专题5 立体几何压轴小题(原卷版)
- 格式:docx
- 大小:1.57 MB
- 文档页数:15
第5讲 立体几何选择压轴题一、单选题1.(浙江超级全能生3月联考)如图,已知在中,为线段上一点,沿将翻转至,若点在平面内的射影恰好落在线段上,则二面角的正切的最大值为( )AB .1C D2.(浙江宁波模拟)设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则A .B .C .D .3.(湖南长沙市·长沙一中高三月考)在三棱锥中,,二面角的余弦值为,当三棱锥的体积的最大值为时,其外接球的表面积为 A . B . C . D . 4.(天一大联考(理))在棱长为的正四面体中,点为所在平面内一动点,且满足,则的最大值为() A . B . C . D . ABC 90,1,2,BAC AB BC D ∠=︒==BC AD ABD △AB D 'B 'ADC HAC B DC A '--V ABC -P VA PB AC αPB ABC βP AC B --γ,βγαγ<<,βαβγ<<,βαγα<<,αβγβ<<A BCD -60BAC BDC ∠=∠=︒A BC D --13-A BCD -45π6π7π8π2ABCD P ABC 433PA PB +=PD 33325.(四川成都二模(理))已知四面体,,分别为棱,的中点,为棱上异于,的动点.有下列结论:①线段的长度为1;②若点为线段上的动点,则无论点与如何运动,直线与直线都是异面直线; ③的余弦值的取值范围为; ④.其中正确结论的个数为( )A .1B .2C .3 D .46.(内蒙古呼和浩特一模(理))四面体的四个顶点都在球O 上且,O 的表面积为( )A .B .C .D .7.(山东日照一模)已知直三棱柱的侧棱长为,,.过、的中点、作平面与平面垂直,则所得截面周长为( )A .B C. D .8.(山东滨州一模)如图,斜线段与平面所成的角为,为斜足.平面上的动点满足,则点的轨迹为()A .圆B .椭圆C .双曲线的一部分D .抛物线的一部分9.(山东淄博一模)四棱锥中,侧面为等边三角形,底面为矩形,,,点是棱的中点,顶点在底面的射影为,则下列结论正确的是( )A .棱上存在点使得面ABCD M N AD BC F AB A B MN G MN F G FG CD MFN ∠0,5⎡⎢⎣⎭FMN 1ABCD 4AB AC BC BD CD =====AD =70π380π330π40π111ABC A B C -2AB BC ⊥2AB BC ==AB 1BB E F α11AAC C +AB απ4B αP π6PAB ∠=P S ABCD -SBC ABCD 2BC =AB a F AD S ABCD H SC P //PD BSFB .当落在上时,的取值范围是C .当落在上时,四棱锥的体积最大值是2D .存在的值使得点到面10.(湖北武汉月考)已知三棱锥的各个顶点都在球的表面上,底面,,,,是线段上一点,且.过点作球的截面,若所得截面圆面积的最大值与最小值之差为,则球的表面积为( )A .B .C .D .11.(安徽蚌埠二模(理))已知直四棱柱,其底面是平行四边形,外接球体积为,若,则其外接球被平面截得图形面积的最小值为( )A .B .C .D .12.(浙江省宁海中学高三月考)如图,在中,,,点E 为线段AB 上一点,将绕DE 翻折.若在翻折过程中存在某个位置,使得,记为的最小值,则()A .B .C .D .13.(天津河西区·高三一模)将长、宽分别为和的长方形沿对角线折成直二面角,得到四面体,则四面体的外接球的表面积为( )A .B .C .D .14.(江西八校4月联考(理))已知三棱锥的外接球的表面积为,,,,,则三棱锥的体积为( )A .8B .CD .16H AD a (H AD S ABCD -a B SFC P ABC -O PA ⊥ABC AB AC ⊥6AB =8AC =D AB 2AD DB =D O 25πO 128π132π144π156π1111ABCD A B C D -ABCD 36π1AC BD ⊥11AB D 8π24310π8110π6πABC ∆36A ∠=AD DB BC ==ADE ∆AE CD ⊥θADE ∠(15,20]θ∈(20,25]θ∈(25,30]θ∈(30,35]θ∈43ABCD AC A BCD -A BCD -25π50π5π10πP ABC -64π2AB =AC =AB AC ⊥8PA =P ABC -315.(山西临汾一模(理))在棱长为2的正方体中,平面,则以平面截正方体所得的截面面积最大时的截面为底面,以为顶点的锥体的外接球的表面积为( )A .B .C .D .16.(浙江省宁海中学高三月考)如图,矩形中,,点在,上,满足,,将沿向上翻折至,使得在平面上的射影落在的重心处,设二面角的大小为,直线,与平面所成角分别为,,则( )A .B .C .D .17.(河南高三一模(理))如图,在棱长为1正方体中,为棱的中点,动点在侧面及其边界上运动,总有,则动点的轨迹的长度为( )A . BC .D . 18.(江苏徐州二模)“帷幄”是古代打仗必备的帐篷,又称“幄帐”.如图是一种幄帐示意图,帐顶采用“五脊1111ABCD A B C D -1B D α⊥α1B 12π253π203π6πABCD 236AB AD ==(),1,2i i E F i =CD AD 112E F =1221//E F E F 11DE F ∆11E F 11D E F ∆'D 'ABCD 22DE F ∆G D AB C '--αD A 'D C 'ABCD βγαβγ>>γαβ>>αγβ>>βαγ>>1111ABCD A B C D -M AB P 11BCC B 1AP D M ⊥P 2π162四坡式”,四条斜脊的长度相等,一条正脊平行于底面.若各斜坡面与底面所成二面角的正切值均为,底面矩形的长与宽之比为,则正脊与斜脊长度的比值为( )A .B .C .D .119.(浙江名校协作体联考)在矩形中,,,E 、F 分别为边、上的点,且,现将沿直线折成,使得点在平面上的射影在四边形内(不含边界),设二面角的大小为,直线与平面所成的角为,直线与直线所成角为,则( )A .B .C .D .20.(河南高考适应性考试(理))棱长为的正方体密闭容器内有一个半径为的小球,小球可在正方体容器内任意运动,则其不能到达的空间的体积为( )A .B .C .D . 21.(辽宁高三一模(理))球面上两点之间的最短连线的长度,就是经过这两个点的大圆在这两点间的一段劣弧的长度(大圆就是经过球心的平面截球面所得的圆),我们把这个弧长叫做两点的球面距离.已知正的项点都在半径为的球面上,球心到所在平面距离为,则、两点间的球面距离为( ) 125:33589910ABCD AB =3AD =AD BC 2AE BF ==ABE △BE 1A BE 1A BCDE CDEF 1A BE C --θ1A B BCDE α1A E BCββαθ<<βθα<<αβθ<<αθβ<<4122323π-4812π-4283π-13203π-ABC 2ABC 3A BA .B .C .D . 22.(湖北武汉月考)某圆锥母线长为2,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为()A .2B CD .123.(中学生标准学术能力3月测试(理))在棱长为的正四面体中,点,分别为直线,上的动点,点为中点,为正四面体中心(满足),若,则长度为( )A .BC .D .24.(湖南长沙市·长郡中学高三月考)如图,已知正四棱柱的底面边长为1,侧棱长为2,点分别在半圆弧,(均不含端点)上,且,,,在球上,则( )A.当点在的三等分点处,球O 的表面积为B .当点在的中点处,过,,三点的平面截正四棱柱所得的截面的形状都是四边形C .球的表面积的取值范围为D .当点在的中点处,三棱锥的体积为定值25.(河南高三一模(理))在三棱锥中,,,则该三棱锥的内切球的表面积为( )A .B .C .D . 26.(百校联盟质检(理))已知四棱锥中,平面,四边形为正方形,,平面过,,的中点,则平面截四棱锥所得的截面面积为( )π2π23π34πA BCD -E F AB CD P EF Q QA QB QC QD ===PQ =EF 321111ABCD A B C D -,P Q 1C C 1A A 1C P Q C O Q 1A A (11π-P 1C C 1C P Q O ()4,8ππP 1C C 1C PQC -A BCD -4AB CD ==3AC BD AD BC ====4π517π3π23π4S ABCD -SA ⊥ABCD ABCD 6SA AB ==αSB CD SD αS ABCD -A .B .C .D .27.(河南金太阳3月联考(理))在正四棱锥,若四棱锥的体积为,则该四棱锥外接球的体积为() A . B . C . D . 28.(超级全能生1月联考(理))已知三棱锥中,是等腰直角三角形,,,,三棱锥,则三棱锥外接球的表面积为( )A .B .C .D .29.(贵州新高考联盟质检(理))在直三棱柱中,,,,则该三棱柱内能放置的最大球的表面积是( )A .B .C .D .二、多选题 30.(山东德州一模)如图,在边长为4的正方形中,点、分别在边、上(不含端点)且,将,分别沿,折起,使、两点重合于点,则下列结论正确的有( ).A.B .当时,三棱锥C .当时,三棱锥4564276296126P ABCD -=P ABCD -25635003π100π4903π500πP ABC -ABC AB AC ⊥AB =PA =PAB PAC ∠=∠P ABC -1P ABC -36π32π24π16π111ABC A B C -16AA AB ==8BC =10AC =16π24π36π64πABCD E F AB BC BE BF =AED DCF DE DF A C 1A 1A D EF ⊥12BE BF BC ==1A F DE -14BE BF BC ==1A F DE -D .当时,点到平面31.(湖北九师联盟3月联考)如图,在棱长为6的正方体中,为棱上一点,且为棱的中点,点是线段上的动点,则( )A .无论点在线段上如何移动,都有B .四面体的体积为24C .直线与所成角的余弦值为D .直线与平面所成最大角的余弦值为 33.(江苏南通期末)如图,在棱长为1的正方体中,P 为线段上一动点(包括端点),则以下结论正确的有( )A .三棱锥的体积为定值B .过点P 平行于平面的平面被正方体14BE BF BC ==1A DEF 1111ABCD A B C D -E 1DD 2,DE F =11C D G 1BC G 1BC 11A G B D ⊥A BEF -AE BF 151A G 1BDC 131111ABCD A B C D -11B D 1P A BD -131A BD 1111ABCD A B C D -C .直线与平面所成角的正弦值的范围为D .当点P 与重合时,三棱锥34.(济南市·山东省实验中学高三月考)正方体中,E 是棱的中点,F 在侧面上运动,且满足平面.以下命题正确的有( )A .侧面上存在点F ,使得B .直线与直线所成角可能为C .平面与平面所成锐二面角的正切值为D .设正方体棱长为1,则过点E ,F ,A35.(山东泰安月考)如图,点是正四面体底面的中心,过点的直线交,于点,,是棱上的点,平面与棱的延长线相交于点,与棱的延长线相交于点,则( )A .若平面,则B .存在点S 与直线MN ,使平面1PA 1A BD 33⎣⎦1B 1P A BD -1111ABCD A B C D -1DD 11CDD C 1//B F 1A BE 11CDD C 11B F CD ⊥1B F BC 30︒1A BE 11CDD C O P ABC -ABC O AC BC M N S PC SMN PA Q PB R //MN PAB //AB RQ PC ⊥SRQC .存在点与直线,使D .是常数36.(湖南岳阳一模)将边长为2的正方形ABCD 沿对角线BD 折成直二面角,点P 为线段AD上的一动点,下列结论正确的是( )A .异面直线AC 与BD 所成的角为60°B .是等边三角形C .D .四面体ABCD的外接球的表面积为8π37.(山东临沂模拟)如图,在正方形中,点为线段上的动点(不含端点),将沿翻折,使得二面角为直二面角,得到图所示的四棱锥,点为线段上的动点(不含端点),则在四棱锥中,下列说法正确的有( )A .四点不共面B .存在点,使得平面平面C .三棱锥的体积为定值D .存在点使得直线与直线垂直38.(山东日照一模)已知正方体的棱长为4,为的中点,为所在平面上一动点,则下列命题正确的是( ) S MN ()0PS PQ PR ⋅+=111PQ PR PS ++A BD C --ACD △BCP 1ABCD E BC ABE AE B AE D --2B AECD -F BD B AECD -,,,B E C F F //CF BAE B ADC -E BE CD 1111ABC A B C D -M 1DD N ABCDA .若与平面所成的角为,则点的轨迹为圆B .若,则的中点的轨迹所围成图形的面积为C .若点到直线与直线的距离相等,则点的轨迹为抛物线D .若与所成的角为,则点的轨迹为双曲线 39.(广东深圳一模)在空间直角坐标系中,棱长为1的正四面体的顶点A ,B 分别为y 轴和z 轴上的动点(可与坐标原点O 重合),记正四面体在平面上的正投影图形为S ,则下列说法正确的有( )A .若平面,则S 可能为正方形B .若点A 与坐标原点O 重合,则S 的面积为C .若,则S 的面积不可能为D .点D 到坐标原点O 的距离不可能为 40.(山东济宁一模)如图,为圆锥底面圆的直径,点是圆上异于,的动点,,则下列结论正确的是( )MN ABCD 4πN 4MN =MN P 2πN 1BB DC N 1D N AB 3πN O xyz -ABCD ABCD xOy //CDxOy 4OA OB OC ==1232AC SO O B O A C 2SO OC ==A .圆锥的侧面积为B .三棱锥体积的最大值为C .的取值范围是D .若,为线段上的动点,则的最小值为 41.(广东肇庆二模)在长方体中,,,是线段上的一动点,则下列说法正确的是( )A .平面B .与平面C .的最小值为D .以为半径的球面与侧面的交线长是 42.(广东广州一模)已知正方体的棱长为4,是棱上的一条线段,且,点是棱的中点,点是棱上的动点,则下面结论中正确的是( ) A .与一定不垂直 B .二面角的正弦值是 C .的面积是 D .点到平面的距离是常量 43.(江苏苏州开学考试)在长方体中,已知分别为的中点,则()SO S ABC -83SAB ∠ππ,43⎛⎫ ⎪⎝⎭AB BC =E AB SE CE +)21+1111ABCD A B C D -1AB AD ==12AA =P 1BC 1//A P 1AD C 1A P 11BCC B 1A P PC +5A 11DCC D 2π1111ABCD A B C D -EF AB 1EF =Q 11A D P 11C D PQ EF P EF Q --10PEF P QEF 1111ABCD A B C D -122,,AA AB AD E F ===111,BB D CA .B .平面C .三棱锥外接球的表面积为D .平面被三棱锥外接球截得的截面圆面积为 EF EC ⊥//BD AEF 1C CEF -5π11A BCD 1C CEF -98π。
1. 在正方体1111CD C D AB -A B 中,P 为正方形1111C D A B 四边上的动点,O 为底面正方形CD AB 的中心,M ,N 分别为AB ,C B 中点,点Q 为平面CD AB 内一点,线段1D Q 与OP 互相平分,则满足Q λM =MN 的实数λ的值有( )A .0个B .1个C .2个D .3个【答案】C2.平行四边形中,,沿将四边形折起成直二面角,且,则三棱锥的外接球的表面积为( )A .B .C .D . 【答案】CABCD 0AB BD ⋅=BD A BD C --2224AB BD +=A BCD -2π4π4π2π3.某几何体的三视图如图所示,正视图为直角三角形,侧视图为等边三角形,俯视图为等腰直角三角形,则其外接球的表面积为( ) A .π5 B .π320C .π8D .π328【答案】D 【解析】试题分析:由三视图提供的信息可以看出该几何体是三棱锥,如图,底面BCD 是等腰直角三角形且CD BD ⊥,顶点A 在底面内的射影F 是CD 的中点.设外接球的球心是分别ACDBCD ∆∆,的外M E O ,,4.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球半径为( ) A . BCD .【答案】CBDC可得,由此可得,所以,所以外接5.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为( )82122=-d d 3212=-d d 3352=d 113333832522222==+=+=r d RN 1C APA .48B .16C .32D .【答案】B 【解析】4=AH ,设()2,4A ,BC 所在直线方程为12,2402y x x y =-++-=,带到直线的距离为AH =,所以体积为1163⋅=.6.如图,正方体1111ABCD A BC D -中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点,且1//A F 平面1AD E ,则1A F 与平面11BCC B 所成角的正切值t 构成的集合是( )A.{|t t ≤ B.{|2t t ≤≤ C.{|t t ≤ D.{|2t t ≤≤【答案】D 【解析】试题分析:建立如图所示的空间直角坐标系,则),1,(),0,1,21(),1,0,0(),0,0,1(1n m F E D A ,所以)1,1,1(),0,1,21(),1,0,1(11--=-=-=n m A AD ,设平面E AD 1的法向量为),,(z y x =,则由题设⎪⎩⎪⎨⎧=⋅=⋅001AD ,即⎪⎩⎪⎨⎧=+-=+-0210y x z x ,令2=x ,则)2,1,2(=,所以由//1F A 平面E AD 1,则01=⋅A ,即0)1(21)1(2=-++-n m ,也即23=+n m ,所以1)1()1(||221+-+-=n m F A .因平面11BCC B 的法向量为)0,1,0(=,故1A F 与平面11BCC B 所成角θ的正弦值1)1()1(1s i n2211+-+-==n m θ,正切值)210(45321)1()1(1t a n 222<≤+--+-==m m m n m t θ,令45322+-=m m u ,则21,81max min ==u u ,所以22tan 2≤≤θ,即222≤≤t ,所以应选D.7.若一个四棱锥底面为正方形, 顶点在底面的射影为正方形的中心, 且该四棱锥的体积为9,当其外接球的体积最小时, 它的高为( )A .3B .22C .23D .33 【答案】A 【解析】试题分析:设四棱锥底面正方形边长为a ,四棱锥高为h ,外接球半径为R ,则222219,(h R)32a ha R ==-+,所以2227272,224h hR h R h h =+=+,因为3127=0322R h h'=-⇒=,所以3h =时R 取唯一一个极小值,也是最小值,即外接球的体积最小,因此选A.8.设点M 是棱长为2的正方体1111ABCD A BC D -的棱AD 的中点,点P 在面11BCC B 所在的平面内,若平面1D PM 分别与平面ABCD 和平面11BCC B 所成的锐二面角相等,则点P 到点1C 的最短距离是( )A.5 B. 2 C. 1 D. 3【答案】A9.榫卯是在两个木构件上所采用的一种凹凸结合的连接方式,凸出部分叫榫,凹进部分叫卯,榫和卯咬合,起到连接作用,代表建筑有:北京的紫禁城、天坛祈年殿、山西悬空寺等,如图所示是一种榫卯的三视图,其表面积为( )A. 812π+B. 816π+C. 912π+D. 916π+ 【答案】B【解析】由三视图可知榫卯的榫为底边长为1 高为2 长方体,卯为底面半径为2r =,高为2 的中空的圆柱体,设表面积为S ,侧面积为12224288S ππ=⨯⨯+⨯=+ ,上下底面积的和为22228S ππ=⨯⨯=,则有12168S S S π=+=+ ,故选B10.《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为( )A. 4立方丈B. 5立方丈C. 6立方丈D. 12立方丈 【答案】B11.如图为某几何体的三视图,则其体积为( )A.2π3+4B.2π+43C.π3+4D.π+43 答案 D解析 由三视图可知,该几何体是一个半圆柱(所在圆柱为圆柱OO 1)与四棱锥的组合体,其中四棱锥的底面ABCD 为圆柱的轴截面,顶点P 在半圆柱所在圆柱的底面圆上(如图所示),且P 在AB 上的射影为底面的圆心O .由三视图数据可得,半圆柱所在圆柱的底面半径r =1,高h =2,故其体积V 1=12πr 2h =12π×12×2=π;四棱锥的底面ABCD 为边长为2的正方形,PO ⊥底面ABCD ,且PO =r =1. 故其体积V 2=13S 正方形ABCD ×PO =13×22×1=43.故该几何体的体积V =V 1+V 2=π+43.12.如图,正四面体D-ABC的顶点A,B,C分别在两两垂直的三条射线Ox,Oy,Oz上,则在下列命题中,错误的是()A.O-ABC是正三棱锥B.直线OB与平面ACD相交C.直线CD与平面ABC所成的角的正弦值为3 2D.异面直线AB和CD所成的角是90°答案 C解析①如图ABCD为正四面体,∴△ABC为等边三角形,又∵OA,OB,OC两两垂直,∴OA⊥平面OBC,∴OA⊥BC.过O作底面ABC的垂线,垂足为N,连接AN交BC于M,可知BC⊥AM,∴M为BC的中点,同理可证,连接CN交AB于P,则P为AB的中点,∴N为底面△ABC的中心,∴O-ABC是正三棱锥,故A正确;②将正四面体ABCD放入正方体中,如图所示,显然OB与平面ACD不平行,则B正确;③由图可知:直线CD与平面ABC所成的角的正弦值为63,则C错误;④异面直线AB 和CD 所成角是90°,故D 正确.13.如图,在矩形ABCD 中,AB =2,AD =1,点E 为CD 的中点,F 为线段CE (端点除外)上一动点.现将△DAF 沿AF 折起,使得平面ABD ⊥平面ABC .设直线FD 与平面ABCF 所成角为θ,则sin θ的最大值为( )A.13B.24C.12D.23 答案 C解析 如图,在矩形ABCD 中,过点D 作AF 的垂线交AF 于点O ,交AB 于点M .设CF =x (0<x <1),AM =t ,由△DAM ∽△FDA ,得AM AD =AD DF ,即有t =12-x ,由0<x <1,得12<t <1.在翻折后的几何体中, ∵AF ⊥OD ,AF ⊥OM ,∴AF ⊥平面ODM ,从而平面ODM ⊥平面ABC , 又平面ABD ⊥平面ABC ,则DM ⊥平面ABC ,连接MF , 则∠MFD 是直线FD 与平面ABCF 所成角,即∠MFD =θ, 而DM =1-t 2,DF =2-x =1t ,则sin θ=DMDF=t 1-t 2=-t 4+t 2,由于14<t 2<1,则当t 2=12时,sin θ取到最大值,其最大值为12.14.如图,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′-BCD 的顶点在同一个球面上,则该球的表面积为( )A.3πB.32πC.4πD.34π 答案 A解析 由图示可得BD =A ′C =2,BC =3,△DBC 与△A ′BC 都是以BC 为斜边的直角三角形,由此可得BC 中点到四个点A ′,B ,C ,D 的距离相等,即该三棱锥的外接球的直径为3,所以该外接球的表面积S =4π×⎝⎛⎭⎫322=3π. 15.如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( )A.2B.1C. 2D.22答案 C解析 ∵球心在面BCC 1B 1的中心O 上,BC 为截面圆的直径, ∴∠BAC =90°,底面外接圆圆心N 位于BC 的中点处, △A 1B 1C 1外心M 在B 1C 1中点上,设正方形BCC 1B 1的边长为x ,在Rt △OMC 1中,OM =x 2,MC 1=x2,OC 1=R =1,∴⎝⎛⎭⎫x 22+⎝⎛⎭⎫x 22=1,即x =2,则AB =AC =1, ∴11ABB A S 矩形=2×1= 2.16.在棱长为6的正方体ABCD -A 1B 1C 1D 1中,M 是BC 的中点,点P 是面DCC 1D 1所在的平面内的动点,且满足∠APD =∠MPC ,则三棱锥P -BCD 体积的最大值是( ) A.36 B.123 C.24 D.18 3 答案 B解析 ∵AD ⊥底面D 1DCC 1,∴AD ⊥DP , 同理BC ⊥平面D 1DCC 1,则 BC ⊥CP ,∠APD =∠MPC ,∴△P AD ∽△PMC , ∵AD =2MC ,∴PD =2PC ,下面研究点P 在面ABCD 内的轨迹(立体几何平面化),在平面直角坐标系内设D (0,0),C (6,0),C 1(6,6), 设P (x ,y ),∵PD =2PC ,∴x 2+y 2=2(x -6)2+y 2,化简得(x -8)2+y 2=16(0≤x ≤6),该圆与CC 1的交点的纵坐标最大,交点坐标(6,23),三棱锥P -BCD 的底面BCD 的面积为18,要使三棱锥P -BCD 的体积最大,只需高最大,当P 点坐标为(6,23)时,CP =23,棱锥的高最大,此时三棱锥P -BCD 的体积V =13×18×23=123,故选B.17.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1的对角线AC 1上取一点P ,以A 为球心,AP 为半径作一个球,设AP =x ,记该球面与正方体表面的交线的长度和为f (x ),则函数f (x )的图象最有可能的是( )答案 A解析 球面与正方体的表面都相交,我们考虑三种特殊情形:①当x =1时;②当x =12时;③当x =2时.