利用梅森公式求传递函数
- 格式:pdf
- 大小:17.24 MB
- 文档页数:129
梅森公式求传递函数
梅森公式是一种常用的求解数字滤波器传递函数的方法。
数字滤波器是一种用于数字信号处理的滤波器,其传递函数描述了滤波器对输入信号的影响。
梅森公式可以用于求解各种类型的数字滤波器的传递函数,包括低通、高通、带通和带阻滤波器。
梅森公式的基本形式为:
H(z) = B(z) / A(z)
其中,B(z)和A(z)分别为数字滤波器的分子和分母多项式。
通过对分子和分母多项式进行系数的选择和取值,可以得到不同类型的数字滤波器传递函数。
例如,对于一个二阶低通数字滤波器,其分母多项式可以表示为: A(z) = 1 + a1*z^-1 + a2*z^-2
其中,a1和a2为系数。
通过选择合适的系数值,可以得到所需的滤波器响应特性。
类似地,分子多项式可以表示为:
B(z) = b0 + b1*z^-1 + b2*z^-2
也需要根据需要的响应特性进行系数的选择。
将分子和分母多项式代入梅森公式,即可求得数字滤波器的传递函数。
需要注意的是,在使用梅森公式求解数字滤波器传递函数时,需要考虑数字滤波器的采样率、截止频率等参数,以确保所得到的传递函数具有所需的滤波性能。
同时,由于数字滤波器的传递函数是离散的,因此在实际应用中需要进行数字信号的抽样和插值等处理,以确保信号处理的准确性和精度。
是包含于,你理解的有点偏差,举个例子如果有三个互不接触的回路,取两个不接触的回路应有三项,取三个互不接触回路就一项。
具体的应该是这样:
梅森公式G(s)=Σ(Ρκ*△κ)╱△G(s)= ——系统总传递函数;n——是前向通道数;Ρκ——第k条前向通路的传递函数,由输入端单向传递至输出端的信号通道称为前向通道;△——流图的特征式△=1-ΣLi+ΣLjLk-ΣLiLjLk+······
L A
bc为每两个不接触回路增益乘积之和
a为所有回路增益之和;L a L b
Li——所有单独回路的增益之和;
LjLk——所有互不接触的单独回路中,取其中两个不接触的回路增益乘积之和;LiLjLk——所有互不接触的单独回路中,取三个互不接触回路增益之和;
△κ——第k条前向通路特征式的余因子,即对于流图的特征式△,将与第k 条前向通路相接触的回路
增益代以零值,余下的即为△κ。
对于复杂的结构,理论上有很多项,但实际上△就取到前两三项。