第1章 电子光学基础(1)..
- 格式:ppt
- 大小:2.76 MB
- 文档页数:57
光学与光电子技术作业指导书第1章光学基础知识 (4)1.1 光的波动性与粒子性 (4)1.1.1 波动性 (4)1.1.2 粒子性 (4)1.2 光的传播与反射 (4)1.2.1 光的传播 (4)1.2.2 反射 (4)1.3 光的折射与全反射 (4)1.3.1 折射 (4)1.3.2 全反射 (4)第2章光的干涉与衍射 (5)2.1 干涉现象及其应用 (5)2.1.1 干涉现象的基本原理 (5)2.1.2 干涉现象的应用 (5)2.2 衍射现象及其分类 (5)2.2.1 衍射现象的基本原理 (5)2.2.2 衍射现象的分类 (5)2.3 光学仪器中的干涉与衍射 (6)2.3.1 干涉在光学仪器中的应用 (6)2.3.2 衍射在光学仪器中的应用 (6)第3章光的偏振与双折射 (6)3.1 偏振光及其产生 (6)3.1.1 偏振光的概念 (6)3.1.2 偏振光的产生 (6)3.2 双折射现象及其应用 (6)3.2.1 双折射现象 (7)3.2.2 双折射的应用 (7)3.3 偏振器件与偏振光检测 (7)3.3.1 偏振器件 (7)3.3.2 偏振光检测 (7)第4章光的吸收与发射 (7)4.1 光的吸收过程 (7)4.1.1 吸收系数 (8)4.1.2 贝尔定律 (8)4.1.3 吸收光谱 (8)4.2 光的发射过程 (8)4.2.1 自发发射 (8)4.2.2 受激发射 (8)4.2.3 荧光和磷光 (8)4.3 光谱分析与光谱仪器 (8)4.3.1 光谱仪的原理 (8)4.3.3 光谱分析的应用 (9)4.3.4 光谱仪器的功能指标 (9)第5章激光原理与技术 (9)5.1 激光产生与特性 (9)5.1.1 激光产生原理 (9)5.1.2 激光特性 (9)5.2 激光器及其类型 (9)5.2.1 激光器的分类 (9)5.2.2 常见激光器介绍 (9)5.3 激光在光电子技术中的应用 (10)5.3.1 光通信 (10)5.3.2 光存储 (10)5.3.3 光刻 (10)5.3.4 材料加工 (10)5.3.5 医疗美容 (10)5.3.6 测量与检测 (10)5.3.7 激光显示 (10)第6章光电子器件与电路 (10)6.1 光电子器件原理 (10)6.1.1 光电子器件概述 (10)6.1.2 光源 (11)6.1.3 光探测器 (11)6.1.4 光调制器 (11)6.1.5 光开关 (11)6.2 光电子电路设计 (11)6.2.1 光电子电路概述 (11)6.2.2 光源驱动电路设计 (11)6.2.3 光探测器电路设计 (11)6.2.4 光调制器电路设计 (11)6.2.5 光开关电路设计 (11)6.3 光电子器件在通信与显示领域的应用 (12)6.3.1 光电子器件在光通信中的应用 (12)6.3.2 光电子器件在光纤通信中的应用 (12)6.3.3 光电子器件在显示技术中的应用 (12)6.3.4 光电子器件在光互连和光计算中的应用 (12)第7章光学传感器与检测技术 (12)7.1 光学传感器原理 (12)7.1.1 光敏感元件 (12)7.1.2 信号处理电路 (12)7.2 光学检测方法 (12)7.2.1 光谱检测 (13)7.2.2 干涉检测 (13)7.2.3 全息检测 (13)7.3 光学传感器在环境监测与生物检测中的应用 (13)7.3.1 环境监测 (13)7.3.2 生物检测 (13)第8章光通信技术与系统 (14)8.1 光纤通信原理 (14)8.1.1 光纤结构及分类 (14)8.1.2 光纤传输原理 (14)8.1.3 光源与光检测器 (14)8.2 光通信器件与设备 (14)8.2.1 光发射器件 (14)8.2.2 光接收器件 (14)8.2.3 光放大器与光衰减器 (14)8.2.4 光开关与光调制器 (14)8.3 光通信网络的规划与优化 (14)8.3.1 光通信网络结构 (14)8.3.2 光通信网络设计 (15)8.3.3 光通信网络优化 (15)8.3.4 光通信网络管理 (15)第9章光学成像与显示技术 (15)9.1 成像系统原理 (15)9.1.1 光的传播与成像规律 (15)9.1.2 成像系统的分类与结构 (15)9.1.3 成像系统的主要功能指标 (15)9.2 显示技术及其发展 (15)9.2.1 阴极射线管(CRT)显示技术 (15)9.2.2 液晶显示(LCD)技术 (16)9.2.3 发光二极管(LED)显示技术 (16)9.2.4 有机发光二极管(OLED)显示技术 (16)9.3 光学成像与显示在虚拟现实与增强现实中的应用 (16)9.3.1 虚拟现实中的光学成像与显示技术 (16)9.3.2 增强现实中的光学成像与显示技术 (16)9.3.3 