①当x =1时,以A 为球心,1为半径作一个球,该球面与正方体表面的交线弧长为3×14×2π×1=3π2,且为函数f (x )的最大值;②当x =12时,以A 为球心,12为半径作一个球,根据图形的相似,该球面与正方体表面的交线弧长为(1)中的一半;③当x =2时,以A 为球心,2为半径作一个球,该球面与正方体表面的交线弧长为3×16×2π×2=2π<3π2, 对照选项可得A 正确.18.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为( ) A.33 B.233 C.433 D.533答案 C解析 由条件知直径SC 所对的圆周角∠SBC =∠SAC =90°,由已知∠ASC =∠BSC =45°, ∴△SBC 与△SAC 是全等的等腰三角形, 设球的球心为点O ,∴BO ⊥SC ,AO ⊥SC ,即SC ⊥平面AOB ,由条件OA =OB =2,则△OAB 为等边三角形, ∴V S -ABC =13S △OAB ·SC =13⎝⎛⎭⎫12×22×sin 60°×4=433. 19.已知长方体ABCD -A 1B 1C 1D 1的外接球O 的体积为32π3,其中BB 1=2,则三棱锥O -ABC 的体积的最大值为( ) A.1 B.3 C.2 D.4 答案 A解析 由题意设外接球的半径为R ,则由题设可得43πR 3=323π,由此可得R =2,记长方体的三条棱长分别为x ,y ,2, 则2R =x 2+y 2+4,由此可得x 2+y 2=12, 三棱锥O -ABC 的体积V =16xy ×1=16xy ≤16×x 2+y 22=1,当且仅当x =y =6时“=”成立.故选A. 20.已知四边形ABCD ,AB =BD =DA =2,BC =CD = 2.现将△ABD 沿BD 折起,当二面角A -BD -C 处于⎣⎡⎦⎤π6,5π6过程中,直线AB 与CD 所成角的余弦值取值范围是( ) A.⎣⎡⎦⎤-528,28 B.⎣⎡⎦⎤28,528C.⎣⎡⎦⎤0,28 D.⎣⎡⎦⎤0,528答案 D解析 如图所示,取BD 的中点E ,连接AE ,CE ,∴∠AEC 即为二面角A -BD -C 的平面角,而AC 2=AE 2+CE 2-2AE ·CE ·cos ∠AEC =4-23cos ∠AEC ,∠AEC ∈⎣⎡⎦⎤π6,5π6, ∴AC ∈[1,7],∴AB →·CD →=22cos 〈AB →,CD →〉=AB →·(BD →-BC →) =-2+AB ·BC ·AB 2+BC 2-AC 22AB ·BC =1-AC 22∈⎣⎡⎦⎤-52,12,设异面直线AB ,CD 所成的角为θ, ∴0≤cos θ≤122·52=528,故选D.21.正三角形ABC 的边长为2,将它沿高AD 翻折,使点B 与点C 间的距离为1,此时四面体ABCD 外接球的表面积为______________. 答案13π3解析 根据题意可知,三棱锥B -ACD 的三条侧棱BD ⊥AD ,DC ⊥DA ,底面是正三角形,它的外接球就是它扩展为正三棱柱的外接球.正三棱柱中,底面边长为1,高为 3.由题意可得三棱柱上下底面中心连线的中点到三棱柱顶点的距离相等,说明该中点就是外接球的球心,∴正三棱柱AD ′C ′-BDC 的外接球的球心为O ,外接球的半径为r .球心到底面的距离为32,则球的半径满足r 2=⎝⎛⎭⎫23×322+⎝⎛⎭⎫322=1312,∴外接球的表面积为4πr 2=13π3.22.如图所示,正方体ABCD -A ′B ′C ′D ′的棱长为1,E ,F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′,DD ′分别交于M ,N 两点,设BM =x ,x ∈[0,1],给出以下四个结论:①平面MENF ⊥平面BDD ′B ′; ②直线AC ∥平面MENF 始终成立;③四边形MENF 周长L =f (x ),x ∈[0,1]是单调函数; ④四棱锥C ′-MENF 的体积V =h (x )为常数. 以上结论正确的是______________. 答案 ①②④解析 ①因为EF ⊥BB ′,EF ⊥BD ,BB ′∩BD =B ,所以EF ⊥平面BDD ′B ′,所以平面MENF ⊥平面BDD ′B ′成立;②因为AC ∥EF ,所以直线AC ∥平面MENF 始终成立; ③因为MF =⎝⎛⎭⎫12-x 2+1, f (x )=4⎝⎛⎭⎫x -122+1,所以f (x )在[0,1]上不是单调函数; ④V C ′-MENF =V F -MC ′E +V F -C ′NE =13·14+13·14=16,故h (x )为常数.23.在三棱锥P -ABC 中,P A ,PB ,PC 两两垂直,且P A =3,PB =2,PC =1,设M 是底面△ABC 内一点,定义f (M )=(m ,n ,p ),其中m ,n ,p 分别是三棱锥M -P AB ,三棱锥M -PBC ,三棱锥M -PCA 的体积,若f (M )=⎝⎛⎭⎫12,x ,y ,且1x +ay ≥8,则正实数a 的最小值为____________. 答案 1解析 依题意,12+x +y =13×12×3×2×1=1,即x +y =12,∴1x +ay =2⎝⎛⎭⎫1x +a y (x +y )=2⎝⎛⎭⎫1+a +y x +ax y ≥2(1+a +2a )=2(a +1)2, 由题设2(a +1)2≥8,解得a ≥1, 故正实数a 的最小值为1.24.如图,∠ACB =90°,DA ⊥平面ABC ,AE ⊥DB 交DB 于E ,AF ⊥DC 交DC 于F ,且AD =AB =2,则三棱锥D -AEF 体积的最大值为__________.答案26解析 ∵AD ⊥平面ABC , ∴DA ⊥AB ,AD ⊥BC , ∵AE ⊥DB ,又AD =AB =2, ∴DE = 2.又∵BC ⊥AC ,AC ∩AD =A , ∴BC ⊥平面ACD , ∴平面BCD ⊥平面ACD ,∵AF ⊥DC ,平面BCD ∩平面ACD =CD ,AF ⊂平面ACD , ∴AF ⊥平面BCD , ∴AF ⊥BD ,又AE ⊥BD , ∴BD ⊥平面AEF ,由AF ⊥EF ,得AF 2+EF 2=AE 2=2≥2AF ·EF ,即AF ·EF ≤1, ∴S △AEF ≤12,当且仅当AF =EF =1时“=”成立,∴三棱锥D -AEF 体积的最大值为13×2×12=26.25.已知在直角梯形ABCD 中,2CD 2AD 2AB AD CD AD AB ===⊥⊥,,,将直角梯形ABCD 沿AC 折叠成三棱锥D-ABC ,当三棱锥D-ABC 的体积取最大值时,其外接球的体积为 . 【答案】34π【解析】E26. 如图,在四面体CD AB 中,AB ⊥平面CD B ,CD ∆B 是边长为6的等边三角形.若4AB =,则四面体CD AB 外接球的表面积为 .【答案】64π。
专题5立体几何压轴小题一、单选题1.(2022·全国·高三专题练习)正三棱柱ABC ﹣A 1B 1C 1中,所有棱长均为2,点E ,F 分别为棱BB 1,A 1C 1的中点,若过点A ,E ,F 作一截面,则截面的周长为()A .B .C .D .22.(2022·全国·高三专题练习)直角ABC 中,2AB =,1BC =,D 是斜边AC 上的一动点,沿BD 将ABD △翻折到A BD 'V ,使二面角A BD C '--为直二面角,当线段A C '的长度最小时,四面体A BCD '的外接球的表面积为()A .134πB .143πC .133πD .125π3.(2022·全国·高三专题练习)已知长方体1111ABCD A B C D -中,2AB =,BC =13AA =,P 为矩形1111D C B A 内一动点,设二面角P AD C --为α,直线PB 与平面ABCD 所成的角为β,若αβ=,则三棱锥11P A BC -体积的最小值是()A B .1C .2D .24.(2022·全国·高三专题练习)如图,斜三棱柱111ABC A B C -中,底面ABC 是正三角形,,,E F G 分别是侧棱111,,AA BB CC 上的点,且AE CG BF >>,设直线,CA CB 与平面EFG 所成的角分别为,αβ,平面EFG 与底面ABC 所成的锐二面角为θ,则()A .sin sin sin ,cos cos cos θαβθαβ<+≤+B .sin sin sin ,cos cos cos θαβθαβ≥+<+C .sin sin sin ,cos cos cos θαβθαβ<+>+D .sin sin sin ,cos cos cos θαβθαβ≥+≥+5.(2022·宁夏·平罗中学三模(理))已知正方体1111ABCD A B C D -的棱长为3,动点M 在侧面11BCC B 上运动(包括边界),且12MB MB =,则1D M 与平面11ADD A 所成角的正切值的取值范围为()A.⎡⎣B.⎤⎥⎣⎦C.⎤⎥⎣⎦D.⎡⎣6.(2022·全国·高三专题练习)如图,在四棱锥Q EFGH -中,底面是边长为形,4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为()A .12B .13C .14D .157.(2022·全国·高三专题练习)在三棱锥P ABC -中,顶点P 在底面的射影为ABC 的垂心O (O 在ABC 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是()A .若12θθ=,则AC BC =B .若12θθ≠,则121tan tan 2θθ⋅=C .θ可能值为6πD .当θ取值最大时,12θθ=8.(2022·全国·高三专题练习)已知三棱锥P ABC -三条侧棱PA ,PB ,PC 两两互相垂直,且6PA PB PC ===,M 、N 分别为该三棱锥的内切球和外接球上的动点,则线段MN 的长度的最小值为()A .233-B .436-C .623-D .239.(2022·全国·高三专题练习)已知在正方体1111ABCD A B C D -中,点E 为棱BC 的中点,直线l 在平面1111D C B A 内.若二面角A l E --的平面角为θ,则cos θ的最小值为()A .34B .1121C .33D .3510.(2022·全国·高三专题练习)在三棱台111BCD B C D -中,1CC ⊥底面BCD ,BC CD ⊥,12BC CD CC ===,111B C =.若A 是BD 中点,点P 在侧面11BDD B 内,则直线1DC 与AP夹角的正弦值的最小值是()A .16B .26C .36D .6611.(2022·全国·高三专题练习)如图,在棱长为33的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足1||||5213DP PB +=+,则直线1B P 与直线1AD 所成角的取值范围为()(参考数据:43sin 53,sin 37)55︒=︒=A .[37︒,53]︒B .[37︒,90]︒C .[53︒,90]︒D .[37︒,127]︒12.(2022·全国·高三专题练习)已知正方体ABCD A B C D ''''-的棱长为3,E 为棱AB 上的靠近点B 的三等分点,点P 在侧面CC D D ''上运动,当平面B EP '与平面ABCD 和平面CC D D ''所成的角相等时,则D P '的最小值为()A 310B .31010C .91010D .101013.(2022·全国·高三专题练习)已知点P 是正方体ABCD A B C D ''''-上底面A B C D ''''上的一个动点,记面ADP 与面BCP 所成的锐二面角为α,面ABP 与面CDP 所成的锐二面角为β,若αβ>,则下列叙述正确的是()A .APC BPD∠>∠B .APC BPD∠<∠C .{}{}max ,max ,APD BPC APB CPD ∠∠>∠∠D .{}{}min ,min ,APD BPC APB CPD ∠∠>∠∠14.(2022·全国·高三专题练习)如图,将矩形纸片ABCD 折起一角落()EAF △得到EA F '△,记二面角A EF D '--的大小为π04θθ⎛⎫<< ⎪⎝⎭,直线A E ',A F '与平面BCD 所成角分别为α,β,则().A .αβθ+>B .αβθ+<C .π2αβ+>D .2αβθ+>15.(2022·全国·高三专题练习)如图,在正方体ABCD EFGH -中,P 在棱BC 上,BP x =,平行于BD 的直线l 在正方形EFGH 内,点E 到直线l 的距离记为d ,记二面角为A l P --为θ,已知初始状态下0x =,0d =,则()A .当x 增大时,θ先增大后减小B .当x 增大时,θ先减小后增大C .当d 增大时,θ先增大后减小D .当d 增大时,θ先减小后增大16.(2022·广东惠州·高三阶段练习)如图,点M N 、分别是正四面体ABCD 棱AB CD 、上的点,设BM x =,直线MN 与直线BC 所成的角为θ,则()A .当2ND CN =时,θ随着x 的增大而增大B .当2ND CN =时,θ随着x 的增大而减小C .当2CN ND =时,θ随着x 的增大而减小D .当2CN ND =时,θ随着x 的增大而增大17.(2022·江苏·高三专题练习)如图,在三棱锥D ABC -中,AB BC CD DA ===,90,,,ABC E F O ︒∠=分别为棱,,BC DA AC 的中点,记直线EF 与平面BOD 所成角为θ,则θ的取值范围是()A .0,4π⎛⎫ ⎪⎝⎭B .,43ππ⎛⎫ ⎪⎝⎭C .,42ππ⎛⎫ ⎪⎝⎭D .,62ππ⎛⎫ ⎪⎝⎭二、多选题18.(2022·福建泉州·模拟预测)已知正四棱台1111ABCD A B C D -的所有顶点都在球O 的球面上,11122,AB A B AA ===E 为1BDC 内部(含边界)的动点,则()A .1//AA 平面1BDC B .球O 的表面积为6πC .1EA EA +的最小值为D .AE 与平面1BDC 所成角的最大值为60°19.(2022·河北衡水·高三阶段练习)在四棱锥P ABCD -中,已知1AB BD AD ===,BC CD ==6PA PB PC PD ====,则()A .四边形ABCD 内接于一个圆B .四棱锥P ABCD -的体积为36C .四棱锥P ABCD -外接球的球心在四棱锥P ABCD -的内部D .四棱锥P ABCD -外接球的半径为71220.(2022·浙江·高三开学考试)如图,在ABC 中,AB AC =,BAC θ∠=,AB α⊂,设点C 在α上的射影为C ',将ABC 绕边AB 任意转动,则有()A .若θ为锐角,则在转动过程中存在位置使2BC A BCA∠∠='B .若θ为直角,则在转动过程中存在位置使12BC A BCA∠∠='C .若105θ= ,则在转动过程中存在位置使BC A BCA ∠∠>'D .若120θ= ,则在转动过程中存在位置使BC A BCA∠∠>'21.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的棱长为2,E 为线段1AA 的中点,AP AB AD λμ=+uu u r uu u r uuu r,其中,[0,1]λμ∈,则下列选项正确的是()A .12μ=时,11A P ED ⊥B .14λ=时,1B P PD +C .1λμ+=时,直线1A P 与面11BDE 的交点轨迹长度为2D .1λμ+=时,正方体被平面1PAD 截的图形最大面积是22.(2022·福建省福州屏东中学高三开学考试)已知正方体1111ABCD A B C D -棱长为2,P 为空间中一点.下列论述正确的是()A .若112AP AD =uu u r uuu r ,则异面直线BP 与1C D 所成角的余弦值为6B .若[]()10,1BP BC BB λλ=+∈uu r uu u r uuu r,三棱锥1P A BC -的体积为定值C .若[]()110,12BP BC BB λλ=+∈uu r uu u r uuu r,有且仅有一个点P ,使得1A C ⊥平面1AB P D .若[]()10,1AP AD λλ=∈uu u r uuu r ,则异面直线BP 和1CD 所成角取值范围是,42ππ⎡⎤⎢⎥⎣⎦23.(2022·重庆十八中两江实验中学高三阶段练习)已知在平行四边形ABCD 中,3AB =,2AD =,60A ∠=︒,把△ABD 沿BD 折起使得A 点变为'A ,则()A .BD =B .三棱锥'A BCD -体积的最大值为2C .当'A C BD =时,三棱锥'A BCD -的外接球的半径为2D .当'A C BD =时,'60A BC ∠=︒24.(2022·湖北·武汉二中模拟预测)勒洛四面体是一个非常神奇的“四面体”,它能在两个平行平面间自由转动,并且始终保持与两平面都接触,因此它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的公共部分,如图所示,若正四面体ABCD 的棱长为a ,则()A .能够容纳勒洛四面体的正方体的棱长的最小值为aB .勒洛四面体能够容纳的最大球的半径为1a ⎛ ⎝⎭C .勒洛四面体的截面面积的最大值为(212π4aD .勒洛四面体的体积33128V a a ⎛⎫∈ ⎪ ⎪⎝⎭25.(2022·湖南·模拟预测)已知边长为2的菱形ABCD 中,3ADC π∠=,将ADC 沿AC 翻折,连接AC ,BD ,设点O 为AC 的中点,点D 在平面ABC 上的投影为'D ,二面角D AC B --的大小为θ.下列说法正确的是()A .在翻折过程中,点'D 是直线OB 上的一个动点B .在翻折过程中,直线AD ,BC 不可能相互垂直C .在翻折过程中,三棱锥D ABC -D .在翻折过程中,三棱锥D ABC -表面积最大值为426.(2022·湖南怀化·一模)如下图,正方体1111ABCD A B C D -中,M 为1CC 上的动点,AM ⊥平面α,则下面说法正确的是()A .直线AB 与平面α所成角的正弦值范围为32⎣⎦B .点M 与点1C 重合时,平面α截正方体所得的截面,其面积越大,周长就越大C .点M 为1CC 的中点时,平面α经过点B ,则平面α截正方体所得截面图形是等腰梯形D .已知N 为1DD 中点,当AM MN +的和最小时,M 为1CC 的三等分点27.(2022·河北·模拟预测)如图,在正三棱柱111ABC A B C -中,1AB AA ==D 为棱1CC 上的动点,则()A .三棱锥D ABC -B .存在点D ,使得平面1A BD ⊥平面11ABB AC .A 到平面1A BD 的最大距离为2D .1A BD 面积的最大值为428.(2022·全国·高三专题练习)如图,在直棱柱1111ABCD A B C D -中,各棱长均为2,π3ABC ∠=,则下列说法正确的是()A .三棱锥1A ABC -B .异面直线1AB 与1BCC .当点M 在棱1BB 上运动时,1MD MA +最小值为D .N 是ABCD 所在平面上一动点,若N 到直线1AA 与BC 的距离相等,则N 的轨迹为抛物线29.(2022·广东·三模)在正方体1111ABCD A B C D -中,1AB =,点P 满足1CP CD CC λμ=+,其中[][]0,1,0,1λμ∈∈,则下列结论正确的是()A .当1//B P 平面1A BD 时,1B P 可能垂直1CD B .若1B P 与平面11CCD D 所成角为4π,则点P 的轨迹长度为2πC .当λμ=时,1||DP A P +D .当1λ=时,正方体经过点1A 、P 、C 的截面面积的取值范围为]30.(2022·全国·高三专题练习)已知正四棱柱1111ABCD A B C D -中,122CC AB ==,E 为1CC 的中点,P 为棱1AA 上的动点,平面α过B ,E ,P 三点,则()A .平面α⊥平面11AB EB .平面α与正四棱柱表面的交线围成的图形一定是四边形C .当P 与A 重合时,α截此四棱柱的外接球所得的截面面积为11π8D .存在点P ,使得AD 与平面α所成角的大小为π331.(2022·河北唐山·二模)如图,正方体1111ABCD A B C D -中,顶点A 在平面α内,其余顶点在α的同侧,顶点1A ,B ,C 到α,1,2,则()A .BC ∥平面αB .平面1A AC ⊥平面αC .直线1AB 与α所成角比直线1AA 与α所成角大D .正方体的棱长为32.(2022·江苏南通·模拟预测)设正方体ABCD —1111D C B A 的棱长为2,P 为底面正方形ABCD 内(含边界)的一动点,则()A .存在点P ,使得A 1P ∥平面11B CD B .当PC PD ⊥时,|A1P |2的最小值是10-C .若1APC 的面积为1,则动点P 的轨迹是抛物线的一部分D .若三棱锥P —111A B C 的外接球表面积为41π4,则动点P 的轨迹围成图形的面积为π33.(2022·全国·高三专题练习)三棱锥A BCD -各顶点均在表面积为20π的球体表面上,2,120AB CB ABC ∠=== ,90BCD ∠= ,则()A .若CD AB ⊥,则2CD =B .若2CD =,则CD AB⊥C .线段ADD .三棱锥A BCD -34.(2022·湖北·宜城市第二高级中学高三开学考试)如图,ABCD 是边长为5的正方形,半圆面APD ⊥平面ABCD .点P 为半圆弧 AD 上一动点(点P 与点A ,D 不重合).下列说法正确的是()A .三棱锥P -ABD 的四个面都是直角三角形B .三棱锥P 一ABD 体积的最大值为1254C .异面直线PA 与BC 的距离为定值D .当直线PB 与平面ABCD 所成角最大时,平面PAB 截四棱锥P -ABCD 外接球的截面面积为(2534π35.(2022·广东·佛山市南海区艺术高级中学模拟预测)如图,若正方体的棱长为1,点M 是正方体1111ABCD A B C D -的侧面11ADD A 上的一个动点(含边界),P 是棱1CC 的中点,则下列结论正确的是()A .沿正方体的表面从点A 到点PB .若保持||PM =M 在侧面内运动路径的长度为3πC .三棱锥1B C MD -的体积最大值为16D .若M 在平面11ADD A 内运动,且111MD B B D B ∠=∠,点M 的轨迹为抛物线36.(2022·江苏·徐州市第七中学高三阶段练习)在棱长为1的正方体1111ABCD A B C D -中,P 为侧面11BCC B (不含边界)内的动点,Q 为线段1A C 上的动点,若直线1A P 与11A B 的夹角为45 ,则下列说法正确的是()A .线段1A PB 1A Q PQ +的最小值为1C .对任意点P ,总存在点Q ,便得1⊥D Q CPD .存在点P ,使得直线1A P 与平面11ADD A 所成的角为60°37.(2022·全国·高三专题练习)已知点A 为圆台12O O 下底面圆2O 上的一点,S 为上底面圆1O 上一点,且11SO =,12O O =22O A =,则下列说法正确的有()A .直线SA 与直线12O O 所成角最小值为6πB .直线SA 与直线12O O 所成角最大值为3πC .圆台存在内切球,且半径为2D .直线1AO 与平面12SO O 38.(2022·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则下列结论正确的是()A .直线1BD ⊥平面11AC DB .三棱锥11D AC P -的体积为定值C .异面直线AP 与1AD 所成角的取值范围是[]30,90︒︒D .直线1C P 与平面11AC D 三、填空题39.(2022·湖南·高三开学考试)三棱锥P ABC -中,PA PB PC ==,底面ABC 是边长为2的正三角形,,E F 分别是,PA AB 的中点,且CE EF ⊥,若M 为三棱锥P ABC -外接球上的动点,则点M 到平面ABC 距离的最大值为___________.40.(2022·河南·高三阶段练习(理))如图,在棱长为1111ABCD A B C D -中,若1ABA △绕1A B 旋转一周,则在旋转过程中,三棱锥1A BDC -的体积的取值范围为______.41.(2022·新疆·模拟预测(理))已知正方体1111ABCD A B C D -的棱长为1,M 、N 分别为棱1AA 、11A D 的中点,P 为棱11A B 上的动点,Q 为线段11B D 的中点.则下列结论中正确序号为______.①MN CP ⊥;②//AQ 平面MNP ;③PDQ ∠的余弦值的取值范围是23⎢⎣⎦;④△1APC42.(2022·山东聊城·一模)在矩形ABCD 中,E 是AB 的中点,1,2AD AB ==,将ADE 沿DE 折起得到A DE ' ,设A C '的中点为M ,若将A DE ' 绕DE 旋转90 ,则在此过程中动点M 形成的轨迹长度为___________.43.(2022·全国·高三专题练习)在棱长为a 的正方体1111ABCD A B C D -中,M ,N 分别为1BD ,11B C 的中点,点P 在正方体表面上运动,且满足MP CN ⊥,点P 轨迹的长度是___________.44.(2022·全国·高三专题练习)已知等边ABC 的边长为,M N 分别为,AB AC 的中点,将AMN 沿MN 折起得到四棱锥A MNCB -.点P 为四棱锥A MNCB -的外接球球面上任意一点,当四棱锥A MNCB -的体积最大时,P 到平面MNCB 距离的最大值为________.45.(2022·河南·高三开学考试(理))如图,在ABC 中,2BC AC =,120ACB ∠=︒,CD 是ACB ∠的角平分线,沿CD 将ACD △折起到A CD '△的位置,使得平面A CD '⊥平面BCD .若A B '=,则三棱锥A BCD '-外接球的表面积是________.46.(2022·湖北·黄冈中学二模)如图,棱长为1的正方体1111ABCD A B C D -,点P 沿正方形ABCD 按ABCDA 的方向作匀速运动,点Q 沿正方形11B C CB 按111B C CBB 的方向以同样的速度作匀速运动,且点,P Q 分别从点A 与点1B 同时出发,则PQ 的中点的轨迹所围成图形的面积大小是________.47.(2022·四川·成都七中高三阶段练习(理))如图,在正方体1111ABCD A B C D -中,点M ,N 分别为棱11,B C CD 上的动点(包含端点),则下列说法正确的是___________.①当M 为棱11B C 的中点时,则在棱CD 上存在点N 使得MN AC ⊥;②当M ,N 分别为棱11,B C CD 的中点时,则在正方体中存在棱与平面1A MN 平行;③当M ,N 分别为棱11,B C CD 的中点时,则过1A ,M ,N 三点作正方体的截面,所得截面为五边形;④直线MN 与平面ABCD ;⑤若正方体的棱长为2,点1D 到平面1A MN .48.(2022·全国·高三专题练习(理))如图,在四棱锥S ABCD -中,底面ABCD 是矩形,侧面SCD ⊥底面ABCD ,SAB △是边长为2的等边三角形,点,P Q 分别为侧棱,SA SB 上的动点,记s DP PQ QC =++,则s 的最小值的取值范围是_________.四、双空题49.(2022·全国·高三专题练习(文))祖暅原理:“幂势既同,则积不容异”.即:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.如图①是一个椭圆球形瓷凳,其轴截面为图②中的实线图形,两段曲线是椭圆22219x y a+=的一部分,若瓷凳底面圆的直径为4,高为6,则2a =__________;利用祖暅原理可求得该椭圆球形瓷凳的体积为__________50.(2022·河南·方城第一高级中学模拟预测(文))某中学开展劳动实习,学生对圆台体木块进行平面切割,已知圆台的上底面半径为1,下底面半径为2,要求切割面经过圆台的两条母线且使得切割面的面积最大.则切割面的面积为______;若圆台的______.51.(2022·全国·高三专题练习)斜线OA 与平面α成15°角,斜足为O ,A '为A 在α内的射影,B 为OA 的中点,l 是α内过点O 的动直线,若l 上存在点1P ,2P 使1230APB AP B ︒∠=∠=,则12||PP AB 则的最大值是_______,此时二面角12A P P A '--平面角的正弦值是_______52.(2022·重庆南开中学模拟预测)正方体ABCD A B C D ''''-的棱长为2,动点P 在对角线BD '上,过点P 作垂直于BD '的平面α,记平面α截正方体得到的截面多边形(含三角形)的周长为()y f x =,设(0BP x x =∈,.(1)下列说法中,正确的编号为__________.①截面多边形可能为四边形;②f =⎝⎭()f x 的图象关于x =.(2)当x =P ABC -的外接球的表面积为__________.。
