第五章 电子光学基础
- 格式:ppt
- 大小:964.00 KB
- 文档页数:5
第一章 X 射线物理学基础1、X 射线的强度X 射线的强度是指垂直X 射线传播方向的单位面积上在单位时间内所通过的光子数目的能量总和。
常用的单位是J/cm 2。
s 。
X 射线的强度I 是由光子能量hv 和它的数目n 两个因素决定的,即I=nhv 。
在连续谱中,强度最大值不在短波限处,而是位于1。
5λ0附近。
连续谱中,每条曲线下的面积表示各种波长X 射线的强度总和,也就是阳极靶发射出的X 射线的总能量。
I 连与管电压、管电流、阳极靶的原子序数存在如下关系:Z 为阳极靶的原子序数,U 为管电压(千伏), i 为管电流(毫安), K=(1.1~1。
5)×10—9。
2、特征X 射线特征X 射线谱由一定波长的若干X 射线叠加在连续X 射线谱上构成,它和单色的可见光相似,具有一定的波长,故称单色X 射线。
每种元素只能发出一定波长的单色X 射线,它是元素的标志,故也称为标识X 射线。
3、光电效应当入射光量子的能量等于或略大于吸收体原子某壳层电子的结合能(即该层电子激发态能量)时,此光量子就很容易被电子吸收,获得能量的电子从内层溢出,成为自由电子,称光电子,原子则处于相应的激发态,这种原子被入射辐射电离的现象即光电效应。
光电效应使被照物质处于激发态,这一激发态和由入射电子所引起的激发态完全相同,也要通过电子跃迁向较低能态转化,同时辐射被照物质的特征X 射线谱。
由入射X 射线所激发出来的特征X 射线称荧光X 射线(二次特征X 射线)。
利用荧光X 射线进行成分分析-X 射线荧光光谱分析(Z 〉20)使K 层电子变成自由电子需要的能量是ωK,亦即可引起激发态的入射光量子能量必须达到此值。
从X 射线激发光电效应的角度,称λK从X 射线被物质吸收的角度,称λK 为吸收限。
产生光电效应条件:X 射线波长必须小于吸收限λK 。
()2连0=KiZU d I I =⎰∞λλλKK KK eU hch ===ωλν4、俄歇效应原子中一个K 层电子被入射光量子击出后,L 层一个电子跃入K 层填补空位,此时多余的能量不以辐射X 光量子的方式放出,而是另一个L 层电子获得能量跃出吸收体,这样一个K 层空位被两个L 层空位代替的过程称俄歇效应,跃出的L 层电子称俄歇电子。
第一章/n c v εμ==电子波长:h mv V λ==光的折射定律:2112sin sin n n φφ=,1122cn v cn v ==变分法关键定理:欧拉方程F F()0y x y d d ∂∂-='∂∂费马原理指出:光沿所需时间为极值(极大值、恒值、极小值)的路径传播。
t时间1vkii is ==∑费马原理的数学表达式:δδδδ==⇒==⎰⎰22111[]0[]0p p pp t nds L nds c费马原理的具体表达式——斯涅尔定律:1122()sin sin sin sin k kn x n n n φφφφ=L 常数或者:===光学定律的数学表达式(光的直线传播,反射、折射的内在联系.遵循的一个更普遍的规律)1\光的直线传播定律——由斯涅尔定律可知:当n 为常数时,正弦函数为常数,即,角度为常数;——光传播路径ds 上任何一点的方向相同,因此为一条直线。
2、折射定律——斯涅尔定律3、反射定律:令n2=-n1,有ψ2=-ψ1,由于入射角和反射角关于反射法线对称,因此ψ’=-ψ14、互易原理:当光线在两种媒质分界面上反射时,其光线传送互易。
非相对论条件下的电子运动方程:o d m e()dt =-+⨯v E v B直角坐标系下的电子运动方程组:222222()()()x z y y x z z y x d x e dy dz E B B dt m dt dt d y e dz dxE B B dt m dt dt d z e dx dyE B B dt m dt dt =-+-=-+-=-+-由电子在均匀电磁场中的能量变化方程:2()02d mv e dt ϕ-=积分可得:22mv e C ϕ-=电子运动速度可以通过空间电位来表示,下式φ为规范化电位:2 5.93210(/)e v m s m ϕϕ==⨯电子在均匀静电场内的轨迹方程:222o eE y z mv =-均匀磁场中,电子速度垂直于Bη==o o Lmv v R eB B ,ηππ===122o v B f T R均匀磁场中,电子速度与B 有夹角α:sin L v R B αη=,12B f T ηπ==,2cos h v B παη=电子在复合电磁场中的运动222222()()()x z y y x z z y x d x e dy dzE B B dt m dt dt d y e dz dxE B B dt m dt dt d z e dx dyE B B dt m dt dt =-+-=-+-=-+-运动方程(摆线方程)为:220(1cos())sin()x E y Bt B E E z t Bt B B ηηηη⎧⎪=⎪⎪⎪⎪=-⎨⎪⎪⎪⎪=-⎪⎩电子运动方程(轮摆线轨迹):22222()()()E E E y z t B B B ηη-+-=麦克斯韦方程组:BE t∂∇⨯=-∂,D ρ∇⋅=,D E ε=,D H J