光学成像与显示技术在VR与AR领域的挑战与展望 (16)第10章光电子技术在新能源领域的应用 (16)10.1 光伏发电原理与器件 (17)10.1.1 光伏效应 (17)10.1.2 光伏器件 (17)10.1.3 提高光伏转换效率的方法 (17)10.2 光催化与光化学合成 (17)10.2.1 光催化原理 (17)10.2.2 光催化剂 (17)10.2.3 光化学合成 (17)10.3 光电子技术在节能减排中的应用展望 (17)10.3.1 太阳能光伏发电 (17)10.3.2 光催化技术在环境保护中的应用 (18)10.3.3 光电子技术在新能源汽车中的应用 (18)10.3.4 光电子技术在绿色建筑中的应用 (18)第1章光学基础知识1.1 光的波动性与粒子性1.1.1 波动性光作为一种电磁波,具有波动性。
第二篇金属电子显微分析Electron Microanalysis for Metals第一章电子光学基础The Electron Optics引言1.显微分析的任务:了解材料的化学成分、形貌和晶体结构The microanalysis: Composition, topography, and crystals construction.2.电子光学仪器:透射电子显微镜(TEM),扫描电子显微镜(SEM)The instrument of electron optics:Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM)3.以电子光学方法将具有一定能量的电子(或离子)会聚成细小的入射束,通过与样品物质的相互作用激发表征材料微观组织结构特征的各种信息,检测并处理这些信息从而给出形貌、成分和结构的丰富资料,是所有电子光学仪器的共同特点。
3.The incident beam of electrons (or ions) condensed with electronic optics technique interact with the materials of samples to exact and product the information of materials’ topography, crystals construction, and also, to detect and to treat these information about the composition, topography, and crystals construction.4.微区分析新技术4.Micro-analysis technique.1.1.几何光学: 折射定律,Geometric Optics :Refractive law光的折射是其成像基础。
第一章/n c v εμ==电子波长:h mv V λ==光的折射定律:2112sin sin n n φφ=,1122cn v cn v ==变分法关键定理:欧拉方程F F()0y x y d d ∂∂-='∂∂费马原理指出:光沿所需时间为极值(极大值、恒值、极小值)的路径传播。
t时间1vkii is ==∑费马原理的数学表达式:δδδδ==⇒==⎰⎰22111[]0[]0p p pp t nds L nds c费马原理的具体表达式——斯涅尔定律:1122()sin sin sin sin k kn x n n n φφφφ=L 常数或者:===光学定律的数学表达式(光的直线传播,反射、折射的内在联系.遵循的一个更普遍的规律)1\光的直线传播定律——由斯涅尔定律可知:当n 为常数时,正弦函数为常数,即,角度为常数;——光传播路径ds 上任何一点的方向相同,因此为一条直线。
2、折射定律——斯涅尔定律3、反射定律:令n2=-n1,有ψ2=-ψ1,由于入射角和反射角关于反射法线对称,因此ψ’=-ψ14、互易原理:当光线在两种媒质分界面上反射时,其光线传送互易。
非相对论条件下的电子运动方程:o d m e()dt =-+⨯v E v B直角坐标系下的电子运动方程组:222222()()()x z y y x z z y x d x e dy dz E B B dt m dt dt d y e dz dxE B B dt m dt dt d z e dx dyE B B dt m dt dt =-+-=-+-=-+-由电子在均匀电磁场中的能量变化方程:2()02d mv e dt ϕ-=积分可得:22mv e C ϕ-=电子运动速度可以通过空间电位来表示,下式φ为规范化电位:2 5.93210(/)e v m s m ϕϕ==⨯电子在均匀静电场内的轨迹方程:222o eE y z mv =-均匀磁场中,电子速度垂直于Bη==o o Lmv v R eB B ,ηππ===122o v B f T R均匀磁场中,电子速度与B 