压轴题05立体几何压轴题题型/考向一:点、线、面间的位置关系和空间几何体的体积、表面积题型/考向二:外接球、内切球等相关问题题型/考向三:平行关系、垂直关系、二面角等相关问题一、空间几何体的体积、表面积热点一空间几何体的侧面积、表面积柱体、锥体、台体和球的表面积公式:(1)若圆柱的底面半径为r,母线长为l,则S侧=2πrl,S表=2πr(r+l).(2)若圆锥的底面半径为r,母线长为l,则S侧=πrl,S表=πr(r+l).(3)若圆台的上、下底面半径分别为r′,r,则S侧=π(r+r′)l,S表=π(r2+r′2+r′l +rl).(4)若球的半径为R,则它的表面积S=4πR2.热点二空间几何体的体积柱体、锥体、台体和球的体积公式:(1)V柱体=Sh(S为底面面积,h为高);Sh(S为底面面积,h为高);(2)V锥体=13(S上+S下+S上S下)h(S上、S下分别为上、下底面面积,h为高);(3)V台体=13(4)V球=4πR3.3二、外接球、内切球问题类型一外接球问题考向1墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a ,b ,c ,外接球半径为R .则(2R )2=a 2+b 2+c 2,即2R =a 2+b 2+c 2.常见的有以下三种类型:考向2对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R )2=a 2+b 2+c 2(长方体的长、宽高分别为a ,b ,c ),即R 2=18(x 2+y 2+z 2),如图.考向3汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O的位置是△ABC的外心O1与△A1B1C1的外心O2的连线的中点,算出小圆O1的半径AO1=r,OO1=h2,所以R2=r2+h24.考向4垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O的位置是△CBD的外心O1与△AB2D2的外心O2连线的中点,算出小圆O1的半径CO1=r,OO1=h2,则R=r2+h24.类型二内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r,建立等式V P-ABC=V O-ABC+V O-P AB+V O-P AC+V O-PBC⇒V P-ABC=13S△ABC·r+13S△P AB·r+13S△P AC·r+13S PBC·r=13(S△ABC+S△P AB+S△P AC+S△PBC)r;第三步:解出r=3V P-ABCS△ABC+S△P AB+S△P AC+S△PBC.类型三球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).三、平行关系和垂直关系的证明、二面角等热点一空间线、面位置关系的判定判断空间线、面位置关系的常用方法(1)根据空间线面平行、垂直的判定定理和性质定理逐项判断,解决问题.(2)利用直线的方向向量、平面的法向量判断.(3)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线、面的位置关系,并结合有关定理进行判断.热点二几何法证明平行、垂直1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.热点三空间向量法证明平行、垂直1.用向量证明空间中的平行关系(1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.(2)设直线l的方向向量为v,在平面α内的两个不共线向量v1和v2,则l∥α或l⊂α⇔存在两个实数x,y,使v=x v1+y v2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.2.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.四、空间角、距离问题热点一异面直线所成的角求异面直线所成角的方法方法一:综合法.步骤为:①利用定义构造角,可固定一条直线,平移另一条直线,或将两条直线同时平移到某个特殊的位置;②证明找到(或作出)的角即为所求角;③通过解三角形来求角.方法二:空间向量法.步骤为:①求出直线a ,b 的方向向量,分别记为m ,n ;②计算cos 〈m ,n 〉=m ·n|m ||n |;③利用cos θ=|cos 〈m ,n 〉|,以及θ,π2,求出角θ.热点二直线与平面所成的角求直线与平面所成角的方法方法一:几何法.步骤为:①找出直线l 在平面α上的射影;②证明所找的角就是所求的角;③把这个角置于一个三角形中,通过解三角形来求角.方法二:空间向量法.步骤为:①求出平面α的法向量n 与直线AB 的方向向量AB →;②计算cos 〈AB →,n 〉=AB →·n |AB →||n |;③利用sin θ=|cos 〈AB →,n 〉|,以及θ∈0,π2,求出角θ.热点三平面与平面的夹角求平面与平面的夹角方法方法一:几何法.步骤为:①找出二面角的平面角(以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角就是二面角的平面角);②证明所找的角就是要求的角;③把这个平面角置于一个三角形中,通过解三角形来求角.求二面角的平面角的口诀:点在棱上,边在面内,垂直于棱,大小确定.方法二:空间向量法.步骤为:①求两个平面α,β的法向量m ,n ;②计算cos 〈m ,n 〉=m ·n|m |·|n |;③设两个平面的夹角为θ,则cos θ=|cos 〈m ,n 〉|.热点四距离问题1.空间中点、线、面距离的相互转化关系2.空间距离的求解方法有:(1)作垂线段;(2)等体积法;(3)等价转化;(4)空间向量法.○热○点○题○型一点、线、面间的位置关系和空间几何体的体积、表面积一、单选题1.在正方体1111ABCD A B C D -中,直线m 、n 分别在平面ABCD 和11ABB A 内,且m n ⊥,则下列命题中正确的是()A .若m 垂直于AB ,则n 垂直于AB B .若m 垂直于AB ,则n 不垂直于ABC .若m 不垂直于AB ,则n 垂直于ABD .若m 不垂直于AB ,则n 不垂直于AB2.在中国古代数学经典著作《九章算术》中,称图中的多面体ABCDEF 为“刍甍”.书中描述了刍甍的体积计算方法:求积术曰,倍下袤,上袤从之,以广乘之,又以高乘之,六而一,即()216V AB EF AD h =+⨯⨯,其中h 是刍甍的高,即点F 到平面ABCD 的距离.若底面ABCD 是边长为4的正方形,2EF =,且//EF AB ,ADE V 和BCF △是等腰三角形,90AED BFC ∠=∠= ,则该刍甍的体积为()A 202B .33C .103D .4033.已知一个三棱锥型玩具容器-P ABC 的外包装纸(包装纸厚度忽略不计,外包装纸面积恰为该容器的表面积)展开后是如图所示的边长为10的正方形123APP P (其中点B 为23P P 中点,点C 为12PP 中点),则该玩具的体积为()A .6253B .1253C .125D .25034.攒尖是中国古代建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖.通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.如图所示的建筑屋顶是圆形攒尖,可近似看作一个圆锥,已知其轴截面(过圆锥旋转轴的截面)是底边长为6m ,腰长为5m 的等腰三角形,则该屋顶的体积约为()A .38πmB .39πmC .310πmD .312πm 5.已知,a b 为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是()A .若//,//a b b α,则//a αB .若//,,//a b a b αβ⊥,则αβ⊥C .若//,//,//a b αβαβ,则//a bD .若//,//,a b αβαβ⊥,则a b⊥6.在直三棱柱111ABC A B C -中,ABC 为等腰直角三角形,若三棱柱111ABC A B C -的体积为32,则该三棱柱外接球表面积的最小值为()A .12πB .24πC .48πD .96π7.已知三棱锥-P ABC 中,底面ABC 是边长为23点P 在底面上的射影为底面的中心,且三棱锥-P ABC 外接球的表面积为18π,球心在三棱锥-P ABC 内,则二面角P AB C --的平面角的余弦值为()A .12B .13C D8.已知三棱锥-P ABC 的四个顶点都在球O 的球面上,4PB PC AB AC ====,2PA BC ==,则球O 的表面积为()A .316π15B .79π15C .158π5D .79π5二、多选题9.已知直线a ,b ,c 两两异面,且a c ⊥,b c ⊥,下列说法正确的是()A .存在平面α,β,使a α⊂,b β⊂,且c α⊥,c β⊥B .存在平面α,β,使a α⊂,b β⊂,且c α∥,c β∥C .存在平面γ,使a γ∥,b γ∥,且c γ⊥D .存在唯一的平面γ,使c γ⊂,且a ,b 与γ所成角相等10.已知正方体1111ABCD A B C D -的外接球表面积为12π,,,M N P 分别在线段1BB ,1CC ,1DD 上,且,,,A M N P 四点共面,则().A .AP MN=B .若四边形AMNP 为菱形,则其面积的最大值为C .四边形AMNP 在平面11AAD D 与平面11CC D D 内的正投影面积之和的最大值为6D .四边形AMNP 在平面11AA D D 与平面11CC D D 内的正投影面积之积的最大值为4三、解答题11.如图,四棱锥S ABCD -的底面为菱形,60BAD ∠=︒,2AB =,4SD =,SD ⊥平面ABCD ,点E 在棱SB 上.(1)证明:AC DE ⊥;(2)若三棱锥E ABC -E 到平面SAC 的距离.12.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,,AB AD O =为BD 的中点.(1)证明:OA CD ⊥;(2)已知OCD 是边长为1的等边三角形,已知点E 在棱AD 的中点,且二面角E BC D --的大小为45 ,求三棱锥A BCD -的体积.○热○点○题○型二外接球、内切球等相关问题一、单选题1.已知ABC 是边长为3的等边三角形,其顶点都在球O 的球面上,若球O 的体积为323π,则球心O 到平面ABC 的距离为()AB .32C .1D 2.已知三棱锥-P ABC 的底面ABC 是边长为1的正三角形,侧棱,,PA PB PC 两两垂直,若此三棱锥的四个顶点都在同一个球面上,则该球的表面积是()A .3πB .πC .3π4D .3π23.一个圆锥的底面圆和顶点都恰好在一个球面上,且这个球的半径为5,则这个圆锥的体积的最大值时,圆锥的底面半径为()A .103B C .1023D 4.已知圆锥的侧面积为2π,母线与底面所成角的余弦值为12,则该圆锥的内切球的体积为()A .4π3B .43π9C .27D .275.如图,几何体Ω为一个圆柱和圆锥的组合体,圆锥的底面和圆柱的一个底面重合,圆锥的顶点为A ,圆柱的上、下底面的圆心分别为B 、C ,若该几何体Ω存在外接球(即圆锥的顶点与底面圆周在球面上,且圆柱的底面圆周也在球面上).已知24BC AB ==,则该组合体的体积等于()A .56πB .70π3C .48πD .64π6.已知矩形ABCD 的顶点都在球心为O 的球面上,3AB =,BC =且四棱锥O ABCD -的体积为O 的表面积为()A .76πB .112πC .3D .37.水平桌面上放置了4个半径为2的小球,4个小球的球心构成正方形,且相邻的两个小球相切.若用一个半球形的容器罩住四个小球,则半球形容器内壁的半径的最小值为()A.4B .2+C .2D .68.已知三棱锥-P ABC 的四个顶点均在球O 的球面上,2PA BC ==,PB AC ==,PC AB =Q为球O 的球面上一动点,则点Q 到平面PAB 的最大距离为()A .211+B .222+C 11+D 22二、填空题9.在三棱锥-P ABC 中,PA ⊥平面ABC ,14AB AC PA AB AC ⊥=+=,,,当三棱锥的体积最大时,三棱锥-P ABC 外接球的体积为______.10.如图,在直三棱柱111ABC A B C -中,1AA AB BC ==.设D 为1AC 的中点,三棱锥D ABC -的体积为94,平面1A BC ⊥平面11ABB A ,则三棱柱111ABC A B C -外接球的表面积为______.11.如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则直三棱柱111ABC A B C -的体积为___________.12.如图所示的由4个直角三角形组成的各边长均相等的六边形是某棱锥的侧面展开图,若该六边形的面积为1___.○热○点○题○型三平面关系、垂直关系、二面角等相关问题1.已知多面体ABCDEF 中,四边形CDEF 是边长为4的正方形,四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,36BE AB ==,4=AD .(1)求证:平面ADF ⊥平面BCE ;(2)求直线AF 与平面BCF 所成角的正弦值.2.如图,在四棱锥P ABCD -中,PAD 为等边三角形,M 为PA 的中点,PD AB ⊥,平面PAD ⊥平面ABCD .(1)证明:平面CDM ⊥平面PAB ;(2)若AD BC ∥,2AD BC =,2AB =,直线PB 与平面MCD 所成角的正弦值为34,求三棱锥P MCD -的体积.3.如图所示,在三棱锥A BCD -中,满足BC CD ==,点M 在CD 上,且5DM MC =,ABD △为边长为6的等边三角形,E 为BD 的中点,F 为AE 的三等分点,且2AF FE =.(1)求证://FM 面ABC ;(2)若二面角A BD C --的平面角的大小为23π,求直线EM 与面ABD 所成角的正弦值.4.已知底面ABCD 是正方形,PA ⊥平面ABCD ,//PA DQ ,33PA AD DQ ===,点E 、F 分别为线段PB 、CQ 的中点.(1)求证://EF 平面PADQ ;(2)求平面PCQ 与平面CDQ 夹角的余弦值;(3)线段PC 上是否存在点M ,使得直线AM 与平面PCQ 所成角的正弦值是7,若存在求出PM MC的值,若不存在,说明理由.5.如图,AB 为圆O 的直径,点EF 在圆O 上,//AB EF ,矩形ABCD 所在平面和圆O 所在的平面互相垂直,已知2,1AB EF ==.(1)求证:平面DAF ⊥平面CBF ;(2)当AD 的长为何值时,二面角C EF B --的大小为60︒6.如图,在三棱柱111ABC A B C -中,四边形11AAC C 是边长为4的菱形,AB BC ==点D 为棱AC 上的动点(不与A 、C 重合),平面1B BD 与棱11AC 交于点E .(1)求证1BB DE //;(2)若平面ABC ⊥平面11AAC C ,160A AC ∠= ,判断是否存在点D 使得平面11A ABB 与平面1B BDE 所成的锐二面角为π3,并说明理由.。
立体几何大题压轴练-新高考数学复习分层训练(新高考通用)1.(2023·湖北·校联考模拟预测)如图,在棱长为2的正方体ABCD EFGH -中,点M 是正方体的中心,将四棱锥M BCGF -绕直线CG 逆时针旋转(0π)αα<<后,得到四棱锥M B CGF -'''.(1)若π2α=,求证:平面MCG //平面M B F ''';(2)是否存在α,使得直线M F ''⊥平面MBC ?若存在,求出α的值;若不存在,请说明理由.2.(2023春·湖南株洲·高三株洲二中校考阶段练习)如下图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,2ABC BAD π∠=∠=,2PA AD ==,1AB BC ==.(1)求平面PAB 与平面PCD 夹角的余弦值;(2)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值,利用此定义求异面直线PB 与CD 之间的距离.3.(2023·湖南张家界·统考二模)如图,已知三棱柱111ABC A B C -,90ACB ∠=︒,11AC A C ⊥,D 为线段1A C 上的动点,1AC BD ⊥.(1)求证:平面11ACC A ⊥平面ABC ;(2)若1AA AC ⊥,D 为线段1A C 的中点,22AC BC ==,求1B D 与平面1A BC 所成角的余弦值.4.(2023春·湖南·高三长郡中学校联考阶段练习)如图①,已知AB C 'V 是边长为2的等边三角形,D 是AB '的中点,DH B C ⊥',如图②,将B DH ' 沿边DH 翻折至BDH △.(1)在线段BC 上是否存在点F ,使得//AF 平面BDH ?若存在,求BFFC的值;若不存在,请说明理由;(2)若平面BHC 与平面BDA 所成的二面角的余弦值为13,求三棱锥B DCH -的体积.5.(2023·湖南长沙·湖南师大附中校考一模)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,△PAD 为等边三角形,平面PAD ⊥平面ABCD ,PB BC ⊥.(1)求点A 到平面PBC 的距离;(2)E 为线段PC 上一点,若直线AE 与平面ABCD 求平面ADE 与平面ABCD 夹角的余弦值.6.(2023春·广东揭阳·高三校考阶段练习)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是边长为2的菱形,3DAB π∠=,平面11BDD B ⊥平面ABCD ,点1,O O 分别为11,B D BD 的中点,1111,,O B A AB O BO ∠∠=均为锐角.(1)求证:1AC BB ⊥;(2)若异面直线CD 与1AA 所成角正弦值为7,四棱锥1A ABCD -的体积为1,求二面角1B AA C --的平面角的余弦值.7.(2023·山西太原·统考一模)如图,四棱锥P ABCD -中,,AB CD AB AD ⊥∥,且24260,,AB AD CD PA PAB =====∠ ,直线PA 与平面ABCD 的所成角为30,,E F 分别是BC 和PD 的中点.(1)证明:EF 平面PAB ;(2)求平面PAB 与平面PAD 夹角的余弦值.8.(2023·江苏·统考一模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC 和ACD 均为正三角形,4AC =,BE =(1)在线段AC 上是否存在点F ,使得BF ∥平面ADE ?说明理由;(2)求平面CDE 与平面ABC 所成的锐二面角的正切值.9.(2023·云南昆明·昆明一中校考模拟预测)在三棱锥-P ABC 中,PA PB =,90BAC ∠=︒,M 为棱BC 的中点.(1)证明:AB PM ⊥;(2)若平面PAB ⊥平面ABC,PA PB ==2AB AC ==,E 为线段PC 上一点,2PE EC =,求点E 到平面PAM 的距离.10.(2023·云南·统考一模)如图,四边形ABCD 是圆柱底面的内接四边形,AC 是圆柱的底面直径,PC 是圆柱的母线,E 是AC 与BD 的交点,AB AD =,60BAD ∠=︒.(1)记圆柱的体积为1V ,四棱锥P ABCD -的体积为2V ,求12V V ;(2)设点F 在线段AP 上,4,4PA PF PC CE ==,求二面角F CD P --的余弦值.11.(2023·云南·高三云南师大附中校考阶段练习)如图,直四棱柱1111ABCD A B C D -的底面ABCD 是菱形,E 是11A D 的中点,F 为线段BC 上一点,2AB =,11AA =,60BAD ∠=︒.(1)证明:当BF FC =时,⊥AE 平面DEF ;(2)是否存在点F ,使二面角A DE F --的余弦值为15若存在,请指出点F 的位置;若不存在,请说明理由.12.(2023春·重庆·高三重庆市长寿中学校校考期末)如图,在四棱台1111ABCD A B C D -中,底面为矩形,平面11AA D D ⊥平面11CC D D ,且1111112CC CD DD C D ====.(1)证明:AD ⊥平面11CC D D ;(2)若1A C 与平面11CC D D 所成角为3π,求二面角1C AA D --的余弦值.13.(2023秋·重庆璧山·高三校联考阶段练习)如图,已知圆柱的上,下底面圆心分别为11,,P Q AA C C 是圆柱的轴截面,正方形ABCD 内接于下底面圆Q ,12,AB AA k ==.(1)当k 为何值时,点Q 在平面PBC 内的射影恰好是△PBC 的重心;(2)若[]2,4k ∈,当平面PAD 与平面PBC 所成的锐二面角最大时,求该锐二面角的余弦值.14.(2023春·重庆万州·高三重庆市万州第二高级中学校考阶段练习)如图1,,A D 分别是矩形11A BCD 上的点,1222AB AA AD ===,12DC DD =,把四边形11A ADD 沿AD 折叠,使其与平面ABCD 垂直,如图2所示,连接1A B ,1D C 得到几何体11ABA DCD -.(1)当点E 在棱AB 上移动时,证明:11D E A D ⊥;(2)在棱AB 上是否存在点E ,使二面角1D EC D --的平面角为π6若存在,求出AE 的长;若不存在,请说明理由.15.(2023·重庆沙坪坝·重庆南开中学校考模拟预测)如图四棱锥,2,,S ABCD AC B D -=在以AC 为直径的圆上,SA ⊥平面π,,6ABCD DAC E ∠=为SC 的中点,(1)若π6BAC ∠=,证明:DE ⊥AB ;(2)当二面角D SC A --B 到平面SCD 距离的最大值.16.(2023·辽宁铁岭·校联考模拟预测)如图,在三棱台111ABC A B C -中,三棱锥111C A B C -,1AB C △的面积为4,112AB A B =,且1A A ⊥平面ABC .(1)求点B 到平面1AB C 的距离;(2)若1BB BA =,且平面1AB C ⊥平面11ABB A ,求二面角11A B C A --的余弦值.17.(2023秋·辽宁沈阳·高三沈阳二中校考期末)如图,在四棱锥P ABCD -中,平面ABCD ⊥平面PAD ,//AD BC ,1AB BC PA ===,2AD =,30ADP ∠=︒,90BAD ∠=︒,E 是PD 的中点.(1)求证:PD PB ⊥;(2)若点M 在线段PC 上,异面直线BM 和CE 所成角的余弦值为5,求面MAB 与面PCD 夹角的余弦值.18.(2023·辽宁朝阳·校联考一模)如图,已知四棱锥E ABCD -,底面ABCD 是平行四边形,且π3DAB ∠=,22,,AD AB BE PE P ===是线段AD 的中点,BE PC ⊥.(1)求证:PC ⊥平面BPE ;(2)下列条件任选其一,求二面角P EC B --的余弦值.①AE 与平面ABCD 所成的角为π4;②D 到平面EPC 注:如果选择多个条件分别解答,按一个解答计分.19.(2023秋·江苏南京·高三南京市第一中学校考期末)如图,三棱锥E ABD -和F BCD -均为棱长为2的正四面体,且A ,B ,C ,D 四点共面,记直线AE 与CF 的交点为Q .(1)求三棱锥Q BDE -的体积;(2)求二面角A QD C --的正弦值.20.