第1章计算方法引论
- 格式:pdf
- 大小:780.72 KB
- 文档页数:53
计算方法引论今天,计算方法正在深刻地影响着我们的生活,但是大多数人对这些方法一无所知。
本文旨在解释计算方法的内涵,介绍它如何在科学研究和工程设计中发挥作用,并就计算方法的发展前景及可能的改进提出建议。
计算方法的基本含义是使用计算机完成计算或信息处理任务,以达到实现特定功能的目的。
它是一种基于计算机科学的方法,可以将定义问题转换为可解决问题,从而提供我们有效的解决方案。
计算方法包括算法设计、编程语言、数学统计和信息论。
计算方法有助于解决复杂的现实问题,在工程设计、金融分析、社会科学研究、语音识别和机器人技术等领域均有广泛的应用,但它也可用于图像处理、语音处理、人工智能和虚拟现实。
计算方法的应用非常普遍,可以提高数据处理的效率,使系统中的任务变得更容易,最大限度地减轻人的劳动强度。
此外,计算方法也可以应用于科学研究。
例如,统计建模可以帮助我们理解和预测未来趋势,机器学习可以帮助我们建立更复杂的模型,以发掘隐藏的结构信息,从而发现未知的规律。
计算方法的运用有助于加快科学研究水平的提高,为研究者提供更多的参考资料,更好地了解特定领域的现象。
计算方法可以持续改进,以应对现代社会不断提出的新问题。
随着计算机科学和信息技术的发展,计算方法能够更好地应对复杂的现实问题,并覆盖更多的领域。
计算方法需要人类介入,并受人类知识、技能和思考动力的驱动,因此可以推动社会发展。
自现代信息技术的出现以来,如今人们正在构建更复杂的数学模型,以提高信息的获取效率,并以此为基础提出更高效的解决方案。
此外,计算方法也在持续改进以应对不断增加的信息量,使得可以从更大范围的数据中进行研究。
总之,计算方法是不可或缺的基础,在当今社会中发挥着重要作用。
除了有助于工程设计和科学研究外,它还可以改进我们的日常生活。
因此,计算方法也许是我们未来发展的重要力量,值得我们继续深入研究。
《计算方法》教案(第一章误差)选用教材:普通高等教育“十一五”国家级规划教材《计算方法引论》(第三版)徐箤薇孙绳武编著主讲老师:刘鸣放2010年3月于河南大学一.基本内容提要1. 误差的来源2. 浮点数、误差、误差限和有效数字3. 相对误差和相对误差限4. 误差的传播5. 在近似计算中需要注意的一些问题二.教学目的和要求1. 熟练掌握绝对误差、绝对误差限、相对误差、相对误差限和有效数字的概念及其相互关系;2. 了解误差的来源以及误差传播的情况,掌握在基本算术运算中误差传播后对运算结果误差限的计算方法和函数求值中的误差估计;3. 理解并掌握几种减少误差避免错误结果应采取的措施,了解选用数值稳定的算法的重要性。
三.教学重点1.绝对误差、绝对误差限、相对误差、相对误差限和有效数字的概念及其相互关系,误差传播,减少误差避免错误结果应采取的措施。
四.教学难点1.误差传播;2. 数值稳定算法的选用。
五.课程类型新知识理论课;六.教学方法结合课堂提问,以讲授为主。
七.教学过程如下:Introduction1.《计算方法》课程介绍计算方法是用数值的方法研究研究科学与工程中的计算问题;它的内容主要包括:近似值的计算和误差估计两个方面;主要工具:计算机;地位:这门课已成为工科各专业,特别是计算机科学与技术、土木工程、机械、数学等专业的必修基础课。
2.发展状况几十年来,计算方法效率的提高是与计算机速度的提高几乎同步地、同比例地前进的。
这里简述一下国家重点基础研究计划项目(简称973项目)“大规模科学计算研究”(1999-2004)的主要内容,可以帮助同学们了解我国科学计算界所关心的问题。
此项目由石钟慈院士等人为首组织,集中了我国计算数学、计算物理、计算力学、计算机、以及材料、环境能源等领域60多名专家,跨学科,跨部门通力合作研究以下几个方面的主要内容:(1)复杂流体的高精度计算,含天气预报数值模拟研究;(2)新材料的物理性质机理多尺度计算研究,含超导、超硬度合金等问题的计算研究;(3)地质油藏模拟与波动问题及其反问题计算研究;(4)基础计算方法的理论创新与发展;(5)大规模计算软件系统的基础理论和实施。
计算方法引论课后答案第一章误差1.什么是模型误差,什么是方法误差?例如,将地球近似看为一个标准球体,利用公式 $A=4\pi r$ 计算其表面积,这个近似看为球体的过程产生的误差即为模型误差。
在计算过程中,要用到 $\pi$,我们利用无穷乘积公式计算 $\pi$ 的值:pi=2\cdot\frac{2}{1}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\f rac{4}{5}\cdot\frac{6}{5}\cdot\frac{6}{7}\cdot\frac{8}{7}\cdot\ frac{8}{9}\cdot\cdots我们取前9项的乘积作为 $\pi$ 的近似值,得$\pi\approx3.xxxxxxxx5$。
这个去掉 $\pi$ 的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也称为截断误差。