t ∂∇⨯=+∂,0B ∇⋅=,B H μ=在假设条件下:0E ∇⨯=,0E ∇⋅=,0B ∇⨯=,0B ∇⋅= 矢量公式通用形式2311322131231231[()()()]D h h D h h D h h D h h h q q q ∂∂∂∇⋅=++∂∂∂\22313211231112223331()()()h h h h h h h h h q h q q h q q h q ϕϕϕϕ⎡⎤∂∂∂∂∂∂∇=++⎢⎥∂∂∂∂∂∂⎣⎦直角坐标系下拉氏方程:圆柱坐标系下拉氏方程:0ϕθ∂=∂当时,22222211()00r r r r r r z z r ϕϕϕϕϕ∂∂∂∂∂∂+=⇒++=∂∂∂∂∂∂谢尔茨公式:圆柱坐标系下拉氏方程:贝塞尔微分方程:22221(1)0d d dz z dz z ϖϖνϖ++-=轴对称电场的积分表达式:201(,)(sin )2r z V z ir a daπϕπ=+⎰谢尔茨公式:曲线在点M 的曲率limQ Md k MQds δα→==点M 的曲率半径1ds R k d α==当已知曲线方程为:y=f(x)时,曲线的曲率半径。
电子行业电子光学基础概述电子光学是电子行业中的一个重要分支,它研究的是电子在光学系统中的行为和特性。
光学技术在电子行业的许多领域中起着至关重要的作用,例如光通信、显示器件、光电子器件等。
本文将介绍电子行业中电子光学的基础知识。
光学基础光学是研究光的传播、发射与接收以及与物质的相互作用的科学。
光是电磁波的一种,它有波粒二象性。
光学研究主要涉及以下几个方面:光的特性包括波长、频率、速度和能量等。
光的波长决定了其在介质中的传播速度和折射率,而频率则对应着光的色彩。
光的速度在真空中是一个常量,约为3 × 10^8 m/s。
光的传播与折射当光从一种介质传播到另一种介质时,会发生折射现象。
折射现象是由于光在不同介质中传播速度的改变而引起的。
根据折射定律,光线在两种介质中的传播方向会发生改变。
光的反射与折射光在与界面接触时会发生反射与折射。
根据反射定律,入射光线与法线的夹角等于反射光线与法线的夹角。
折射光线的偏折程度则由折射率决定。
不同波长的光在介质中传播时会发生不同程度的折射,这称为色散现象。
色散使得不同颜色的光在经过透镜或棱镜等光学器件时产生色差。
电子光学在电子行业中的应用光通信光通信是一种利用光的传输信息的技术。
它使用光纤作为传输介质,通过调制和解调的方法实现信息的传输和接收。
光通信具有传输速度快、传输距离远、抗干扰能力强等优点,因此在电子行业中得到广泛应用。
电子光学在显示器件中的应用非常广泛。
例如,在液晶显示器中,背光模块使用光学器件提供光源,而液晶屏使用光学装置调节光的透过程度,从而实现图像的显示。
光电子器件光电子器件是利用光与电子的相互作用实现功能的器件。
例如,光电二极管(Photodiode)是一种能将光信号转换为电信号的器件。
光电子器件在光电子技术、光电波导技术等领域中具有广泛的应用。
结论电子光学是电子行业中的重要领域,它研究光的传播与作用在电子系统中的应用。
了解电子光学的基础知识对于理解电子行业中的光学技术具有重要意义。
《材料分析测试方法》课程笔记第一章:x射线的物理学基础一、x射线的性质1. x射线的定义与产生x射线是一种波长位于紫外线和γ射线之间的电磁波,其波长范围大约在0.01纳米到10纳米之间。
x射线的产生通常是通过x射线管,其中高速运动的电子撞击金属靶材(如铜或钨)时,由于突然减速,电子会将部分动能转换为x 射线。
2. x射线的特点(1)穿透能力:x射线的穿透能力远强于可见光,能够穿透大多数非金属物质,但会被重金属等高原子序数物质吸收。
(2)电离作用:x射线能够电离物质,从原子或分子中移除电子,导致形成带电的离子。
(3)荧光效应:x射线能够激发某些物质发光,这种现象称为荧光效应。
(4)生物效应:x射线对生物组织具有损害作用,可以破坏细胞结构,因此在使用时需要谨慎。
二、x射线谱1. x射线谱的分类x射线谱主要包括两种类型:连续谱和特征谱。
2. 连续谱连续谱是由高速电子撞击靶材时产生的,它包含了从低能量到高能量的一系列波长。
连续谱的强度随波长的增加而减小,其峰值波长与加速电子的电压有关。
3. 特征谱特征谱是由靶材原子的内层电子跃迁到外层轨道时释放的特定能量的光子形成的。
每种元素都有其特定的特征谱线,这些谱线对应于元素原子内电子能级的特定差异。
三、x射线与物质的相互作用1. 吸收x射线在穿透物质时,其强度会随着穿透深度的增加而减弱,这是因为物质中的原子吸收了部分x射线能量。
吸收系数与物质的种类、密度和x射线的波长有关。
2. 散射(1)弹性散射(康普顿散射):x射线光子与物质中的自由电子发生碰撞后,光子的能量和方向发生改变,但波长不变。
(2)非弹性散射(瑞利散射):x射线光子与物质中的原子或分子相互作用,能量部分转化为物质的内能,导致光子的能量降低,波长变长。
3. 荧光当x射线光子的能量足够高时,可以激发物质中的原子或分子,使其电子跃迁到更高能级,随后返回基态时释放出能量,通常以可见光的形式。
4. 产生电子对在x射线能量非常高时(大于1.022 MeV),x射线光子在物质中可以转化为一个正电子和一个负电子。