(2023春·河北承德·高三河北省隆化存瑞中学校考阶段练习)如图,在四棱锥P ABCD -中,1,90,1,2AD BC ADC PAB BC CD AD E ∠∠=====∥ 为边AD 的中点,异面直线PA 与CD 所成的角为90 .(1)在直线PA 上找一点M ,使得直线//MC 平面PBE ,并求AMAP的值;(2)若直线CD 到平面PBE ,求平面PBE 与平面PBC 夹角的正弦值.21.(2023秋·河北石家庄·高三石家庄精英中学校考阶段练习)如图,在四棱锥S ABCD -中,四边形ABCD 是矩形,SAD 是正三角形,且平面SAD ⊥平面ABCD ,1AB =,P为棱AD 的中点,四棱锥S ABCD -(1)若E 为棱SB 的中点,求证://平面SCD ;(2)在棱SA 上是否存在点M ,使得平面PMB 与平面SAD 所成锐二面角的余弦值为M 的位置并给以证明;若不存在,请说明理由.22.(2023春·河北衡水·高三河北衡水中学校考阶段练习)如图所示,圆锥的高2PO =,底面圆O 的半径为R ,延长直径AB 到点C ,使得BC R =,分别过点A ,C 作底面圆O 的切线,两切线相交于点E ,点D 是切线CE 与圆O 的切点.(1)证明:平面PDE ⊥平面POD ;(2)若直线PE 与平面PBD ,求点A 到平面PED 的距离.23.(2023·河北衡水·河北衡水中学校考模拟预测)异面直线1l 、2l 上分别有两点A 、B .则将线段AB 的最小值称为直线1l 与直线2l 之间的距离.如图,已知三棱锥-P ABC 中,PA ⊥平面PBC ,PB PC ⊥,点D 为线段AC 中点,1AP BP CP ===.点E 、F 分别位于线段AB 、PC 上(不含端点),连接线段EF .(1)设点M 为线段EF 中点,线段EF 所在直线与线段AC 所在直线之间距离为d ,证明:DM d >.(2)若AB PCk AE FC==()1k >,用含k 的式子表示线段EF 所在直线与线段BD 所在直线之间的距离.24.(2023·河北·高三河北衡水中学校考阶段练习)如图,在长方体ABCD FGHE -,平面ABCD 与平面BCEF 所成角为02πθθ⎛⎫<< ⎪⎝⎭.(1)若AB BC =,求直线AH 与平面BCEF 所成角的余弦值(用cos θ表示);(2)将矩形BCEF 沿BF 旋转θ度角得到矩形BFPQ ,设平面ABCD 与平面BFPQ 所成角为π02αα⎛⎫<< ⎪⎝⎭,请证明:2cos cos αθ=.25.(2023秋·福建宁德·高三校考阶段练习)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,点P 在底面ABCD 内的投影恰为AC 中点,且BM MC =.(1)若2PC =,求证:PM ⊥面PAD ;(2)若平面PAB 与平面PCD 所成的锐二面角为3π,求直线PM 与平面PCD 所成角的正弦值.26.(2023秋·山东烟台·高三山东省烟台第一中学校考期末)如图,在三棱台111ABC A B C -中,底面ABC 是边长为2的正三角形,侧面11ACC A 为等腰梯形,且1111A C AA ==,D 为11A C 的中点.(1)证明:AC BD ⊥;(2)记二面角1A AC B --的大小为θ,2,33ππθ⎡⎤∈⎢⎥⎣⎦时,求直线1AA 与平面11BB C C 所成角的正弦值的取值范围.27.(2023秋·山东枣庄·高三统考期末)已知直三棱柱111ABC A B C -,D 为线段11A B 的中点,E 为线段1CC 的中点,1AC CE ==,平面ABE ⊥平面11AA C C .(1)证明:AB AE ⊥;(2)三棱锥E ABD -的外接球的表面积为132π,求平面ADE 与平面BDE 夹角的余弦值.28.(2023·湖北·校联考模拟预测)如图所示,在梯形ABCD 中,AB CD ∥,120BCD ∠= ,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD CD BC CF ===.(1)求证:EF ⊥平面BCF ;(2)点M 在线段EF 上运动,MAB 与平面FCB 所成锐二面角为θ,试求cos θ的取值范围.29.(2023春·湖北·高三统考阶段练习)如图所示,六面体1111ABCD A B C D -的底面ABCD 是菱形,1111,π3BAD AA BB CC DD ∠=∥∥∥,且1BB ⊥平面111111,,,(01),2ABCD AA CC AE AA CF CC DD BB λλλ===<≤= ,平面BEF 与平面ABCD的交线为l .(1)证明:直线l ⊥平面11B BDD ;(2)已知2EF =,三棱锥1B BDF -的体积19B BDF V -=,若1D F 与平面1BDD 所成角为θ,求sin θ的取值范围.30.(2023·江苏南通·二模)如图,在圆台1OO 中,11,A B AB 分别为上、下底面直径,且11//A B AB ,112AB A B =,1CC 为异于11,AA BB 的一条母线.(1)若M 为AC 的中点,证明:1//C M 平面11ABB A ;(2)若13,4,30OO AB ABC ==∠=︒,求二面角1A C C O --的正弦值.。
专题05立体几何(选择题、填空题)1.【2021·浙江高考真题】某几何体的三视图如图所示,则该几何体的体积是()A .32B .3C.2D.【答案】A【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【解析】几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,,下底为12=,故1111131222ABCD A B C D V -=⨯+⨯⨯=,故选:A.2.【2021·北京高考真题】某四面体的三视图如图所示,该四面体的表面积为()A .332+B .4C .33D .2【答案】A【分析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.【解析】根据三视图可得如图所示的几何体-正三棱锥O ABC -,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为213333112242+⨯⨯⨯+⨯=,故选:A.3.【2021·浙江高考真题】如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则()A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCD D .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B 【答案】A【分析】由正方体间的垂直、平行关系,可证1//,MN AB A D ⊥平面1ABD ,即可得出结论.【解析】连1AD ,在正方体1111ABCD A B C D -中,M 是1A D 的中点,所以M 为1AD 中点,又N 是1D B 的中点,所以//MN AB ,MN ⊄平面,ABCD AB ⊂平面ABCD ,所以//MN 平面ABCD .因为AB 不垂直BD ,所以MN 不垂直BD 则MN 不垂直平面11BDD B ,所以选项B,D 不正确;在正方体1111ABCD A B C D -中,11AD A D ⊥,AB ⊥平面11AA D D ,所以1AB A D ⊥,1AD AB A ⋂=,所以1A D ⊥平面1ABD ,1D B ⊂平面1ABD ,所以11A D D B ⊥,且直线11,A D D B 是异面直线,所以选项B 错误,选项A 正确.故选:A.【点睛】关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.4.【2021·全国高考真题(理)】已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为()A .212B .312C .24D .34【答案】A【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【解析】,1AC BC AC BC ⊥== ,ABC ∴ 为等腰直角三角形,AB ∴=,则ABC 外接圆的半径为22,又球的半径为1,设O 到平面ABC 的距离为d ,则2d ==,所以1112211332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=.故选:A.【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.5.【2021·全国高考真题(理)】在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为()A .π2B .π3C .π4D .π6【答案】D【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可.【解析】如图,连接11,,BC PC PB ,因为1AD ∥1BC ,所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=,所以1PC ⊥平面1P B B ,所以1PC PB ⊥,设正方体棱长为2,则111112BC PC D B ===1111sin 2PC PBC BC ∠==,所以16PBC π∠=.故选:D6.【2021·全国高考真题】已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A .2B.C .4D.【答案】B【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【解析】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=解得l =.故选:B.7.【2021·北京高考真题】定义:24小时内降水在平地上积水厚度(mm )来判断降雨程度.其中小雨(10mm <),中雨(10mm 25mm -),大雨(25mm 50mm -),暴雨(50mm 100mm -),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级()A .小雨B .中雨C .大雨D .暴雨【答案】B【分析】计算出圆锥体积,除以圆面的面积即可得降雨量,即可得解.【解析】由题意,一个半径为()200100mm 2=的圆面内的降雨充满一个底面半径为()20015050mm 2300⨯=,高为()150mm 的圆锥,所以积水厚度()22150150312.5mm 100d ππ⨯⨯==⨯,属于中雨.故选:B.8.【2021·全国高考真题】在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【答案】BD【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【解析】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB B C λλ=++,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,13,0,12A ⎛⎫ ⎪ ⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫⎪⎝⎭,则13,0,12A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭ ,()110A P BP μμ⋅=-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误;对于D ,当12μ=时,112BP BC BB λ=+ ,取1BB ,1CC 中点为,M N .BP BM MN λ=+ ,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,02A ⎛⎫ ⎪ ⎪⎝⎭,所以01,22AP y ⎛⎫= ⎪ ⎪⎝⎭,11,,122A B ⎛⎫=-- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确.故选:BD .【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.9.【2021·全国高考真题(理)】以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).【答案】③④(答案不唯一)【分析】由题意结合所给的图形确定一组三视图的组合即可.【解析】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A B C D -中,12,1AB BC BB ===,,E F 分别为棱11,BC BC 的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF -.故答案为:③④.【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.10.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .514-B .512-C .514D .512+【答案】C【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-由题意得212PO ab =,即22142a b ab-=,化简得24()210b b a a -⋅-=,解得14b a +=(负值舍去).故选C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.11.【2020年高考全国Ⅱ卷理数】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H【答案】A【解析】根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选A.【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.12.【2020年高考全国II 卷理数】已知△ABC 是面积为934O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为A 3B .32C .1D .32【答案】C【解析】设球O 的半径为R ,则2416R π=π,解得:2R =.设ABC △外接圆半径为r ,边长为a ,ABC △是面积为934的等边三角形,21393224a ∴⨯=,解得:3a =,22229933434a r a ∴=-=⨯-,∴球心O 到平面ABC 的距离22431d R r =-=-=.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.13.【2020年高考全国Ⅲ卷理数】如图为某几何体的三视图,则该几何体的表面积是A .2B .4+42C .3D .4+23【答案】C 【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:22AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:2113sin 60222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:632=⨯++.故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.14.【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r π=π=∴, ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A.【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.15.【2020年高考天津】若棱长为为A .12πB .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C .【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心.16.【2020年高考北京】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为A .6+B .6+C .12+D .12+【答案】D 【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭故选:D .【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.17.【2020年高考浙江】某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是A .73B .143C .3D .6【答案】A 【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+=⎪ ⎪⎝⎭⎝⎭.故选:A【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.18.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.19.【2020年新高考全国Ⅰ卷】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°【答案】B 【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.故选:B.【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.20.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D 【答案】D【解析】解法一:,PA PB PC ABC == △为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥ 平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,2R ==364466,π2338R V R =∴=π=⨯=,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=又90CEF ∠=︒,12CE AE PA x ∴===,AEC △中,由余弦定理可得()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC = ,D \为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,221221222x x x ∴+=∴==,,,PA PB PC ∴===,又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==,62R ∴=,34466338V R ∴=π=π⨯=,故选D.【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.21.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.22.【2019年高考全国Ⅲ卷理数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知12EO ON EN ===,,5,,22MF BF BM ==∴=BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.23.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158B.162C.182D.324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2646336162 22++⎛⎫⨯+⨯⨯=⎪⎝⎭.故选B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.24.【2019年高考浙江卷】设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱VA 上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B的平面角为γ,则A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β【答案】B【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BD PB PB PB PB αβ===<=,即αβ>;在Rt △PED 中,tan tan PD PD ED BD γβ=>=,即γβ>,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.25.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.26.【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【答案】23【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于223122AM =-=,故1222222S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()1332222r =⨯++⨯=解得:22r =,其体积:34233V r =π=π.故答案为:23π.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.27.【2020年高考浙江】已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______.【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==.故答案为:1【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.28.【2020年高考江苏】如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是▲cm.【答案】2π【解析】正六棱柱体积为2624⨯⨯⨯,圆柱体积为21()222ππ⋅=,所求几何体体积为2π.故答案为:2π-【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.29.【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为球心,为半径的球面与侧面BCC 1B 1的交线长为________.【答案】22π.【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E =111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥,因为1111BB B C B = ,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,,1D E =,所以||EP ===,所以侧面11B C CB 与球面的交线上的点到E ,因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧 FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得 22FGπ==.故答案为:22π.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.30.【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形,∵四棱锥O −EFGH 的高为3cm ,∴3112312cm 3O EFGH V -=⨯⨯=.又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.31.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=.【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.32.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l ⊥α,m ∥α,则l ⊥m .【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.33.【2019年高考天津卷理数】2的正方形,5若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【答案】π4【解析】由题意,的正方形,借助勾股定理,2=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12,故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭.【名师点睛】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.34.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是▲.【答案】10【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.35.【2019年高考全国Ⅱ卷理数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】261【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 的延长线交于点G ,延长BC 交正方体的棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,22,21)122BG GE CH x GH x x x ∴===∴=⨯+=+=,1x ∴=1.。
