作,并获得代数学习的一些常用方法:类比转化、合情推理、抽象概括等。
(3)情感与态度目标:通过丰富的数学活动,获得成功的经验,体验数学活动充满着探索和创造,体会分式的模型思想。
二.教学重难点重点:分式的概念难点:识别分式有无意义;用分式描述数量关系三.教法与学法基于以上教材特点和学生情况的分析,我在本节课主要采用“引导—发现教学法”,借助于计算机课件,通过“问题情境—建立模型—解释、应用与拓展”的模式展开教学。
四.教学过程《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。
”为能更多地向学生提供从事数学活动的机会,我将本节课设为以下五个环节:发现新知—再探新知—应用新知—深化拓展—小结巩固,以期在多样的活动中激发学生的学习潜能,引导学生积极自主探索、合作交流与实践创新。
分式及其运算
一、分式的概念
分式是用一个数除以另一个非零数所得的商。
分式由分子和分母两部分组成,用斜线"/"或水平线"—"隔开,如3/5或3—5。
其中,分子是被除数,分母是除数。
二、分式的基本运算
1. 分式的加减法
- 同分母分式的加减法:只需将分子相加或相减,分母保持不变。
- 异分母分式的加减法:先通分,使分母相同,再将分子相加或相减。
2. 分式的乘法
- 分式相乘时,分子相乘,分母相乘。
3. 分式的除法
- 分式除法可以通过乘以另一个分式的倒数来实现。
4. 分式的化简
- 分子和分母都除以它们的最大公因数,可以化简分式。
三、分式的应用
分式在日常生活和学习中有广泛的应用,例如:
1. 计算比例和百分比
2. 表示概率
3. 解决实际问题(如分配任务、计算利息等)
通过掌握分式的运算规则和应用技巧,我们可以更好地理解和处理涉及分数的各种情况。
初中数学《分式的基本性质》精品教案一、教学内容本节课选自人教版初中数学教材八年级上册第十四章《分式》,详细内容包括:分式的定义、分式的基本性质、分式的约分与通分、分式的乘除法及分式的乘方。
二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质对分式进行简化。
2. 能够运用约分与通分的方法对分式进行运算。
3. 学会分式的乘除法及乘方运算,并能够灵活运用解决实际问题。
三、教学难点与重点重点:分式的基本性质、约分与通分、分式的乘除法及乘方运算。
难点:分式的简化,尤其是含有绝对值的分式简化;分式的乘除法及乘方运算在实际问题中的应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:教材、练习本、计算器。
五、教学过程1. 实践情景引入:通过一个关于速度、时间和路程的实际问题,让学生列出分式表达式,引导学生思考如何简化分式。
2. 知识讲解:(1)回顾分式的定义,引导学生掌握分式的结构。
(2)讲解分式的基本性质,如分子分母同乘(除)一个非零常数,分式的值不变。
(3)通过例题讲解,演示如何运用基本性质简化分式。
3. 随堂练习:设计一些关于分式简化、约分与通分的练习题,让学生当堂完成,巩固所学知识。
4. 例题讲解:(1)分式的乘除法运算。
(2)分式的乘方运算。
(3)含有绝对值的分式简化。
5. 课堂小结:六、板书设计1. 分式的定义与结构。
2. 分式的基本性质。
3. 分式的约分与通分。
4. 分式的乘除法及乘方运算。
5. 例题及解题步骤。
七、作业设计1. 作业题目:(1)简化分式:2/(4x8)。
(2)计算分式的乘除:3x/(x+2) ÷ 2x/(x2)。
(3)计算分式的乘方:(x^24)/(x+2)^2。
2. 答案:(1)1/(2x4)。
(2)3x(x2)/(2(x+2)(x2))。
(3)(x2)^2/(x+2)^2。
八、课后反思及拓展延伸1. 反思:本节课学生对分式的基本性质、约分与通分掌握较好,但在解决实际问题中运用分式的乘除法及乘方运算时,部分学生还存在困难,需要在今后的教学中加强练习。
北师大版数学八年级下册《分式及分式的相关概念》教案一. 教材分析北师大版数学八年级下册《分式及分式的相关概念》这一章节是在学生已经掌握了有理数、实数等基础知识的基础上进行讲解的。
分式是数学中的一个重要概念,它在日常生活和工农业生产中有着广泛的应用。
本章主要介绍了分式的定义、分式的基本性质、分式的运算以及分式的应用等内容。
通过这一章节的学习,使学生掌握分式的相关知识,提高他们解决实际问题的能力。
二. 学情分析学生在学习这一章节时,已经具备了初步的数学逻辑思维能力,但部分学生在理解和应用分式方面存在一定的困难。
主要问题有以下几点:1. 对分式的定义理解不深刻,容易与分数混淆;2. 对分式的基本性质掌握不牢固,不能灵活运用;3. 分式的运算过程中,部分学生对运算规则理解不透彻,导致计算错误;4. 应用分式解决实际问题时,不知道如何运用所学知识。
三. 教学目标1.理解分式的定义,掌握分式的基本性质;2.学会分式的运算方法,能熟练进行分式计算;3.能够运用分式解决实际问题,提高解决问题的能力;4.培养学生的逻辑思维能力,提高他们的数学素养。
四. 教学重难点1.分式的定义和基本性质;2.分式的运算规则;3.分式在实际问题中的应用。
五. 教学方法采用启发式教学法、案例教学法和小组合作学习法。
通过设置问题情境,引导学生独立思考、合作交流,从而达到理解掌握分式的相关知识。
六. 教学准备1.准备相关的教学课件和教学素材;2.安排学生进行预习,了解分式的基本概念;3.准备一些实际问题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用实例引入分式的概念,如:已知苹果和橘子的数量,求苹果和橘子的比例。
让学生思考如何用数学表达式表示这个问题,从而引出分式的定义。
2.呈现(10分钟)讲解分式的定义,强调分式的基本性质,如:分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变。
通过举例说明,让学生理解分式的基本性质。