2.按照四舍五入的原则,将下列各数舍成五位有效数字:816.956,76.000,.322,501.235,.182,130.015,236.23.解:816.96,76.000,.501.24,.130.02,236.23.3.下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字?81.897,0.008,136.320,050.180.解:五位,三位,六位,四位。
4.若 $1/4$ 用 0.25 表示,问有多少位有效数字?解:两位。
5.若 $a=1.1062$,$b=0.947$,是经过舍入后得到的近似值,问:$a+b$,$a\times b$ 各有几位有效数字?已知 $da<\frac{1}{2}\cdot10^{-4}$,$db<\frac{1}{2}\cdot10^{-3}$,又 $a+b=0.\times10$。
begin{aligned}d(a+b)&=da+db\leq da+db=\frac{1}{2}\cdot10^{-4}+\frac{1}{2}\cdot10^{-3}=0.55\times10^{-3}<\frac{1}{2}\cdot10^{-2}end{aligned}所以 $a+b$ 有三位有效数字;因为 $a\timesb=0.xxxxxxxx\times10$。
计算⽅法引论课后答案.第⼀章误差1. 试举例,说明什么是模型误差,什么是⽅法误差.解: 例如,把地球近似看为⼀个标准球体,利⽤公式24A r π=计算其表⾯积,这个近似看为球体的过程产⽣的误差即为模型误差.在计算过程中,要⽤到π,我们利⽤⽆穷乘积公式计算π的值:12222...q q π=?其中112,3,...n q q n +?=??==?? 我们取前9项的乘积作为π的近似值,得3.141587725...π≈这个去掉π的⽆穷乘积公式中第9项后的部分产⽣的误差就是⽅法误差,也成为截断误差.2. 按照四舍五⼊的原则,将下列各数舍成五位有效数字:816.956 7 6.000 015 17.322 50 1.235 651 93.182 13 0.015 236 23 解: 816.96 6.000 0 17.323 1.235 7 93.182 0.015 236 3. 下列各数是按照四舍五⼊原则得到的近似数,它们各有⼏位有效数字? 81.897 0.008 13 6.320 05 0.180 0 解: 五位三位六位四位4. 若1/4⽤0.25表⽰,问有多少位有效数字? 解: 两位5. 若 1.1062,0.947a b ==,是经过舍⼊后得到的近似值,问:,a b a b +?各有⼏位有效数字?解: 已知4311d 10,d 1022a b --()433211110100.551010222d a b da db da db ----+=+≤+=?+?=?所以a b +有三位有效数字;因为0.1047571410a b ?=?,()43321110.94710 1.1062100.600451010222所以a b ?有三位有效数字.6. 设120.9863,0.0062y y ==,是经过舍⼊后作为12,x x 的近似值.求1211,y y 的计算值与真值的相对误差限及12y y ?与真值的相对误差限. 解: 已知-4-41112221211d ,d ,d =10,d 1022x y x x y x x x =+=+?=?, ()44111111110d d 12dr dr 0.50100.9863x xx x x y --==≈=≈? ???;()42222222110d d 12dr dr 0.81100.0062x xx x x y --==≈=≈? ???;()()()4221212dr dr dr 0.50100.81100.8210x x x x ---?=+≈?+?≈?.7. 正⽅形的边长约为100cm,应该怎样测量,才能使其⾯积的误差不超过1cm 2.解: 设正⽅形⾯积为S,边长为a,则S=a 2.所以要使:2d d 2d 1s a a a ==≤,则要求211d 0.5102200a a -≤==?.所以边长的误差不能超过20.510-?cm.8. ⽤观测恒星的⽅法求得某地维度为4502'''o(读到秒),试问:计算sin ?将有多⼤误差?解: ()()1d sin cos d cos 45022*''?'''==o.9 . 真空中⾃由落体运动距离s 与时间的关系由公式212s gt =确定,g 是重⼒加速度.现在假设g 是准确的,⽽对t 的测量有0.1s ±的误差,证明t 增加时,距离的绝对误差增加⽽相对误差却减⼩.证明: 因为:221d d d d d d d ;2.122s gt t gt t t s gt gt t s s t gt ??d s 与t 成正⽐,d s s与t 成反⽐,所以当d t 固定的时候, t 增加时,距离的绝对误差增加⽽相对误差却减⼩.10. 设0x >,x 的相对误差为δ,求ln x 的绝对误差. 解: 已知d x x δ=,所以ln x 的绝对误差()d d ln x x x δ==.11. 设x 的相对误差为%α,求nx 的相对误差.解: 1d d d %n n n n x nx x n xn x x xα-===.12. 计算球的体积,为了使相对误差限为1%,问度量半径R 时允许的相对误差限如何? 