立体几何压轴小题一、单选题1.已知一圆锥底面圆的直径为3,圆锥的高为2,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a 的最大值为( )A .3BC .92D .22.如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=,则直线1B P 与直线1AD 所成角的余弦值的取值范围为( )A .10,2⎡⎤⎢⎥⎣⎦B .10,3⎡⎤⎢⎥⎣⎦C .12⎡⎢⎣⎦D .12⎡⎢⎣⎦3.已知正六棱锥V ABCDEF -,P 是侧棱VC 上一点(不含端点),记直线PB 与直线DE 所成角为α,直线PB 与平面ABC 所成角为β,二面角P CD F --的平面角为γ,则( ) A .βγ<,αγ< B .βα<,βγ< C .βα<,γα<D .αβ<,γβ<4.斜三棱柱111ABC A B C -中,底面ABC 是正三角形,侧面11ABB A 是矩形,M 是线段AB 上的动点,记直线1A M 与直线AC 所成的角为α,直线1A M 与平面ABC 所成的角为β,二面角1A AC B --的平面角为γ,则( )A .αβ≤,≤βγB .≤βα,≤βγC .αβ≤,βγ≥D .≤βα,βγ≥5.如图,在正四棱台1111ABCD A B C D -中,上底面边长为4,下底面边长为8,高为5,点,M N 分别在1111,A B D C 上,且111A M D N ==.过点,M N 的平面α与此四棱台的下底面会相交,则平面α与四棱台的面的交线所围成图形的面积的最大值为A .B .C .D .6.如图,直三棱柱111ABC A B C -的底面是边长为6的等边三角形,侧棱长为2,E 是棱BC 上的动点,F 是棱11B C 上靠近1C 点的三分点,M 是棱1CC 上的动点,则二面角A FM E --的正切值不可能...是( )A .5B .5C D 7.在棱长为3的正方体1111ABCD A B C D -中,O 为棱DC 的中点,E 为线段AO 上的点,且2AE EO =,若点,F P 分别是线段1DC ,1BC 上的动点,则PEF 周长的最小值为( )A .B .2C D8.三棱锥P ABC -中,AB BC ⊥,△PAC 为等边三角形,二面角P AC B --的余弦值为棱锥的体积最大时,其外接球的表面积为8π.则三棱锥体积的最大值为( ) A .1B .2C .12D .139.已知矩形,4,2,ABCD A AD E B ==为AB 中点,沿直线DE 将ADE 翻折成PDE △,直线PB 与平面BCDE 所成角最大时,线段PB 长是( )A .743B .543C .742D .54210.已知四面体ABCD 的三组对棱的长分别相等,依次为3,4,x ,则x 的取值范围是( )A .B .)C .)D .()4,711.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A .,βγαγ<< B .,βαβγ<< C .,βαγα<<D .,αβγβ<<12.已知,,,A B C D 四点均在半径为R (R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为16,则球O 的表面积为( )A .32π B .2πC .94π D .83π 13.蜂巢是由工蜂分泌蜂蜡建成的从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是10928'︒,这样的设计含有深刻的数学原理、我国著名数学家华罗庚曾专门研究蜂巢的结构著有《谈谈与蜂房结构有关的数学问题》.用数学的眼光去看蜂巢的结构,如图,在六棱柱ABCDEF A B C D E '''''﹣的三个顶点A ,C ,E 处分别用平面BFM ,平面BDO ,平面DFN 截掉三个相等的三棱锥M ABF -,O BCD -,N DEF -,平面BFM ,平面BDO ,平面DFN 交于点P ,就形成了蜂巢的结构.如图,设平面PBOD 与正六边形底面所成的二面角的大小为θ,则有:( )A.tan 5444θ'=︒ B.sin 5444θ'=︒ C.cos tan 54443θ'=︒ D .以上都不对14.如图,正方体1111ABCD A B C D -的棱长为,,a E F 分别是棱1AA ,1CC 的中点,过点,E F 的平面分别与棱1BB ,1DD 交于点,G H ,设,[0,]BG x x a =∈.给出以下四个命题: ①平面EGFH 与平面ABCD 所成角的最大值为45°; ②四边形EGFH 的面积的最小值为2a ;③四棱锥1C EGFH -的体积为36a ;④点1B 到平面EGFH的距离的最大值为3. 其中命题正确的序号为( )A .②③④B .②③C .①②④D .③④15.在三棱锥A BCD -中,60BAC BDC ∠=∠=︒,二面角A BC D --的余弦值为13-,当三棱锥A BCD -) A .5πB .6πC .7πD .8π16.在正方体1111ABCD A B C D -中,点E ∈平面11AA B B ,点F 是线段1AA 的中点,若1D E CF ⊥,则当EBC ∆的面积取得最小值时,=EBC ABCDS S ∆四边形( )A B .12C D 17.有一正三棱柱(底面为正三角形的直棱柱)木料111ABC A B C -,其各棱长都为2.已知12,O O 分别为上,下底面的中心,O 为线段12O O 的中点,过A B O ,,三点的截面把该木料截成两部分,则截面面积为( )AB C D .218.已知α,β为两个不重合的平面,m ,n 为两条不重合的直线,且m αβ=,n β⊂.记直线m 与直线n 的夹角和二面角m αβ--均为1θ,直线n 与平面α的夹角为2θ,则下列说法正确的是( ) A .若106πθ<<,则122θθ> B .若164ππθ<<,则12tan 2tan θθ> C .若143ππθ<<,则12sin sin θθ<D .若132ππθ<<,则123cos cos 4θθ>19.如图,在矩形ABCD 中,2AB =,1BC =,E 、N 分别为边AB 、BC 的中点,沿DE 将ADE ∆折起,点A 折至1A 处(1A 与A 不重合),若M 、K 分别为线段1A D 、1A C 的中点,则在ADE ∆折起过程中( )A .DE 可以与1A C 垂直B .不能同时做到//MN 平面1A BE 且//BK 平面1A DEC .当1MN AD ⊥时,MN ⊥平面1A DED .直线1AE 、BK 与平面BCDE 所成角分别为1θ、2θ,1θ、2θ能够同时取得最大值20.在四面体ABCD 中,若1AD DB AC CB ====,则当四面体ABCD 的体积最大时其外接球表面积为( ) A .53π B .43π C .πD .2π二.多选题21.(2020·蒙阴县实验中学高三期末)已知四棱锥P ABCD -,底面ABCD 为矩形,侧面PCD ⊥平面ABCD ,BC =CD PC PD ===.若点M 为PC 的中点,则下列说法正确的为( )A .BM ⊥平面PCDB .//PA 面MBDC .四棱锥M ABCD -外接球的表面积为36π D .四棱锥M ABCD -的体积为622.(2020·山东高一期末)如图,矩形ABCD 中, 22AB AD ==,E 为边AB 的中点.将ADE 沿直线DE 翻折成1A DE △(点1A 不落在底面BCDE 内),若M 在线段1A C 上(点M 与1A ,C 不重合),则在ADE 翻转过程中,以下命题正确的是( )A .存在某个位置,使1DE A C ⊥B .存在点M ,使得BM ⊥平面1A DC 成立 C .存在点M ,使得//MB 平面1A DE 成立D .四棱锥1A BCDE -体积最大值为423.(2020·山东高三)如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π 24.(2020·全国高三(理))如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DPB .DPC .1AP PC +D .1AP PC +的最小值为525.(2020·山东高一期末)已知正方体1111ABCD A B C D -的棱长为2,点O 为11A D 的中点,若以O 为球为半径的球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H ,则下列结论正确的是( ) A .11//A D 平面EFGH B .1A C ⊥平面EFGHC .11A B 与平面EFGH 所成的角的大小为45°D .平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7 二、填空题26.已知长方体1111ABCD A B C D -的棱12AA =,4,3AB AD ==,点E ,F 分别为棱BC ,1CC 上的动点.若四面体11A B EF 的四个面都是直角三角形,则下列命题正确的是__________.(写出所有正确命题的编号)①存在点E ,使得1EF A F ⊥; ②不存在点E ,使得11B E A F ⊥;③当点E 为BC 中点时,满足条件的点F 有3个; ④当点F 为1CC 中点时,满足条件的点E 有3个; ⑤四面体11A B EF 四个面所在平面,有4对相互垂直.27.在四棱锥P ABCD -中,PAB 是边长为ABCD 为矩形,2AD =,PC PD ==若四棱锥P ABCD -的顶点均在球O 的球面上,则球O 的表面积为_____.28.《九章算术》中记载:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱剖开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,12,4,BB BC AB AC ====且有鳖臑C 1-ABB 1和鳖臑1C ABC -,现将鳖臑1C ABC -沿线BC 1翻折,使点C 与点B 1重合,则鳖臑1C ABC -经翻折后,与鳖臑11C ABB -拼接成的几何体的外接球的表面积是______.29.点M 为正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为11B C 上一点,112,NB NC DM BN =⊥,若球O 的体积为,则动点M 的轨迹的长度为__________.30.如图所示,某几何体由底面半径和高均为1的圆柱与半径为1的半球对接而成,在该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为__________.31.如图,AB 是平面α的斜线段,A 为斜足,点C 满足()0BC AC λλ=>,且在平面α内运动,则有以下几个命题:①当1λ=时,点C 的轨迹是抛物线; ②当1λ=时,点C 的轨迹是一条直线; ③当2λ=时,点C 的轨迹是圆; ④当2λ=时,点C 的轨迹是椭圆; ⑤当2λ=时,点C 的轨迹是双曲线.其中正确的命题是__________.(将所有正确的命题序号填到横线上) .32.已知三棱锥D ABC -的所有顶点都在球O 的表面上,AD ⊥平面ABC ,AC =1BC =,cos ACB ACB ∠=∠,2AD =,则球O 的表面积为__________.33.如图所示,在边长为2的菱形ABCD 中,60BCD ∠=︒,现将ABD △沿对角线BD 折起,得到三棱锥P BCD -.则当二面角P BD C --的大小为23π时,三棱锥P BCD -的外接球的表面积为______.34.如图,在四面体ABCD 中,2AB CD ==,AC BD ==AD BC ==,E F 分别是,AD BC 的中点若用一个与直线EF 垂直,且与四面体的每个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积的最大值为______.35.现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为221254y x += ,将此椭圆绕y 轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______.36.已知四面体ABCD 的四个顶点均在球O 的表面上,AB 为球O 的直径,4,2AB AD BC ===,四面体ABCD 的体积最大值为____37.已知单位向量i j k ,,两两的夹角均为θ(0θπ<<,且2πθ≠),若空间向量a 满足a xi y j zk =++,(,,)x y z R ∈,则有序实数组(,,)x y z 称为向量a 在“仿射”坐标系O xyz -(O 为坐标原点)下的“仿射”坐标,记作(, , )a x y z θ=,有下列命题:①已知()111,,a x y z θ=,(4,0,2)b θ=,则a b =0; ②已知3(,,0)a x y π=,3(0,0,)b z π=,其中,,0x y z >,则当且仅当x y =时,向量,a b 的夹角取得最小值;③已知()111,,a x y z θ=,()222,,b x y z θ=,则()123232,,a b x x y y z z θ+=+++;④已知()31,0,0OA π=,3(0,1,0)OB π=,3(0,0,1)OC π=,则三棱锥O ABC -的表面积S =其中真命题为________(写出所有真命题的序号).38.如图,在边长为4的正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H 分别为DE ,AF 的中点,将ABC 沿DE ,EF ,DF 折成正四面体P DEF -,则在此正四面体中,下列说法正确的是______.①异面直线PG 与DH 所成的角的余弦值为23; DF PE ⊥②;GH ③与PD 所成的角为45;PG ④与EF 所成角为6039.已知P ,E ,G F ,都在球面C 上,且P 在EFG ∆所在平面外,PE EF ⊥,PE EG ⊥,224PE GF EG===,120EGF∠=,在球C内任取一点,则该点落在三棱锥P EFG-内的概率为__________.40.如图,在透明塑料制成的长方体容器内灌进一些水,将容器底面一边固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形的面积不改变;③棱始终与水面平行;④当时,是定值.其中正确说法是.41.(2017届高三第二次湖北八校文数试卷第16题)祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆22221(0)y xa ba b+=>>所围成的平面图形绕y轴旋转一周后,得一橄榄状的几何体(如图)(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于______.42.斜线OA与平面α成15°角,斜足为O,A'为A在α内的射影,B为OA的中点,l是α内过点O的动直线,若l 上存在点1P ,2P 使1230APB AP B ︒∠=∠=,则12||P P AB 则的最大值是_______,此时二面角12A PP A '--平面角的正弦值是_______43.三棱锥P ABC -中,顶点P 在底面ABC 的投影恰好是ABC 的内心,三个侧面的面积分别为12,16,20,且底面的面积为24,则该三棱锥P ABC -的体积是________;它的外接球的表面积是________.立体几何压轴小题解析一、单选题1.已知一圆锥底面圆的直径为3,圆锥的高为2,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a 的最大值为( )A .3 BC .92 D 【答案】B【解析】【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a 的最大值.【详解】依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球设球心为P ,球的半径为r ,下底面半径为R ,轴截面上球与圆锥母线的切点为Q ,圆锥的轴截面如图:则32OA OB ==,因为SO ,故可得:3SA SB ===;所以SAB 为等边三角形,故P 是SAB 的中心,连接BP ,则BP 平分SBA ∠,所以30PBO ∠=︒;所以tan 30r R︒=,即32r ==,即四面体的外接球的半径为r =另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a 时,截得它的正方体的棱长为2a , 而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以12r ===,所以a =即a .故选:B .【点睛】本题考查了正四面体的外接球,将正四面体的外接球转化为正方体的外接球,是一种比较好的方法,本题属于难题.2.如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=,则直线1B P 与直线1AD 所成角的余弦值的取值范围为( )A .10,2⎡⎤⎢⎥⎣⎦B .10,3⎡⎤⎢⎥⎣⎦C .122⎡⎢⎣⎦D .1,22⎡⎢⎣⎦【答案】A【解析】【分析】求得点P 的轨迹是平面11A BC 内以点O 为圆心,半径为1的圆,可得111////AD BC B M ,进而可得出题中所求角等于直线1B M 与直线1B P 的夹角,然后过点O 作OH ⊥平面ABCD 于点H ,过点H 作HN BC ⊥于点N ,连接ON ,找出使得1PB M ∠最大和最小时的位置,进而可求得所求角的余弦值的取值范围.【详解】连接1B D 交平面11A BC 于点O ,延长线段CB 至点M ,使得CB BM =,连接1B M 、OM 、PM ,如下图所示:已知在正方体1111ABCD A B C D -中,1DD ⊥底面1111D C B A ,11A C ⊂平面1111D C B A ,111DD A C ∴⊥, 又四边形1111D C B A 为正方形,所以,1111AC B D ⊥, 1111DD B D D ⋂=,11A C ∴⊥平面11B DD ,1B D ⊂平面11B DD ,111B D AC ∴⊥,同理11B D A B ⊥,1111AC A B A =,1B D ∴⊥平面11A BC ,三棱锥111B A B C -的体积为11131193322B A BC V -=⨯⨯=,(111242A B C S ==△,1111119322B A BC V B O O -=⨯==,可得1113B O B D ==, 所以,线段1B D 的长被平面11A BC 与平面1AD C 三等分,且与两平面分别垂直,而正方体1111ABCD A B C D -的棱长为3,所以1OB =OD =其中1PO B D ⊥,不妨设OP x =,由题意可12PB PD +=2=1x =,所以,点P 在平面11A BC 内以点O 为圆心,半径为1的圆上.因为111////AD BC B M ,所以,直线1B M 与直线1B P 的夹角即为直线1B P 与直线1AD 所成角.接下来要求出线段1B M 与PM 的长,然后在1B PM △中利用余弦定理求解.如图,过点O 作OH ⊥平面ABCD 于点H ,过点H 作HN BC ⊥于点N ,连接ON ,根据题意可知2OH =,1HN BN ==,且ON MN ⊥,所以,ON =OM ==如图所示,121OP OP ==,当点P 在1P 处时,1PB M ∠最大,当点P 在2P 处时,1PB M ∠最小.这两种情况下直线1B P 与直线1B M 夹角的余弦值最大,为111cos sin 2PB M PB O ∠=∠=; 当点P 在点O 处时,1PB M ∠为直角,此时余弦值最小为0.综上所述,直线1B P 与直线1AD 所成角的余弦值的取值范围是10,2⎡⎤⎢⎥⎣⎦. 故选:A.【点睛】本题考查异面直线所成角的取值范围的求解,解题的关键就是确定点P 的轨迹,考查推理能力与计算能力,属于难题.3.已知正六棱锥V ABCDEF -,P 是侧棱VC 上一点(不含端点),记直线PB 与直线DE 所成角为α,直线PB 与平面ABC 所成角为β,二面角P CD F --的平面角为γ,则( )A .βγ<,αγ<B .βα<,βγ<C .βα<,γα<D .αβ<,γβ<【答案】B【解析】【分析】通过明确异面直线所成的角、直线与平面所成的角、二面角,应用三角函数知识求解,而后比较大小.【详解】解:如图,设点V 在底面上的射影为O 点,连接OC ,PB ,作PG VO //,则PG ⊥平面ABC ,所以PB 与平面ABC 所成的角为PBG ∠,即PBG β=∠,根据线面角最小定理知βα<,作GM CD ⊥,则二面角P CD F --的平面角为PMG ∠,即PMG γ=∠,根据tan tan PG PG GM GBγβ=>=,所以γβ>. 故选B.【点睛】本题考查立体几何中异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算,考查空间想象能力,数形结合思想,分析问题能力,属于难题.4.斜三棱柱111ABC A B C -中,底面ABC 是正三角形,侧面11ABB A 是矩形,M 是线段AB 上的动点,记直线1A M 与直线AC 所成的角为α,直线1A M 与平面ABC 所成的角为β,二面角1A AC B --的平面角为γ,则( )A .αβ≤,≤βγB .≤βα,≤βγC .αβ≤,βγ≥D .≤βα,βγ≥【答案】B【解析】【分析】根据直线和平面的最小角定理,结合线面角和二面角的定义,即可得解.【详解】根据最小角定理,可得≤βα,当M 在线段AB 上的移动时,M 和A 重合时,1A M 与平面ABC 所成角最大,(因为ABB 1A 1为矩形)作1A P ⊥平面ABC 于P ,作PQ CA ⊥的延长线于Q ,连接1A Q 和PQ ,则1A MP β=∠,1=A QP γ∠,由于1A QA ∠ 为直角,所以11A M AQ ≥,可得βγ≤, 故选:B.【点睛】本题考查了线线角、线面角以及面面角的比较,考查了最小角定理,考查了线面角以及面面角的定义以及立体空间感,属于难题.5.如图,在正四棱台1111ABCD A B C D -中,上底面边长为4,下底面边长为8,高为5,点,M N 分别在1111,A B D C 上,且111A M D N ==.过点,M N 的平面α与此四棱台的下底面会相交,则平面α与四棱台的面的交线所围成图形的面积的最大值为A .B .C .D .【答案】B 【解析】 【分析】由题意可知,当平面α经过BCNM 时取得的截面面积最大,此时截面是等腰梯形;根据正四棱台的高及MN 中点在底面的投影求得等腰梯形的高,进而求得等腰梯形的面积. 【详解】当斜面α经过点BCNM 时与四棱台的面的交线围成的图形的面积最大,此时α为等腰梯形,上底为MN=4,下底为BC=8此时作正四棱台1111ABCD A B C D -俯视图如下:则MN 中点在底面的投影到BC 的距离为8-2-1=5因为正四棱台1111ABCD A B C D -的高为5=所以截面面积的最大值为()1482S =⨯+⨯= 所以选B 【点睛】本题考查了立体几何中过定点的截面面积问题,关键是分析出截面的位置,再根据条件求得各数据,需要很好的空间想象能力,属于难题.6.如图,直三棱柱111ABC A B C -的底面是边长为6的等边三角形,侧棱长为2,E 是棱BC 上的动点,F 是棱11B C 上靠近1C 点的三分点,M 是棱1CC 上的动点,则二面角A FM E --的正切值不可能...是( )A B C D 【答案】B 【解析】 【分析】建立空间直角坐标系,求得二面角A FM E --的余弦值,进而求得二面角A FM E --的正切值,求得正切值的最小值,由此判断出正确选项. 【详解】取BC 的中点O ,连接OA ,根据等边三角形的性质可知OA BC ⊥,根据直三棱柱的性质,以O 为原点建立如图所示的空间直角坐标系.则()(),1,0,2A F ,设()()3,0,02M t t ≤≤. 则()()1,33,2,2,0,2AF FM t =-=-. 设平面AMF 的一个法向量为(),,m x y z =,则()20220m AF x z m FM x t z ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,令1y =,得63m ⎛= ⎝⎭. 平面FME 的一个法向量是()0,1,0n =,所以cos ,6m n m n m n⋅===⋅⎛,所以2sin ,1cos ,m n m n =-120252t =+所以二面角A FME --的正切值为()sin ,27cos ,m n f t m n===因为02t ≤≤,所以111466t -≤≤--,216125405-=-⨯ 结合二次函数的性质可知 当1165t =--时,()f t= 当1166t =--时,()f t=, 所以()f t ∈⎣, 所以二面角A FM E --的正切值不可能是5. 故选:B. 【点睛】本小题主要考查二面角的求法,考查数形结合的数学思想方法,属于难题.7.在棱长为3的正方体1111ABCD A B C D -中,O 为棱DC 的中点,E 为线段AO 上的点,且2AE EO =,若点,F P 分别是线段1DC ,1BC 上的动点,则PEF 周长的最小值为( )A .BC D【答案】D 【解析】 【分析】连接BD ,易知E 为线段AO 与BD 的交点,即E 为线段DB 上靠近D 的三等分点,将PEF 周长的最小值问题转化到平面上几何知识连接两点间的线中线段最短与平面几何中对称问题处理,最后由余弦定理求得12E E 的长度即可. 