有夹角α:sin L v R B αη=,12B f T ηπ==,2cos h v B παη=电子在复合电磁场中的运动222222()()()x z y y x z z y x d x e dy dzE B B dt m dt dt d y e dz dxE B B dt m dt dt d z e dx dyE B B dt m dt dt =-+-=-+-=-+-运动方程(摆线方程)为:220(1cos())sin()x E y Bt B E E z t Bt B B ηηηη⎧⎪=⎪⎪⎪⎪=-⎨⎪⎪⎪⎪=-⎪⎩电子运动方程(轮摆线轨迹):22222()()()E E E y z t B B B ηη-+-=麦克斯韦方程组:BE t∂∇⨯=-∂,D ρ∇⋅=,D E ε=,D H J t ∂∇⨯=+∂,0B ∇⋅=,B H μ=在假设条件下:0E ∇⨯=,0E ∇⋅=,0B ∇⨯=,0B ∇⋅= 矢量公式通用形式2311322131231231[()()()]D h h D h h D h h D h h h q q q ∂∂∂∇⋅=++∂∂∂\22313211231112223331()()()h h h h h h h h h q h q q h q q h q ϕϕϕϕ⎡⎤∂∂∂∂∂∂∇=++⎢⎥∂∂∂∂∂∂⎣⎦直角坐标系下拉氏方程:圆柱坐标系下拉氏方程:0ϕθ∂=∂当时,22222211()00r r r r r r z z r ϕϕϕϕϕ∂∂∂∂∂∂+=⇒++=∂∂∂∂∂∂谢尔茨公式:圆柱坐标系下拉氏方程:贝塞尔微分方程:22221(1)0d d dz z dz z ϖϖνϖ++-=轴对称电场的积分表达式:201(,)(sin )2r z V z ir a daπϕπ=+⎰谢尔茨公式:曲线在点M 的曲率limQ Md k MQds δα→==点M 的曲率半径1ds R k d α==当已知曲线方程为:y=f(x)时,曲线的曲率半径。
材料现代分析与测试技术课程教学大纲一、课程性质、教学目的及教学任务1.课程性质本课程是材料类专业的专业基础课,必修课程。
2.教学目的学习有关材料组成、结构、形貌状态等分析测试的基本理论和技术,为后续专业课学习及将来材料研究工作打基础。
3.教学任务课程任务包括基本分析测试技术模块——X射线衍射分析、电子显微分析、热分析;扩充分析测试技术模块——振动光谱分析和光电子能谱分析。
在各模块中相应引入新发展的分析测试技术:X射线衍射分析X射线衍射图谱计算机分析处理;电子显微分析引入扫描探针显微分析(扫描隧道显微镜、原子力显微镜);热分析引入DSC分析。
二、教学内容的结构、模块绪论了解材料现代分析与测试技术在无机非金属材料中的应用、发展趋势,明确本课程学习的目的和要求。
1. 本课程学习内容2. 本课程在无机非金属材料中的应用3. 本课程的要求(一)X射线衍射分析理解掌握特征X射线、X射线与物质的相互作用、布拉格方程等X射线衍射分析的基本理论,掌握X射线衍射图谱的分析处理和物相分析方法,掌握X射线衍射分析在无机非金属材料中的应用,了解X射线衍射研究晶体的方法和X射线衍射仪的结构,了解晶胞参数测定方法。
1. X射线物理基础(1)X射线的性质(2)X射线的获得(3)特征X射线和单色X射线2. X射线与物质的相互作用3. X射线衍射几何条件4. X射线衍射研究晶体的方法(1)X射线衍射研究晶体的方法(2)粉末衍射仪的构造及衍射几何5. X射线衍射数据基本处理6. X射线衍射分析应用(1)物相分析(2)X射线衍射分析技术在测定晶粒大小方面的应用(二)电子显微分析理解掌握电子光学基础、电子与固体物质的相互作用、衬度理论等电子显微分析的基本理论,掌握透射电镜分析、扫描电镜分析、电子探针分析的应用和特点,掌握用各种衬度理论解释电子显微像,掌握电子显微分析样品的制备方法,了解透射电镜、扫描电镜、电子探针的结构。
1. 电子光学基础(1)电子的波长和波性(2)电子在电磁场中的运动和电磁透镜(3)电磁透镜的像差和理论分辨率(4)电磁透镜的场深和焦深2. 电子与固体物质的相互作用(1)电子散射、内层电子激发后的驰豫过程、自由载流子(2)各种电子信号(3)相互作用体积与信号产生的深度和广度3. 透射电子显微分析(1)透射电子显微镜(2)透射电镜样品制备(3)电子衍射(4)透射电子显微像及衬度(5)透射电子显微分析的应用4. 扫描电子显微分析(1)扫描电子显微镜(2)扫描电镜图像及衬度(3)扫描电镜样品制备5. 电子探针X射线显微分析(1)电子探针仪的构造和工作原理(2)X射线谱仪的类型及比较(3)电子探针分析方法及其应用6. 扫描探针显微分析(1)扫描隧道显微镜(2)原子力显微镜(三)热分析理解掌握差热分析、热释光谱分析的基本原理,掌握差热曲线的判读及影响因素,掌握热释光谱分析,了解差热分析仪的结构,了解热重分析和示差扫描量热分析。