解: 已知34 3V R π=,设()d dr R R a R ==,则要使得 ()()3d dr dln d ln 3d ln 3d ln 3dr 31%V V V R R R R a V ========,则11%3a =?.第⼆章插值法与数值微分1.设y =在100,121,144x =三处的值是很容易求得的,试以这三个点建⽴y =的⼆次插值多项式,,且给出误差估计.⽤其中的任意两点,构造线性插值函数,⽤得到的三个线性插值函数,,并分析其结果不同的原因.解: 已知012012100,121,144;10,11,12x x x y y y ======,建⽴⼆次Lagrange 插值函数可得:()()()()21211441001441011100121100144121100121144121100 12144121144100x x x x L x x x ----= +------+--()211510.7228L ≈=.误差()()()()()()2012012,,,,3!f R x x x x x x x x x x ξξξ'''=---∈,所以20.00065550.001631R <<利⽤前两个节点建⽴线性插值函数可得:()()()()()11211001011100121121100x x L x --=+--()111510.7143L ≈=.利⽤后两个节点建⽴线性插值可得:()()()()()11441211112121144144121x x L x --=+--()111510.7391L ≈=.利⽤前后两个节点建⽴线性插值可得:()()()()()21441001012100144144100x x L x --=+()111510.6818L ≈=.,⼆次插值⽐线性插值效果好,利⽤前两个节点的线性插值⽐其他两个线性插值效果好.此说明,⼆次插值⽐线性插值效果好,插⽐外插效果好.2. 利⽤(2.9)式证明()()()0121001max ,8x x x x x R x f x x x x ≤≤-''≤≤≤证明: 由(2.9)式()()()()0101,2!f R x x x x x x x ξξ''=--<<当01x x x <<时,()()01max x x x f f x ξ≤≤''''≤,()()()01201101max 4x x x x x x x x x ≤≤--≤- 所以()()()0121001max ,8x x x x x R x f x x x x ≤≤-''≤≤≤3. 若()0,1,...,j x n 为互异节点,且有()()()()()()()()()011011............j j n j jj j j j j n x x x x x x x x l x xx x x x x x x -+-+----=证明()0,0,1,...,nk kj j j x l x xk n =≡=∑证明: 由于() 1 ;0 .j i ij i j l x i j δ=?==?≠? 且()0nk j j j x l x =∑和kx都为k 次多项式,⽽且在k+1个不同的节点处的函数值都相同0,1,...,k n =, 所以马上有()0,0,1,...,nk kj j j x l x xk n =≡=∑.4. 设给出sin x 在[],ππ-上的数值表,⽤⼆次插值进⾏计算,若希望截断误差⼩于5 10-,问函数表的步长最⼤能取多少? 解: 记插值函数为p(x),则()()()()()11sin sin 3!i i i x p x x x x x x x ξ-+'''-=--- 所以()()()()11cos max sin 3!i i i x x p x x x x x x ππξ-+-≤≤--=---()()()[]3112,0,2i g x th h t t t t -+=--∈⼜()()()[]12,0,2t t t t t ?=--∈的最⼤值为10.3849??= ?,所以有 350.3849max sin 106x x p h ππ--≤≤-≤< 所以 0.0538h ≤.5. ⽤拉格朗⽇插值和⽜顿插值找经过点()()()()3,1,0,2,3,2,6,10---的三次插值公式. 解: Lagrange 插值函数:()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()12302330101020310121301301223202123303132 31033101622731033 .2781/5x x x x x x x x x x x x L x y y x x x x x x x x x x x x x x x x x x x x x x x x y y x x x x x x x x x x x x x x x x x x x x x x x x ------= +------------++--------+--=++-+-++⽜顿插值: ⾸先计算差商3 10 2 13 2 1.333 0.38896 104 0.8889 0.1420-----()()()()()3130.38893 1.142033.N x x x x x x x =-++-+++-也可以利⽤等距节点构造,⾸先计算差分。