【详解】连接BD ,易知E 为线段AO 与BD 的交点,即E 为线段DB 上的点,由勾股定理可知BD =2BE DE ==分别作点E 关于线段1DC ,1BC 的对称点1E ,2E ,且由对称关系有垂直关系且显然1BDC 为等边三角形,即12120E EE ∠=︒,由等边三角形对称问题可求得1EE =2EE =据余弦定理得12E E ==,由平面几何知识连接两点间的线中线段最短,得PEF .故选:D 【点睛】本题考查空间中三角形周长的最值,涉及空间中直线与对称点的算法,属于难题.8.三棱锥P ABC -中,AB BC ⊥,△PAC 为等边三角形,二面角P AC B --的余弦值为3-,当三棱锥的体积最大时,其外接球的表面积为8π.则三棱锥体积的最大值为( ) A .1 B .2C .12D .13【答案】D 【解析】 【分析】由已知作出图象,找出二面角P AC B --的平面角,设出AB BC AC ,,的长,即可求出三棱锥P ABC -的高,然后利用基本不等式即可确定三棱锥体积的最大值(用含有AC 长度的字母表示),再设出球心O ,由球的表面积求得半径,根据球的几何性质,利用球心距,半径,底面半径之间的关系求得AC 的长度,则三棱锥体积的最大值可求. 【详解】如图所示,过点P 作PE ⊥面ABC ,垂足为E ,过点E 作ED AC ⊥交AC 于点D ,连接PD , 则PDE ∠为二面角PAC B -的平面角的补角,即有63cos PDE, 易知AC ⊥面PDE ,则AC PD ⊥,而△PAC 为等边三角形,∴D 为AC 中点, 设22ABa BCb ACa b c ,,,则PE PDsin PDE =∠=c 32c ⨯=, 故三棱锥P ABC -的体积为:1132V ab =⨯2231121212224c a b c abc c +⨯=≤⨯=,当且仅当2a b ==时,体积最大,此时B D E 、、共线. 设三棱锥P ABC -的外接球的球心为O ,半径为R ,由已知,248R ππ=,得R =.过点O 作OF PE ⊥于F ,则四边形ODEF 为矩形,则OD EF ==232ED OF PDcos PDE c ==∠=⨯=,2c PE =,在Rt △PFO 中222)(22c c =+-,解得2c = ∴三棱锥P ABC -的体积的最大值为:332124243c ==.故选:D. 【点睛】本题考查三棱锥体积最值的求法与三棱锥外接球的表面积的求法,涉及二面角的运用,基本不等式的应用,以及球的几何性质的应用,属于难题.9.已知矩形,4,2,ABCD A AD E B ==为AB 中点,沿直线DE 将ADE 翻折成PDE △,直线PB 与平面BCDE 所成角最大时,线段PB 长是( )A .743B .543C .742D .542【答案】C 【解析】 【分析】取CD 的中点F ,连接AF 交于DE 的中点O ,AF DE ⊥,进而有DE ⊥平面POF ,过点P 作PQ AF ⊥于点Q ,可证PQ ⊥平面BCDE ,连接BQ ,设直线PB 与平面BCDE 所成的角为α,平面PDE 与平面BCDE 所成的角为β,根据条件可知,AO DE PO DE ⊥⊥,PQ ⊥平面BCDE ,,PBQ POQ αβ∠=∠=,通过边长关系求出OQ β=,PQ β=,AQ AO OQ β=+=,以及利用余弦定理求出)228BQ β=+,从而得出)()22222tan 8PQBQ βαβ==+,根据同角三角函数关系和换元法令[]2cos 64,8t β+=∈,得出24tan 1328t tα=-++-,再根据基本不等式时得出当cos 3t β=⇒=时,2tan α取得最大值,从而可求出线段PB 长【详解】解:取CD 的中点F ,连接AF 交于DE 的中点O , 在矩形ABCD 中,4,2,AB AD E ==为AB 中点, 所以四边形AEFD 为正方形,AF DE ⊥, 所以,,PO DE OF DE POOF O ⊥⊥=,故DE ⊥平面POF ,在平面POF 内过点P 作PQ AF ⊥于点Q , 则,DE PQ DEAF O ⊥=,所以PQ ⊥平面BCDE ,连接BQ ,设直线PB 与平面BCDE 所成的角为α,即PBQ α∠= 设平面PDE 与平面BCDE 所成的角为β,,OF DE PO DE ⊥⊥,所以POQ β∠=,所以DE PO AO ===所以在Rt POQ △中,,PQ OQ ββ==,则AQ AO OQ β=+=,在ABQ △中,4,4AB BAQ π=∠=,则由余弦定理得出:)228BQ β=+,则有)()22222tan 8PQBQ βαβ==+222sin 822cos 4cos βββ=+++22sin cos 2cos 5βββ=++ 221cos cos 2cos 5βββ-=++22cos 61cos 2cos 5βββ+=-+++,令[]2cos 64,8t β+=∈,则6cos 2t β-=, 即:24tan 1328t tα=-++-, 当直线PB 与平面BCDE 所成角α最大时,2tan α最大, 即24tan 1328t tα=-++-取得最大值时,当且仅当32t t=,此时cos 3t β=⇒=,所以,))2228PB ββ=++72124cos 2β=+==,即742PB =.故选:C.【点睛】本题考查线面角和二面角的定义,还运用余弦定理和利用基本不等式求最值,还涉及同角三角函数关系和换元法,考查转化思想和化简运算能力.10.已知四面体ABCD 的三组对棱的长分别相等,依次为3,4,x ,则x 的取值范围是( )A .B .)C .)D .()4,7【答案】B 【解析】 【分析】作出图形,设3AB =,4AC =,四面体A ABC '-可以由ABC ∆和在同一平面的△A BC '沿着BC 为轴旋转构成,利用数形结合能求出x 的取值范围. 【详解】 解:如图所示,第一排 三个图讨论最短;第二排 三个图讨论最长,设3AB =,4AC =,四面体A ABC '-可以由ABC ∆和在同一平面的△A BC '沿着BC 为轴旋转构成, 第一排,三个图讨论最短:当90ABC ∠<︒向90︒趋近时,BC 逐渐减少,AA BC '<,可以构成x AA BC '==的四面体; 当90ABC ∠︒时构成的四面体AA BC '>,不满足题意;, 第二排,三个图讨论最长:当90BAC ∠<︒向90︒趋近时,BC 逐渐增大,AA BC '>,可以构成x AA BC '==的四面体; 当90ABC ∠︒时构成的四面体AA BC '<,不满足题意;5;综上,x ∈5). 故选B . 【点睛】本题考查了四面体中边长的取值范围问题,也考查了推理论证能力,属于难题.11.设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P AC B --的平面角为γ,则( ) A .,βγαγ<< B .,βαβγ<< C .,βαγα<< D .,αβγβ<<【答案】B 【解析】 【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半. 【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则cos cos PF EG DH BDPB PB PB PBα===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即y >β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ) 由最大角定理β<γ'=γ,故选B.方法3:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin sin α=⇒α=β=γ=,故选B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法. 12.已知,,,A B C D 四点均在半径为R (R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为16,则球O 的表面积为( )A .32π B .2πC .94π D .83π 【答案】C 【解析】 【分析】由题意要使四面体的体积最大,则D 在底面ABC 的投影恰好为底面三角形外接圆的圆心N ,则外接球的球心在DN 上,求出三棱锥的体积,由均值不等式可得R 的值,进而求出外接球的表面积. 【详解】因为,,AB AC AB AC AD BC =⊥⊥,作AN BC ⊥于N , 则N 为BC 的中点,且12AN BC =, 若四面体ABCD 的体积的最大值时,则DN ⊥面ABC ,则外接球的球心在DN 上,设为O , 设外接球的半径为R ,连接OA ,则OA OD R ==,()()2111123263D ABC V BC AN DN AN AN R ON AN R ON -=⋅⋅⋅⋅=⋅⋅⋅+=⋅+()2213()OA ON R ON =-+ ()()()13R ON R ON R ON =+-+ ()()()1226R ON R ON R ON =+-+ 331()(22)()146363R ON R ON R ON R ++-++⎛⎫⎛⎫≤=⋅ ⎪ ⎪⎝⎭⎝⎭当且仅当22R ON R ON -=+,即3R ON =时取等号, 因为三棱锥的最大体积为16, 所以3141636R ⎛⎫⋅= ⎪⎝⎭,可得34R =, 所以外接球的表面积为29944164S R πππ==⋅=, 故选:C . 【点睛】本题考查的是几何体的体积和表面积公式及利用基本不等式求最值,属于较难题.13.蜂巢是由工蜂分泌蜂蜡建成的从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是10928'︒,这样的设计含有深刻的数学原理、我国著名数学家华罗庚曾专门研究蜂巢的结构著有《谈谈与蜂房结构有关的数学问题》.用数学的眼光去看蜂巢的结构,如图,在六棱柱ABCDEF A B C D E '''''﹣的三个顶点A ,C ,E 处分别用平面BFM ,平面BDO ,。
【高考考纲】1.根据某几何体的部分三视图,判断该几何体的其他三视图;或者已知某几何体的三视图,判断该几何体的形状,考查三视图的画法以及数量关系2.以三视图为命题背景,考查空间几何体体积、表面积的计算方法3.以空间几何体为命题背景考查空间几何体体积、表面积的计算方法4.以多面体为命题背景,证明线线平行、线面平行、面面平行5.以三视图的形式给出几何体,判断或证明平行关系,考查平行的判定及性质6.以多面体为命题背景,证明线线垂直、线面垂直、面面垂直7.考查垂直关系的判定定理与性质定理8.建立空间直角坐标系,利用向量的知识证明平行与垂直(理科)9.考查向量的数量积与向量垂直的关系以及建立空间直角坐标系的方法(理科)10.以具体几何体为命题背景,直接求角或已知角求相关量(理科)11.常借助空间直角坐标系,设点的坐标探求点的存在问题(理科)12.常利用空间向量的关系,设某一个参数,利用向量运算探究平行、垂直问题(理科) 【真题感悟】例1.(2018·全国卷Ⅰ,7)某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在侧视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( )A.217 B.2 5C.3 D.2【答案】B【解析】将三视图还原为圆柱,M,N的位置如图1所示,将侧面展开,最短路径为M,N连线的距离,所以MN=42+22=2 5.【名师点睛】求几何体的表面积与体积问题,熟记公式是关键,应多角度全方位的考虑. 1.给出几何体的形状、几何量求体积或表面积,直接套用公式.2.用三视图给出几何体,先依据三视图规则想象几何体的形状特征,必要时画出直观图,找出其几何量代入相应公式计算.3.用直观图给出几何体,先依据线、面位置关系的判定与性质定理讨论分析几何体的形状特征,再求体积或表面积.【变式探究】如图,在四棱锥P -ABCD 中,平面P AB ⊥平面ABCD ,AD ∥BC ,P A ⊥AB ,CD ⊥AD ,BC =CD =12AD ,E 为AD 的中点.(1)求证:P A ⊥CD .(2)求证:平面PBD ⊥平面P AB . 【解析】(1)因为平面P AB ⊥平面ABCD , 平面P AB ∩平面ABCD =AB , 又因为P A ⊥AB , 所以P A ⊥平面ABCD . 则P A ⊥CD .(2)由已知,BC ∥ED ,且BC =ED ,所以四边形BCDE 是平行四边形, 又CD ⊥AD ,BC =CD ,所以四边形BCDE 是正方形, 连接CE ,所以BD ⊥CE , 又因为BC ∥AE ,BC =AE , 所以四边形ABCE 是平行四边形, 所以CE ∥AB ,则BD ⊥AB . 由(1)知P A ⊥平面ABCD ,所以P A ⊥BD ,又因为P A ∩AB =A ,则BD ⊥平面P AB , 且BD ⊂平面PBD ,所以平面PBD ⊥平面P AB .例5 、(2018·全国卷Ⅰ,18)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC .(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.【解析】(1)由已知可得,∠BAC =90°,则BA ⊥AC . 又BA ⊥AD ,AD ∩AC =A ,所以AB ⊥平面ACD . 又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =3 2. 又BP =DQ =23DA ,所以BP =2 2.作QE ⊥AC ,垂足为E ,则QE 綊13DC =1.由已知及(1)可得DC ⊥平面ABC , 所以QE ⊥平面ABC ,因此,三棱锥Q -ABP 的体积为V Q -A BP =13×QE ×S △ABP =13×1×12×3×22sin45°=1. 【名师点睛】1.求解平面图形折叠问题的关键和方法(1)关键:分清翻折前后哪些位置关系和数量关系改变,哪些不变,抓住翻折前后不变的量,充分利用原平面图形的信息是解决问题的突破口.(2)方法:把平面图形翻折后,经过恰当连线就能得到三棱锥,四棱锥等几何体,从而把问题转化到我们熟悉的几何中解决.(2)探索性问题求解的途径和方法(1)对命题条件探索的三种途径:①先猜后证,即先观察,尝试给出条件再证明;②先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;③将几何问题转化为代数问题,探索出命题成立的条件.(2)对命题结论的探索方法:从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,现寻找与条件相容或者矛盾的结论.【变式探究】如图1,四边形ABCD为矩形,PD⊥平面ABCD,AB=1,BC=PC=2.作如图2折叠,折痕EF∥DC,其中点E,F分别在线段PD,PC上,沿EF折叠后点P叠在线段AD上的点记为M,并且MF⊥CF.(1)证明:CF⊥平面MDF.(2)求三棱锥M-CDE的体积.(2)在△CDP 中,CD =AB =1,PC =2, 则PD =3,∠PCD =60°; CF ⊥平面MDF ,则CF ⊥DF ,CF =12,DF =32.因为EF ∥DC ,所以DE DP =CF CP ,DE =34,PE =334=ME ,S △CDE =12CD ·DE =38.由勾股定理可得MD =ME 2-DE 2=62, 所以V M -CDE =13MD ·S △CDE =216.【理科】例6.(2018·全国卷Ⅰ,18)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD . (2)求DP 与平面ABFD 所成角的正弦值.【解析】(1)由已知可得,BF ⊥PF ,BF ⊥EF ,PF ∩EF =F , 所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)方法一:作PH ⊥EF ,垂足为H . 由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF ―→的方向为y 轴正方向,设正方形ABCD 的边长为2,建立如图所示的空间直角坐标系H -xyz.由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3. 又PF =1,EF =2,故PE ⊥PF . 可得PH =32,EH =32. 则H (0,0,0),P ⎝⎛⎭⎫0,0,32,D ⎝⎛⎭⎫-1,-32,0,DP ―→=⎝⎛⎭⎫1,32,32,HP ―→=⎝⎛⎭⎫0,0,32为平面ABFD 的一个法向量.设DP 与平面ABFD 所成角为θ,则sin θ==343=34.所以DP 与平面ABFD 所成角的正弦值为34. 方法二:因为PF ⊥BF ,BF ∥ED ,所以PF ⊥ED , 又PF ⊥PD ,ED ∩DP =D ,所以PF ⊥平面PED , 所以PF ⊥PE ,设AB =4,则EF =4,PF =2,所以PE =23, 过P 作PH ⊥EF 交EF 于H 点, 由平面PEF ⊥平面ABFD , 所以PH ⊥平面ABFD ,连接DH ,则∠PDH 即为直线DP 与平面ABFD 所成的角, 由PE ·PF =EF ·PH ,所以PH =23×24=3,因为PD =4,所以sin ∠PDH =PH PD =34,所以DP 与平面ABFD 所成角的正弦值为34. 【变式探究】(2018·全国卷Ⅱ,20)如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC .(2)若点M 在棱BC 上,且二面角M -P A -C 为30°,求PC 与平面P AM 所成角的正弦值. 【解析】 (1)因为AP =CP =AC =4,O 为AC 的中点, 所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,O B =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,知PO ⊥平面ABC .(2)连接OM ,如图,以O 为坐标原点,OB ―→的方向为x 轴正方向,OC ―→的方向为y 轴正方向,OP ―→的方向为z 轴正方向,建立空间直角坐标系.由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),Ap ―→=(0,2,23),取平面P AC 的法向量OB ―→=(2,0,0).设M (a,2-a,0)(0<a ≤2),则AM ―→=(a,4-a,0).设平面P AM 的法向量为n =(x ,y ,z ).由Ap ―→·n =0,AM ―→·n =0得⎩⎨⎧2y +23z =0,ax +-a y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB ―→,n 〉=23a -2a -2+3a 2+a 2.由已知得|cos 〈OB ―→,n 〉|=32.所以23|a -4|2a -2+3a 2+a 2=32. 解得a =-4(舍去),a =43.所以n =⎝⎛⎭⎫-833,433,-43.又PC ―→=(0,2,-23), 所以cos 〈PC ―→,n 〉=34.所以PC 与平面P AM 所成角的正弦值为34. 【名师点睛】1. 利用空间向量证明平行与垂直的方法与步骤(1)建立空间直角坐标系,建系时,要尽可能地利用载体中的垂直关系;(2)建立空间图形与空间向量之间的关系,用向量表示出问题中所涉及的点、直线、平面的要素;(3)通过空间向量的运算研究平行、垂直关系; (4)根据运算结果解释相关问题. 2.利用空间向量求空间角的一般步骤 (1)建立恰当的空间直角坐标系.(2)求出相关点的坐标,写出相关向量的坐标. (3)结合公式进行论证、计算. (4)转化为几何结论.3.利用空间向量求线线角、线面角的思路(1)异面直线所成的角θ,可以通过两直线的方向向量的夹角φ求得,即cos θ=|cos φ|. (2)直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角φ求得,即sin θ=|cos φ|.4.利用空间向量求二面角的思路二面角的大小可以利用分别在两个半平面内与棱垂直的直线的方向向量的夹角(或其补角)或通过二面角的两个面的法向量的夹角求得,它等于两个法向量的夹角或其补角.5.利用空间向量求点到平面距离的方法如图,设A 为平面α内的一点,B 为平面α外的一点,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.【方法技巧】利用空间向量求解探索性问题的策略(1)假设题中的数学对象存在(或结论成立)或暂且认可其中的一部分结论.(2)在这个前提下进行逻辑推理,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标(或参数)是否有解,是否有规定范围内的解”等.若由此推导出矛盾,则否定假设;否则,给出肯定结论.【变式探究】(2018·北京卷,16)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC =5,AC =AA 1=2.(1)求证:AC ⊥平面BEF . (2)求二面角B -CD -C 1的余弦值. (3)证明:直线FG 与平面BCD 相交.【解析】(1)因为CC 1⊥平面ABC ,AC ⊂平面ABC , 所以CC 1⊥AC .在平行四边形A 1ACC 1中,E ,F 分别是AC ,A 1C 1的中点, 所以EF ∥CC 1, 所以AC ⊥EF .在△ABC 中,AB =BC ,E 是AC 的中点, 所以AC ⊥BE ,又因为AC ⊥EF ,BE ,EF ⊂平面BEF ,BE ∩EF =E , 所以AC ⊥平面BEF .(2)如图,建立空间直角坐标系E -xyz ,则E (0,0,0),A (1,0,0),B (0,2,0),C (-1,0,0),A 1(1,0,2),B 1(0,2,2),C 1(-1,0,2),D (1,0,1),F (0,0,2),G (0,2,1),显然EB ―→=(0,2,0)是平面CDC 1的一个法向量, 设m =(x ,y ,z )是平面BCD 的一个法向量, 又BC ―→=(-1,-2,0),BD ―→=(1,-2,1),所以⎩⎪⎨⎪⎧-x -2y =0,x -2y +z =0,不妨取y =1,则x =-2,z =4,所以平面BCD 的一个法向量为m =(-2,1,4), cos 〈EB ―→,m 〉==0+2×1+02×-2+12+42=2121, 由图知,二面角B -CD -C 1为钝角, 所以,二面角B -CD -C 1的余弦值为-2121. (3)方法一:记CD ,EF 交点为I ,连接BI ,由(1)及已知,EF ∥CC 1,CC 1∥BB 1, 所以EF ∥BB 1,直线BG 与直线FI 共面, 又因为BG =12BB 1=12AA 1=A 1D ,A 1D <FI ,所以四边形BGFI 是梯形,直线FG 与直线BI 一定有交点, 又因为BI ⊂平面BCD ,FG ⊄平面BCD , 所以直线FG 与平面BCD 相交.方法二:反证法.显然FG ⊄平面BCD ,假设FG ∥平面BCD ,下面推出矛盾.记CD ,EF 交点为I ,连接BI ,因为FG ∥平面BCD ,平面BCD ∩平面BGFI =BI , 所以FG ∥BI ,由(1)及已知,EF ∥CC 1,CC 1∥BB 1, 所以EF ∥BB 1,即BG ∥FI , 所以四边形BGFI 是平行四边形, 所以BG =FI ,而BG =12BB 1=12AA 1=A 1D <FI ,矛盾,所以直线FG 与平面BCD 相交.【变式探究】(2017·全国卷Ⅲ,19)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D -AE -C 的余弦值.【解析】(1)证明:由题设可得△ABD ≌△CBD , 从而AD =CD .又△ACD 是直角三角形,所以∠ADC =90°. 取AC 的中点O ,连接DO ,BO , 则DO ⊥AC ,DO =AO .又因为△ABC 是正三角形,故BO ⊥AC , 所以∠DOB 为二面角D -AC -B 的平面角. 在Rt △AOB 中 ,BO 2+AO 2=AB 2, 又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2, 故∠DOB =90°.所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA →的方向为x 轴正方向,|OA →|为单位长度. 建立如图所示的空间直角坐标系O -xyz , 则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E (0,32,12), 故AD →=(-1,0,1),AC →=(-2,0,0),AE →=(-1,32,12).设n =(x ,y ,z )是平面DAE 的法向量, 则⎩⎪⎨⎪⎧n ·AD →=0,n ·AE →=0,即⎩⎪⎨⎪⎧-x +z =0,-x +32y +12z =0, 可取n =(1,33,1). 设m 是平面AEC 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AE →=0,同理可取m =(0,-1,3), 则cos 〈n ,m 〉=n ·m |n ||m |=77.所以二面角D -AE -C 的余弦值为77. 【黄金押题】1.如图所示是一个物体的三视图,则此三视图所描述物体的直观图是( )【解析】先观察俯视图,由俯视图可知选项B和D中的一个正确,由正视图和侧视图可知选项D正确.【答案】D2.已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的()【解析】由题意该四棱锥的直观图如图所示:则其三视图如图:【答案】C3.设一个球形西瓜,切下一刀后所得切面圆的半径为4,球心到切面圆心的距离为3,则该西瓜的体积为( )A .100πB .2563πC.4003π D .5003π 【解析】由题意知切面圆的半径r =4,球心到切面的距离d =3,所以球的半径R =r 2+d 2=42+32=5,故球的体积V =43πR 3=43π×53=5003π,即该西瓜的体积为5003π.【答案】D4.如图,水平放置的三棱柱的侧棱长为1,且侧棱AA 1⊥平面A 1B 1C 1,正视图是边长为1的正方形,俯视图为一个等边三角形,则该三棱柱的侧视图面积为( )A .2 3B . 3 C.32D .1【解析】由直观图、正视图以及俯视图可知,侧视图是宽为32,长为1的长方形,所以面积S =32×1=32.故选C. 【答案】C5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A.π12+3 B .π12+6 C.π3+3 D .π3+6 【解析】 由三视图可知,该几何体是由直四棱柱与圆锥拼接而成的简单组合体,如图所示.由题设得,V 四棱柱=12×(1+2)×2×1=3,V 圆锥=13π⎝⎛⎭⎫122×1=π12,所以该几何体的体积V =V 四棱柱+V 圆锥=3+π12.故选A.【答案】 A6.一个几何体的三视图如图,则它的表面积为( )A .28B .24+2 5C .20+4 5D .20+2 5【解析】 根据该几何体的三视图作出其直观图如图所示,可以看出该几何体是一个底面是梯形的四棱柱.根据三视图给出的数据,可得该几何体中梯形的上底长为2,下底长为3,高为2,所以该几何体的表面积S =12×(2+3)×2×2+2×2+2×3+2×2+2×22+12=24+25,故选B.【答案】 B7.祖暅是南北朝时代的伟大数学家,5世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积都相等,那么这两个几何体的体积一定相等.现有以下四个几何体:图①是从圆柱中挖去一个圆锥所得的几何体,图②、图③、图④分别是圆锥、圆台和半球,则满足祖暅原理的两个几何体为( )A .①②B .①③C .②④D .①④【答案】 D8.古人采取“用臼春米”的方法脱去稻谷的外壳,获得可供食用的大米,用于春米的“臼”多用石头或木头制成.一个“臼”的三视图如图所示,则凿去部分(看成一个简单的组合体)的体积为( )A .63πB .72πC .79πD .99π【解析】 由三视图得凿去部分是圆柱与半球的组合体,其中圆柱的高为5,底面圆的半径为3,半球的半径为3,所以组合体的体积为32π×5+12×43π×33=63π,故选A.【答案】 A9.某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为( )A.12 B .24 C.22D .32【解析】 依题意得,题中的直三棱柱的底面是等腰直角三角形,设其直角边长为a ,则斜边长为2a ,圆锥的底面半径为22a 、母线长为a ,因此其俯视图中椭圆的长轴长为2a 、短轴长为a ,其离心率e =1-⎝⎛⎭⎫a 2a 2=22,选C. 【答案】 C10.如图是一个几何体的三视图,其中正视图是边长为2的等边三角形,侧视图是直角边长分别为1和3的直角三角形,俯视图是半径为1的半圆,则该几何体的内接三棱锥的体积的最大值为( )A.36B .33C.433 D .3π3【解析】 由三视图可知该几何体为半个圆锥,圆锥的母线长l =2,底面半径r =1,高h =l 2-r 2= 3.由半圆锥的直观图可得,当三棱锥的底面是斜边为半圆直径,高为半径的等腰直角三角形,棱锥的高为半圆锥的高时,其内接三棱锥的体积达到最大值,最大体积为V =16×2×1×3=33,故选B.【答案】 B11.在棱长为3的正方体ABCD A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M PBC 的体积为( )A .1B .32C.92D .与M 点的位置有关 【解析】 ∵BP PD 1=12,∴点P 到平面BC 1的距离是D 1到平面BC 1距离的13,即为D 1C 13=1.M 为线段B 1C 1上的点,∴S △MBC =12×3×3=92,∴V M PBC =V P MBC =13×92×1=32.【答案】 B12.刘徽《九章算术注》记载:“邪解立方,得两堑堵.邪解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.”意即把一长方体沿对角面一分为二,这相同的两块叫堑堵,沿堑堵的一顶点与其相对的面的对角线剖开成两块,大的叫阳马,小的叫鳖臑,两者体积之比为定值2∶1,这一结论今称刘徽原理.如图是一个阳马的三视图,则其外接球的体积为( )A.3π B .32π C .3π D .4π【解析】 由三视图得阳马是一个四棱锥,如图中四棱锥P ABCD ,其中底面是边长为1的正方形,侧棱P A ⊥底面ABCD 且P A =1,所以PC =3,PC 是四棱锥P ABCD 的外接球的直径,所以此阳马的外接球的体积为4π3⎝⎛⎭⎫323=32π,故选B.【答案】 B13.将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱的最大体积为( )A.π27 B .8π27C.π3D .2π9【解析】 如图所示,设圆柱的半径为r ,高为x ,体积为V ,由题意可得r 1=2-x2,所以x =2-2r ,所以圆柱的体积V =πr 2(2-2r )=2π(r 2-r 3)(0<r <1),设V (r )=2π(r 2-r 3)(0<r <1),则V ′(r )=2π(2r -3r 2),由2π(2r -3r 2)=0得r =23,所以圆柱的最大体积V max=2π⎣⎡⎦⎤⎝⎛⎭⎫232-⎝⎛⎭⎫233=8π27.(1)请画出该几何体的三视图; (2)求四棱锥B -CEPD 的体积.【解析】 (1)该组合体的三视图如图所示.(2)∵PD ⊥平面ABCD , PD ⊂平面PDCE ,∴平面PDCE ⊥平面ABCD . ∵四边形ABCD 为正方形, ∴BC ⊥CD ,且BC =DC =AD =2. 又∵平面PDCE ∩平面ABCD =CD , BC ⊂平面ABCD . ∴BC ⊥平面PDCE .∵PD ⊥平面ABCD ,DC ⊂平面ABCD , ∴PD ⊥DC .又∵EC ∥PD ,PD =2,EC =1,∴四边形PDCE 为一个直角梯形,其面积: S 梯形PDCE =12(PD +EC )·DC =12×3×2=3.∴四棱锥B -CEPD 的体积V B -CEPD =13S 梯形PDCE ·PD =13×3×2=2.34.如图,在三棱锥P ABC 中,平面P AB ⊥平面ABC ,AB =6,BC =23,AC =26,D 为线段AB 上的点,且AD =2DB ,PD ⊥AC .(1)求证:PD ⊥平面ABC ; (2)若∠P AB =π4,求点B 到平面P AC 的距离.【解析】 (1)证明:∵cos ∠ABC =236=33,∴CD 2=22+(23)2-2×2×23cos ∠ABC =8,∴CD =22, ∴CD 2+AD 2=AC 2,则CD ⊥AB .∵平面P AB ⊥平面ABC ,∴CD ⊥平面P AB ,PD ⊂平面P AB ,∴CD ⊥PD , ∵PD ⊥AC ,AC ∩CD =C ,∴PD ⊥平面ABC . (2)由(1)得PD ⊥AB ,∵∠P AB =π4,∴PD =AD =4,P A =42,在Rt △PCD 中,PC =PD 2+CD 2=26, ∴△P AC 是等腰三角形,∴可求得S △P AC =8 2. 设点B 到平面P AC 的距离为d ,由V B P AC =V P ABC ,得13S △P AC ×d =13S △ABC ×PD ,∴d =S △ABC ×PDS △P AC=3.故点B 到平面P AC 的距离为3.35.在如图所示的多面体ABCDE中,已知ABCD是边长为2的正方形,平面ABCD⊥平面ABE,∠AEB=90°,AE=BE.(1)若M是DE的中点,试在AC上找一点N,使得MN∥平面ABE,并给出证明;(2)求多面体ABCDE的体积.【解析】(1)连接BD,交AC于点N,则点N即为所求,证明如下:∵ABCD是正方形,∴N是BD的中点,又M是DE的中点,∴MN∥BE,∵BE⊂平面ABE,MN⊄平面ABE,∴MN∥平面ABE.36.如图所示,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4.将△CBD沿BD 折起到△EBD的位置,使平面EBD⊥平面ABD.(1)求证:AB⊥DE;(2)求三棱锥EABD的侧面积和体积.【解析】(1)证明:在△ABD中,因为AB=2,AD=4,∠DAB=60°,所以BD=AB2+AD2-2AB·AD cos ∠DAB=23,所以AB2+BD2=AD2,所以AB⊥BD.又平面EBD⊥平面ABD,平面EBD∩平面ABD=BD,AB⊂平面ABD,所以AB⊥平面EBD.又DE⊂平面EBD,所以AB⊥DE.(2)由(1)知AB⊥BD.因为CD∥AB,所以CD⊥BD,从而DE⊥BD.在Rt△DBE中,因为DB=23,DE=DC=AB=2,所以S△EDB=12BD·DE=2 3.因为AB⊥平面EBD,BE⊂平面EBD,所以AB⊥BE.因为BE=BC=AD=4,所以S△EAB=12AB·BE=4.因为DE⊥BD,平面EBD⊥平面ABD,平面EBD∩平面ABD=BD,所以DE⊥平面ABD,而AD⊂平面ABD,所以DE⊥AD,故S△EAD=12AD·DE=4.故三棱锥EABD的侧面积S=S△EDB+S△EAB+S△EAD=8+2 3. 因为DE⊥平面ABD,且S△ABD=S△EBD=23,DE=2,所以V三棱锥EABD=13S△ABD×DE=13×23×2=433.37.如图,四棱锥PABCD的底面是边长为1的正方形,侧棱P A⊥底面ABCD,且P A =3,E是侧棱P A上的动点.(1)求四棱锥PABCD的体积;(2)如果E是P A的中点,求证:PC∥平面BDE;(3)不论点E在侧棱P A的任何位置,是否都有BD⊥CE?证明你的结论.【解析】(1)因为P A⊥平面ABCD,所以V PABCD=13S正方形ABCD·P A=13×12×3=33,即四棱锥PABCD的体积为3 3.(2)证明:如图所示,连接AC交BD于点O,连接OE. 因为四边形ABCD是正方形,所以O是AC的中点,又E是P A的中点,所以PC∥OE,因为PC⊄平面BDE,OE⊂平面BDE,所以PC∥平面BDE.(3)不论点E 在侧棱P A 的任何位置,都有BD ⊥CE .证明如下: 因为四边形ABCD 是正方形,所以BD ⊥AC ,因为P A ⊥底面ABCD ,且BD ⊂平面ABCD ,所以BD ⊥P A , 又AC ∩P A =A ,所以BD ⊥平面P AC .因为不论点E 在侧棱P A 的任何位置,都有CE ⊂平面P AC , 所以不论点E 在侧棱P A 的任何位置,都有BD ⊥CE .38.如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C =6,求三棱柱ABC -A 1B 1C 1的体积. 【解析】(1)取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以OC =OA 1= 3. 又A 1C =6,则A 1C 2=OC 2+OA 21,故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC -A 1B 1C 1的高. 又△ABC 的面积S △ABC = 3.故三棱柱ABC -A 1B 1C 1的体积V =S △ABC ×OA 1=3. 39.如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面P AD ;(2)若△PCD 的面积为27,求四棱锥P -ABCD 的体积.【解析】(1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC ⊄平面P AD ,AD ⊂平面P AD , 故BC ∥平面P AD .(2)如图,取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD , 平面P AD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD . 因为CM ⊂底面ABCD , 所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 如图,取CD 的中点N ,连接PN ,则PN ⊥CD , 所以PN =142x . 因为△PCD 的面积为27, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3.所以四棱锥P -ABCD 的体积V =13×22+42×23=4 3.40.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD . (1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E ____ACD 的体积为63,求该三棱锥的侧面积.【解析】(1)证明:因为四边形ABCD为菱形,所以AC⊥BD.因为BE⊥平面ABCD,所以AC⊥BE.故AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED.(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2. 因为AE⊥EC,所以在Rt△AEC中,可得EG=3 2x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=2 2x.由已知得,三棱锥EACD的体积V EACD=13×12AC·GD·BE=624x3=63.故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥EACD的侧面积为3+2 5.41.如图,在多面体ABCDEF中,底面ABCD是边长为2的正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.(1)求证:AC⊥平面BDEF;(2)求证:平面BDGH//平面AEF;(3)求多面体ABCDEF 的体积.【解析】(1)证明:因为四边形ABCD 是正方形, 所以AC ⊥BD .又因为平面BDEF ⊥平面ABCD ,平面BDEF ∩平面ABCD =BD , 且AC ⊂平面ABCD , 所以AC ⊥平面BDEF .(2)证明:在△CEF 中,因为G 、H 分别是CE 、CF 的中点, 所以GH ∥EF ,又因为GH ⊄平面AEF ,EF ⊂平面AEF , 所以GH ∥平面AEF . 设AC ∩BD =O ,连接OH ,在△ACF 中,因为OA =OC ,CH =HF ,所以OH ∥AF ,又因为OH ⊄平面AEF ,AF ⊂平面AEF , 所以OH ∥平面AEF .又因为OH ∩GH =H ,OH ,GH ⊂平面BDGH , 所以平面BDGH ∥平面AEF . (3)解:由(1),得AC ⊥平面BDEF ,又因为AO =2,四边形BDEF 的面积S BDEF =3×22=62, 所以四棱锥A -BDEF 的体积V 1=13×AO ×S BDEF =4.同理,四棱锥C -BDEF 的体积V 2=4. 所以多面体ABCDEF 的体积V =V 1+V 2=8.42.如图,四棱锥P -ABCD 的底面是矩形,P A ⊥平面ABCD ,E ,F 分别是AB ,PD 的中点,且P A =AD .(1)求证:AF ∥平面PEC ; (2)求证:平面PEC ⊥平面PCD .【证明】(1)取PC 的中点G ,连接FG 、EG ,∵F 为PD 的中点,G 为PC 的中点,∴FG 为△CDP 的中位线,∴FG ∥CD ,FG =12CD .∵四边形ABCD 为矩形,E 为AB 的中点,∴AE ∥CD ,AE =12CD .∴FG =AE ,FG ∥AE ,∴四边形AEGF 是平行四边形, ∴AF ∥EG ,又EG ⊂平面PEC ,AF ⊄平面PEC , ∴AF ∥平面PEC .(2)∵P A =AD ,F 为PD 中点,∴AF ⊥PD ,∵P A ⊥平面ABCD ,CD ⊂平面ABCD ,∴P A ⊥CD ,又∵CD ⊥AD ,AD ∩P A =A ,∴CD ⊥平面P AD ,∵AF ⊂平面P AD ,∴CD ⊥AF , 又PD ∩CD =D ,∴AF ⊥平面PCD , 由(1)知EG ∥AF ,∴EG ⊥平面PCD , 又EG ⊂平面PEC ,∴平面PEC ⊥平面PCD .43.如图,在四棱锥E -ABCD 中,△EAD 为等边三角形,底面ABCD 为等腰梯形,满足AB ∥CD ,AD =DC =12AB ,且AE ⊥BD .(1)证明:平面EBD ⊥平面EAD ;(2)若△EAD 的面积为3,求点C 到平面EBD 的距离.【解析】(1)证明:如图,取AB 的中点M ,连接DM ,则由题意可知四边形BCDM 为平行四边形,∴DM =CB =AD =12AB ,即点D 在以线段AB 为直径的圆上, ∴BD ⊥AD ,又AE ⊥BD ,且AE ∩AD =A , ∴BD ⊥平面EAD .∵BD ⊂平面EBD ,∴平面EBD ⊥平面EAD .(2)∵BD ⊥平面EAD ,且BD ⊂平面ABCD ,∴平面ABCD ⊥平面EAD . ∵等边△EAD 的面积为3,∴AD =AE =ED =2, 取AD 的中点O ,连接EO ,则EO ⊥AD ,EO =3, ∵平面EAD ⊥平面ABCD ,平面EAD ∩平面ABCD =AD , ∴EO ⊥平面ABCD .由(1)知△ABD ,△EBD 都是直角三角形, ∴BD =AB 2-AD 2=23,S △EBD =12ED ·BD =23,设点C 到平面EBD 的距离为h ,由V C -EBD =V E -BCD ,得13S △EBD ·h =13S △BCD ·EO ,又S △BCD =12BC ·CD sin120°=3,∴h =32. ∴点C 到平面EBD 的距离为32. 44.如图,在多面体ABCDEF 中,四边形ABCD 为菱形,AF ∥DE ,AF ⊥AD ,且平面BED ⊥平面ABCD .(1)求证:AF ⊥CD ;(2)若∠BAD =60°,AF =AD =12ED =2,求多面体ABCDEF 的体积.【解析】(1)证明:连接AC ,交BD 于点O .由四边形ABCD 为菱形可知AC ⊥BD .∵平面BED ⊥平面ABCD ,且交线为BD ,AC ⊂平面ABCD ,∴AC ⊥平面BED ,∴AC ⊥ED .又∵AF ∥DE ,∴AF ⊥AC .∵AF⊥AD,AC∩AD=A,∴AF⊥平面ABCD.∵CD⊂平面ABCD,∴AF⊥CD.【理科】1.在正方体ABCD-A1B1C1D1中,E是C1D1的中点,则异面直线DE与AC所成角的余弦值为( )A.120B.10 10C.-1010D.-120【答案】B【解析】设正方体棱长为1,以D为原点建立空间直角坐标系如图所示,则D (0,0,0),E (0,12,1),A (1,0,0),C (0,1,0),所以DE →=(0,12,1),AC →=(-1,1,0),则cos 〈DE →,AC →〉=DE →·AC →|DE →||AC →|=1214+1·2=1010, 则异面直线DE 与AC 所成角的余弦值为1010. 2.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A .337,-157,4B .407,-157,4C .407,-2,4D .4,407,-15【答案】B【解析】AB →⊥BC →⇒AB →·BC →=3+5-2z =0, 所以z =4,又BP ⊥平面ABC , 所以BP →·AB →=x -1+5y +6=0,① BP →·BC →=3x -3+y -3z =0,② 由①②得x =407,y =-157.3.已知正方体ABCD -A 1B 1C 1D 1,下列命题:①(A 1A ―→+A 1D 1―→+A 1B 1―→)2=3A 1B 1―→2,②A 1C ―→·(A 1B 1―→-A 1A ―→)=0,③向量AD 1―→与向量A 1B ―→的夹角为60°,④正方体ABCD -A 1B 1C 1D 1的体积为|AB ―→·A 1A ―→·AD ―→|,其中正确命题的序号是( )A .①③B .①②C .①④D .①②④【答案】 B【解析】如图所示:以点D 为坐标原点,以向量DA →,DC →,DD 1→所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,设棱长为1,则D (0,0,0),A (1,0,0),B (1,1,0),C (0,1,0),A 1(1,0,1),B 1(1,1,1),C 1(0,1,1),D 1(0,0,1),对于①:A 1A ―→=(0,0,-1),A 1D 1―→=(-1,0,0),A 1B 1―→=(0,1,0),所以A 1A ―→+A 1D 1―→+A 1B 1―→=(-1,1,-1),(A 1A ―→+A 1D 1―→+A 1B 1―→)2=3,而A 1B 1―→2=1,所以(A 1A ―→+A 1D 1―→+A 1B 1―→)2=3A 1B 1―→2.所以①正确;对于②:A 1C ―→=(-1,1,-1),A 1A ―→=(0,0,-1),A 1B 1―→=(0,1,0),所以A 1C ―→·(A 1B 1―→-A 1A ―→)=0.所以②正确;对于③:AD 1―→=(-1,0,1),A 1B ―→=(0,1,-1),AD 1―→·A 1B ―→=-1,cos 〈AD 1―→,A 1B ―→〉=AD 1―→·A 1B ―→|AD 1―→||A 1B ―→|=-12×2=-12,所以AD 1―→与A 1B ―→的夹角为120°,所以③不正确;对于④:因为AB ―→·A 1A ―→=0,所以④错误.故选B .4.如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在平面,点C 是圆周上不同于A ,B 两点的任意一点,且AB =2,P A =BC =3,则二面角A -BC -P 的大小为( )A .30°B .45°C .60°D .90°【答案】C【解析】因为AB 是⊙O 的直径,P A 垂直于⊙O 所在平面,点C 是圆周上不同于A ,B 两点的任意一点,且AB =2,P A =BC =3,所以AC ⊥BC ,AC =AB 2-BC 2=4-3=1,以点A 为原点,在平面ABC 内过点A 作AC 的垂线为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系,P (0,0,3),B (3,1,0),C (0,1,0),PB →=(3,1,-3),PC →=(0,1,-3), 设平面PBC 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PB →=3x +y -3z =0,n ·PC →=y -3z =0,取z =1,得n =(0,3,1), 平面ABC 的法向量m =(0,0,1), 设二面角A -BC -P 的平面角为θ, 则cos θ=|m ·n ||m |·|n |=12,所以θ=60°,所以二面角A -BC -P 的大小为60°.5.在底面是直角梯形的四棱锥S -ABCD 中,∠ABC =90°,AD ∥BC ,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,则平面SCD 与平面SAB 所成锐二面角的余弦值是 .【解析】如图所示建立空间直角坐标系,则依题意可知D (12,0,0),C (1,1,0),S (0,0,1),可知AD →=(12,0,0)是平面SAB 的一个法向量.设平面SCD 的法向理n =(x ,y ,z ), 因为SD →=(12,0,-1),DC →=(12,1,0),所以n ·SD →=0,n ·DC →=0,可推出x 2-z =0,x 2+y =0,令x =2,则有y =-1,z =1,所以n =(2,-1,1).设平面SCD 与平面SAB 所成的锐二面角为θ, 则cos θ=|AD →·n ||AD →||n |=12×2+0-1+0×1122·22+-12+12=63. 6.已知正三棱柱ABC -A 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角的大小是 .【解析】延长A 1B 1至D ,使A 1B 1=B 1D ,连接BD ,C 1D ,DM ,则AB 1∥BD ,∠MBD 就是直线AB 1和BM 所成的角.设三棱柱的各条棱长为2,则BM =5,BD =22,C 1D 2=A 1D 2+A 1C 21-2A 1D ·A 1C 1cos60°=16+4-2×4=12.DM2=C 1D 2+C 1M 2=13,所以cos ∠DBM =BM 2+BD 2-DM 22·BM ·BD=0,所以∠DBM =90°.7.点P 是二面角α-AB -β棱上的一点,分别在平面α,β上引射线PM ,PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为 .【解析】不妨设PM =a ,PN =b ,如图.作ME ⊥AB 于点E ,NF ⊥AB 于点F ,因为∠EPM =∠EPN =45°, 所以PE =22a ,PF =22b , 所以EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF → =ab cos60°-a ×22b cos45°-22ab cos45°+22a ×22b =ab 2-ab 2-ab 2+ab2=0,所以EM →⊥FN →,所以二面角α-AB -β的大小为90°.8.如图,正方形ABCD 和四边形ACEF 所在平面互相垂直,CE ⊥AC ,EF ∥AC ,AB =2,CE =EF =1.(1)求证:AF ∥平面BDE ; (2)求证:CF ⊥平面BDE ; (3)求二面角A -BE -D 的大小.【解析】(1)设AC 与BD 交于点G ,因为EF ∥AG ,且EF =1,AG =12AC =1,所以四边形AGEF 为平行四边形.所以AF ∥EG .因为EG ⊂平面BDE ,AF ⊄平面BDE ,所以AF ∥平面BDE .(2)因为正方形ABCD 和四边形ACEF 所在的平面互相垂直,且CE ⊥AC ,所以CE ⊥平面ABCD .如图以C 为原点,建立空间直角坐标系C -xyz .则C (0,0,0),A (2,2,0),D (2,0,0),E (0,0,1),B (0,2,0),F (22,22,1).所以CF →=(22,22,1),BE →=(0,-2,1),DE →=(-2,0,1).所以CF →·BE →=0-1+1=0,CF →·DE →=-1+0+1=0.所以CF ⊥BE ,CF ⊥DE ,所以CF ⊥平面BDE .又∵BE ∩DE =E ,BE 、DE ⊂平面BDE .(3)由(2)知,CF →=(22,22,1)是平面BDE 的一个法向量,设平面ABE 的法向量n =(x ,y ,z ),则n ·BA →=0,n ·BE →=0.即⎩⎨⎧x ,y ,z 2,0,0=0x ,y ,z0,-2,1=0所以x =0,z =2y .令y =1,则z = 2.所以n =(0,1,2),从而cos 〈n ,CF →〉=n ·CF →|n ||CF →|=32因为二面角A -BE -D 为锐角, 所以二面角A -BE -D 为π6.9.如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,∠ADC =60°,侧面PDC 是正三角形,平面PDC ⊥平面ABCD ,CD =2,M 为PB 的中点.(1)求证:P A ⊥平面CDM .(2)求二面角D -MC -B 的余弦值.【解析】(1)取DC 中点O ,连接PO ,因为侧面PDC 是正三角形,平面PDC ⊥平面ABCD ,所以PO ⊥底面ABCD ,因为底面ABCD 为菱形,且∠ADC =60°,DC =2,所以DO =1,OA ⊥DC ,以O 为原点,分别以OA ,OC ,OP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系,则A (3,0,0),P (0,0,3),B (3,2,0),C (0,1,0),D (0,-1,0),所以M (32,1,32),所以DM →=(32,2,32),P A →=(3,0,-3),DC →=(0,2,0),所以P A →·DM →=0,P A →·DC →=0,所以P A ⊥DM ,P A ⊥DC ,又DM ∩DC =D ,所以P A ⊥平面CDM .(2)CM →=(32,0,32),CB →=(3,1,0),设平面BMC 的一个法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CM →=x +z =0,n ·CB →=3x +y =0,取z =1,得n =(-1,3,1),由(1)知平面CDM 的法向量为P A →=(3,0,-3),所。
压轴题06立体几何小题常考全归类高考对该部分的考查,小题主要体现在两个方面:一是有关空间线面位置关系的命题的真假判断;二是常见一些经典常考压轴小题,难度中等或偏上.考向一:外接球、内切球、棱切球与截面面积问题考向二:体积、面积、周长、角度、距离定值问题考向三:体积、面积、周长、距离最值与范围问题考向四:立体几何中的交线问题考向五:空间线段以及线段之和最值问题考向六:空间角问题考向七:轨迹问题1、几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补.2、几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉3、求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.4、球的截面问题球的截面的性质:①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d .注意:解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的位置关系和数量关系;选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.5、立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.6、解决立体几何问题的思路方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题;涉及某些角的三角函数的最值,借助模型求解,如正四面体模型、长方体模型和三余弦角模θαβ=cos cos cos (θ为平面的斜线与平面内任意一条直线l 所成的角,α为该斜线与该平面所成的角,β为该斜线在平面上的射影与直线l 所成的角).7、立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.8、解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.一、单选题1.(2023·河南商丘·商丘市实验中学校联考模拟预测)已知四棱锥P ABCD -的底面ABCD 是矩形,2,,AD AB AB PD PA PD ==⊥=,则四棱锥P ABCD -的外接球的体积为()A .B .36πC .D .256π32.(2023·河南·校联考二模)已知四棱锥P ABCD -的底面ABCD 是矩形,AB PD ⊥,AB =PA PD =,120APD ∠=︒.若四棱锥P ABCD -的外接球的体积为5003π,则该球上的点到平面PAB 的距离的最大值为()A .6B .7C .8D .93.(2023·广西柳州·柳州高级中学校联考模拟预测)在三棱锥P -ABC 中,AB BC ⊥,BC CP ⊥,且1BC =,2CP =,3AB =,AP =)AB .714π3C .814π3D .4.(2023·江西·校联考模拟预测)在直四棱柱中1111ABCD A B C D -中,60BAD ∠=︒,12AB AD AA ===,P 为1CC 中点,点Q 满足1DQ DC DD λμ=+ ,([]0,1λ∈,[]0,1μ∈).下列结论不正确...的是()A .若1λμ+=,则四面体1A BPQ 的体积为定值B .若//AQ 平面1A BP ,则AQ 5C .若1A BQ △的外心为M ,则11AB A M ⋅ 为定值2D .若17AQ =Q 的轨迹长度为2π35.(2023·四川达州·统考二模)三棱锥A BCD -的所有顶点都在球O 的表面上,平面ABD ⊥平面BCD ,6AB AD =AB AD ⊥,260BDC DBC ∠∠==︒,则球O 的体积为()A .43πB .323πC .493πD .3π6.(2023·辽宁大连·统考一模)已知点P 为平面直角坐标系xOy 内的圆2216x y +=上的动点,定点()3,2A -,现将坐标平面沿y 轴折成2π3的二面角,使点A 翻折至A ',则,A P '两点间距离的取值范围是()A .13,35⎡⎣B .413,7⎡⎤⎣⎦C .413,35⎡⎤⎣⎦D .13,7⎡⎤⎣⎦7.(2023·浙江·统考二模)已知等腰直角ABC 的斜边2,,AB M N =分别为,AC AB 上的动点,将AMN 沿MN 折起,使点A 到达点A '的位置,且平面A MN '⊥平面BCMN .若点,,,,A B C M N '均在球O 的球面上,则球O 表面积的最小值为()A .8π3B .3π2C 6π3D .4π38.(2023·贵州黔西·校考一模)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,FB ED ,22AB ED FB ===,则三棱锥F ACE -的体积为()A .23B .43C .2D 9.(2023·陕西榆林·统考三模)如图,正三棱柱111ABC A B C -的底面边长是2,侧棱长是M 为11AC 的中点,N 是侧面11BCC B 上一点,且//MN 平面1ABC ,则线段MN 的最大值为()A .B .CD .310.(2023·江西宜春·统考一模)在Rt ABC 中,1,2CA CB ==.以斜边AB 为旋转轴旋转一周得到一个几何体,则该几何体的内切球的体积为()A B C .32π81D .4π8111.(2023·江西·统考模拟预测)如图,直三棱柱111ABC A B C -中,12,1,AB AC AA AB AC ===⊥,点1,E E 分别是棱11,BC B C 的中点,点G 在棱11A B 上,且1GB =,截面11AA E E 内的动点P 满足1G B PE ⊥,则1PE PB +的最小值是()A .22B 6C 5D .212.(2023·天津·校联考一模)数学中有许多形状优美,寓意独特的几何体,“勒洛四面体”就是其中之一.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的公共部分.如图,在勒洛四面体中,正四面体ABCD 的棱长为4,则下列结论正确的是()A .勒洛四面体最大的截面是正三角形B .若P 、Q 是勒洛四面体ABCD 表面上的任意两点,则PQ 的最大值为2C .勒洛四面体ABCD 的体积是6πD .勒洛四面体ABCD 内切球的半径是46二、多选题13.(2023·湖北武汉·统考模拟预测)三棱锥-P ABC 中,22AB =1BC =,AB BC ⊥,直线PA 与平面ABC 所成的角为30︒,直线PB 与平面ABC 所成的角为60︒,则下列说法中正确的有()A .三棱锥-P ABC 3B .三棱锥-P ABC 体积的最大值为2C .直线PC 与平面ABC 所成的角取到最小值时,二面角P BC A --的平面角为锐角D .直线PC 与平面ABC 所成的角取到最小值时,二面角P AB C --的平面角为钝角14.(2023·湖南益阳·统考模拟预测)如图,矩形ABCD 中,E 、F 分别为BC 、AD 的中点,且22BC AB ==,BF AE O = ,现将ABE 沿AE 向上翻折,使B 点移到P 点,则在翻折过程中,下列结论正确的是()A .CF OP⊥B .存在点P ,使得//PE CFC .存在点P ,使得PE ED ⊥D .三棱锥P AED -615.(2023·河北沧州·统考模拟预测)下列关于三棱柱111ABC A B C -的命题,正确的是()A .任意直三棱柱111ABC A B C -均有外接球B .任意直三棱柱111ABC A B C -均有内切球C .若正三棱柱111ABC A B C -有一个半径为1的内切球,则该三棱柱的体积为D .若直三棱柱111ABC A B C -的外接球球心在一个侧面上,则该三棱柱的底面是直角三角形16.(2023·广东梅州·统考二模)如图,在棱长为2的正方体1111ABCD A B C D -中,E 为边AD 的中点,点P 为线段1D B 上的动点,设11D P D B λ=,则()A .当13λ=时,EP //平面1AB CB .当12λ=时,PE 取得最小值,2C .PA PC +46D .当1C ∈平面CEP 时,14λ=17.(2023·浙江嘉兴·统考二模)已知菱形ABCD 的边长为2,60BAD ∠= ,将ABD △沿对角线BD 翻折,得到三棱锥P BCD -,则在翻折过程中,下列说法正确的是()A .存在某个位置,使得PC BC⊥B .直线BC 与平面PBD 所成角的最大值为60C .当二面角P BD C --为120 时,三棱锥P BCD -的外接球的表面积为283πD .当2PC =时,分别以,,,P B C D 为球心,2为半径作球,这四个球的公共部分称为勒洛四面体,则该勒洛四面体的内切球的半径为6218.(2023·山西·校联考模拟预测)半正多面体亦称“阿基米德体”,是由边数不全相同的正多边形为面的多面体.如图,将正四面体每条棱三等分,截去顶角所在的小正四面体,得到一个有八个面的半正多面体.点A 、B 、C 是该多面体的三个顶点,且棱长2AB =,则下列结论正确的是()A .该多面体的表面积为243B .该多面体的体积为4623C .该多面体的外接球的表面积为22πD .若点M 是该多面体表面上的动点,满足CM AB ⊥时,点M 的轨迹长度为4+19.(2023·江苏·统考一模)正方体1111ABCD A B C D -的棱长为3,E ,F 分别是棱11B C ,11C D 上的动点,满足11D F C E =,则()A .BF 与DE 垂直B .BF 与DE 一定是异面直线C .存在点E ,F ,使得三棱锥1F A BE -的体积为154D .当E ,F 分别是11B C ,11C D 的中点时,平面AEF 截正方体所得截面的周长为三、填空题20.(2023·贵州毕节·统考二模)已知四棱锥P ABCD -的各个顶点都在球O 的表面上,PA ⊥平面ABCD ,底面ABCD 是等腰梯形,//AD BC ,3AB AD CD ===,π3ABC ∠=,PA =M 是线段AB 上一点,且AM AB λ=.过点M 作球O 的截面,所得截面圆面积的最小值为2π,则λ=___.21.(2023·北京海淀·统考一模)在ABC 中,902ACB AC BC ∠=︒==,,D 是边AC 的中点,E 是边AB 上的动点(不与A ,B 重合),过点E 作AC 的平行线交BC 于点F ,将BEF △沿EF 折起,点B 折起后的位置记为点P ,得到四棱锥P ACFE -.如图所示.给出下列四个结论:①//AC 平面PEF ;②PEC 不可能为等腰三角形;③存在点E ,P ,使得PD AE ⊥;④当四棱锥P ACFE -的体积最大时,AE =其中所有正确结论的序号是_________.22.(2023·浙江台州·统考二模)三棱锥D ABC -中,DC ⊥平面ABC ,AB BC ⊥,1AB BC CD ===,点P 在三棱锥D ABC -外接球的球面上,且60APC ∠= ,则DP 的最小值为___________.23.(2023·江西宜春·统考模拟预测)如图,多面体ABCDEF 中,面ABCD 为正方形,DE ⊥平面,ABCD CF DE ∥,且2,1,AB DE CF G ===为棱BC 的中点,H 为棱DE 上的动点,有下列结论:①当H 为DE 的中点时,GH 平面ABE ;②存在点H ,使得GH AC ⊥;③直线GH 与BE 所成角的余弦值的最小值为5;④三棱锥A BCF -的外接球的表面积为9π.其中正确的结论序号为___________.(填写所有正确结论的序号)24.(2023·河北石家庄·统考一模)长方体1111ABCD A B C D -中,11,2AB BC AA ===,平面1AB C 与直线11D C 的交点为M ,现将1M C B 绕1CB 旋转一周,在旋转过程中,动直线CM 与底面1111D C B A 内任一直线所成最小角记为α,则sin α的最大值是___________.25.(2023·广东汕头·金山中学校考模拟预测)已知四边形ABCD 为平行四边形,4AB =,3AD =,π3BAD ∠=,现将ABD △沿直线BD 翻折,得到三棱锥A BCD -',若A C '=则三棱锥A BCD -'的内切球与外接球表面积的比值为_________.26.(2023·北京门头沟·统考一模)在正方体1111ABCD A B C D -中,棱长为1,已知点P 、Q 分别是线段1AD 、1AC 上的动点(不含端点).①PQ 与1B C 垂直;②直线PQ 与直线CD 不可能平行;③二面角P AC Q --不可能为定值;④则PQ QC +的最小值是43.其中所有正确结论的序号是___________.27.(2023·辽宁锦州·统考模拟预测)在OAB 中,4,120OA AB OAB ∠=== ,若空间点P 满足12PAB OAB S S =△△,则OP 的最小值为___________;直线OP 与平面OAB 所成角的正切的最大值是___________.28.(2023·河南郑州·统考二模)已知三棱锥P -ABC 的各个顶点都在球O 的表面上,4AB AC ==,120BAC ∠=︒,PB PC ==,平面PBC ⊥平面ABC ,若点E 满足4BC BE = ,过点E 作球O 的截面,则所得截面面积的取值范围为______.29.(2023·陕西榆林·校考模拟预测)已知直三棱柱111ABC A B C -的所有棱长均为4,空间内的点H 满足1HA HA ⊥,且1HB HC ⊥,则满足条件的H 所形成曲线的轨迹的长度为________.30.(2023·四川绵阳·盐亭中学校考模拟预测)已知正方体1111ABCD A B C D 的棱长为3,以A 为球心,_________。
立体几何的压轴小题练习题和详细的分析解答(1)1.如图,在正四棱台1111ABCD A B C D -中,上底面边长为4,下底面边长为8,高为5,点,M N 分别在1111,A B D C 上,且111A M D N ==.过点,M N 的平面α与此四棱台的下底面会相交,则平面α与四棱台的面的交线所围成图形的面积的最大值为A .B .C .D .2.如图,已知P ,Q 分别是正四面体ABCD 的侧面ABC 与侧面ABD 上动点(不包含侧面边界),则异面直线CP ,BQ 所成角不可能的是( )A .45︒B .65︒C .75︒D .90︒3.如图,直三棱柱111ABC A B C -的底面是边长为6的等边三角形,侧棱长为2,E 是棱BC 上的动点,F 是棱11B C 上靠近1C 点的三分点,M 是棱1CC 上的动点,则二面角A FM E --的正切值不可能...是( )A B C D4.在棱长为3的正方体1111ABCD A B C D -中,O 为棱DC 的中点,E 为线段AO 上的点,且2AE EO =,若点,F P 分别是线段1DC ,1BC 上的动点,则PEF 周长的最小值为( )A .B .2C D5.三棱锥P ABC -中,AB BC ⊥,△PAC 为等边三角形,二面角P AC B --的余弦值为当三棱锥的体积最大时,其外接球的表面积为8π.则三棱锥体积的最大值为( ) A .1 B .2C .12D .136.已知三棱锥A BCD -的所有棱长都相等,若AB 与平面α所成角等于3π,则平面ACD 与平面α所成角的正弦值的取值范围是( )A .33,66⎡-+⎢⎣⎦B .36⎡⎤-⎢⎥⎣⎦C .2626-+⎣⎦D .26⎤-⎥⎣⎦7.已知矩形,4,2,ABCD A AD E B ==为AB 中点,沿直线DE 将ADE 翻折成PDE △,直线PB 与平面BCDE 所成角最大时,线段PB 长是( )A .743B .543C .742D .5428.已知四面体ABCD 的三组对棱的长分别相等,依次为3,4,x ,则x 的取值范围是()A .B .)C .)D .()4,7立体几何的压轴小题练习题和详细的分析解答(1)1.如图,在正四棱台1111ABCD A B C D -中,上底面边长为4,下底面边长为8,高为5,点,M N 分别在1111,A B D C 上,且111A M D N ==.过点,M N 的平面α与此四棱台的下底面会相交,则平面α与四棱台的面的交线所围成图形的面积的最大值为A .B .C .D .【答案】B 【解析】 【分析】由题意可知,当平面α经过BCNM 时取得的截面面积最大,此时截面是等腰梯形;根据正四棱台的高及MN 中点在底面的投影求得等腰梯形的高,进而求得等腰梯形的面积. 【详解】当斜面α经过点BCNM 时与四棱台的面的交线围成的图形的面积最大,此时α为等腰梯形,上底为MN=4,下底为BC=8此时作正四棱台1111ABCD A B C D -俯视图如下:则MN 中点在底面的投影到BC 的距离为8-2-1=5因为正四棱台1111ABCD A B C D -的高为5=所以截面面积的最大值为()1482S =⨯+⨯= 所以选B 【点睛】本题考查了立体几何中过定点的截面面积问题,关键是分析出截面的位置,再根据条件求得各数据,需要很好的空间想象能力,属于难题.2.如图,已知P ,Q 分别是正四面体ABCD 的侧面ABC 与侧面ABD 上动点(不包含侧面边界),则异面直线CP ,BQ 所成角不可能的是( )A .45︒B .65︒C .75︒D .90︒【答案】A 【解析】 【分析】取BD 的中点N ,根据线面垂直判定定理可得CN ⊥平面ACN ,进一步可得CM ⊥平面ABD 然后计算直线CD 与平面ABD 所成角,最后进行判断即可.【详解】另设正四面体的边长为2,取BD 的中点N ,连接,AN CN ,并作CM AN ⊥,连接DM 如图在该正四面体中,有,AB AD BC CD ==所以,⊥⊥BD CN BD AN ,=⋂CN AN N ,,⊂CN AN 平面ACN 所以BD ⊥平面ACN ,又CM ⊂平面ACN所以BD CM ⊥,由⋂=BD AN N ,,⊂BD AN 平面ABD 所以CM ⊥平面ABD ,则CD 与平面ABD 所成的角为CDM ∠又2sin 603==⨯=CN AN 222cos 2+-∠==⋅CN AC AN ACN CN AC所以sin ∠=ACN则11sin 223⋅=⋅∠⇒=AN CM CN AC ACN CM所以sin 32∠==>CM CDM CD ,所以45∠>CDM 所以若点P 为点D ,CP 与平面ABD 所成的角要大于45 则当Q 在平面ACD 内运动时,CP 与BQ 所成角要大于45所以P ,Q 在侧面ABC 与侧面ABD 运动,CP 与BQ 所成角要大于45 故选:A 【点睛】本题考查异面直线所成角,通过等价转化,线线角转化为线面角,便于计算与判断,考查分析能力与逻辑推理能力,属难题.3.如图,直三棱柱111ABC A B C -的底面是边长为6的等边三角形,侧棱长为2,E 是棱BC 上的动点,F 是棱11B C 上靠近1C 点的三分点,M 是棱1CC 上的动点,则二面角A FM E --的正切值不可能...是( )A .5B .5C D 【答案】B 【解析】 【分析】建立空间直角坐标系,求得二面角A FM E --的余弦值,进而求得二面角A FM E --的正切值,求得正切值的最小值,由此判断出正确选项. 【详解】取BC 的中点O ,连接OA ,根据等边三角形的性质可知OA BC ⊥,根据直三棱柱的性质,以O 为原点建立如图所示的空间直角坐标系.则()(),1,0,2A F ,设()()3,0,02M t t ≤≤. 则()()1,33,2,2,0,2AF FM t =-=-.设平面AMF 的一个法向量为(),,m x y z =,则()20220m AF x z m FM x t z ⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,令1y =,得63m ⎛= ⎝⎭. 平面FME 的一个法向量是()0,1,0n =,所以cos ,6m n m n m n⋅===⋅⎛,所以2sin ,1cos ,m n m n =-120252t =+所以二面角A FME --的正切值为()sin ,27cos ,m n f t m n===因为02t ≤≤,所以111466t -≤≤--,216125405-=-⨯ 结合二次函数的性质可知 当1165t =--时,()f t5=; 当1166t =--时,()f t=, 所以()f t ∈⎣, 所以二面角A FM E --. 故选:B. 【点睛】本小题主要考查二面角的求法,考查数形结合的数学思想方法,属于难题.4.在棱长为3的正方体1111ABCD A B C D -中,O 为棱DC 的中点,E 为线段AO 上的点,且2AE EO =,若点,F P 分别是线段1DC ,1BC 上的动点,则PEF 周长的最小值为( )A .BC D【答案】D 【解析】 【分析】连接BD ,易知E 为线段AO 与BD 的交点,即E 为线段DB 上靠近D 的三等分点,将PEF 周长的最小值问题转化到平面上几何知识连接两点间的线中线段最短与平面几何中对称问题处理,最后由余弦定理求得12E E 的长度即可. 【详解】连接BD ,易知E 为线段AO 与BD 的交点,即E 为线段DB 上的点,由勾股定理可知BD =2BE DE ==,分别作点E 关于线段1DC ,1BC 的对称点1E ,2E ,且由对称关系有垂直关系且显然1BDC 为等边三角形,即12120E EE ∠=︒,由等边三角形对称问题可求得1EE =2EE =据余弦定理得12E E ==,由平面几何知识连接两点间的线中线段最短,得PEF故选:D 【点睛】本题考查空间中三角形周长的最值,涉及空间中直线与对称点的算法,属于难题.5.三棱锥P ABC -中,AB BC ⊥,△PAC 为等边三角形,二面角P AC B --的余弦值为当三棱锥的体积最大时,其外接球的表面积为8π.则三棱锥体积的最大值为( ) A .1 B .2C .12D .13【答案】D 【解析】 【分析】由已知作出图象,找出二面角P AC B --的平面角,设出AB BC AC ,,的长,即可求出三棱锥P ABC -的高,然后利用基本不等式即可确定三棱锥体积的最大值(用含有AC 长度的字母表示),再设出球心O ,由球的表面积求得半径,根据球的几何性质,利用球心距,半径,底面半径之间的关系求得AC 的长度,则三棱锥体积的最大值可求. 【详解】如图所示,过点P 作PE ⊥面ABC ,垂足为E ,过点E 作ED AC ⊥交AC 于点D ,连接PD ,则PDE ∠为二面角PAC B -的平面角的补角,即有63cos PDE, 易知AC ⊥面PDE ,则AC PD ⊥,而△PAC 为等边三角形, ∴D 为AC 中点,设22AB a BC b ACa b c ,,,则PE PDsin PDE =∠=c 2c =, 故三棱锥P ABC -的体积为:1132V ab =⨯2231121212224c a b c abc c +⨯=≤⨯=,当且仅当2a b ==时,体积最大,此时B D E 、、共线. 设三棱锥P ABC -的外接球的球心为O ,半径为R ,由已知,248R ππ=,得R =过点O 作OF PE ⊥于F ,则四边形ODEF 为矩形,则OD EF ==232ED OF PDcos PDE c==∠=⨯=,2c PE =,在Rt △PFO 中222)(2c =+,解得2c = ∴三棱锥P ABC -的体积的最大值为:332124243c ==.故选:D. 【点睛】本题考查三棱锥体积最值的求法与三棱锥外接球的表面积的求法,涉及二面角的运用,基本不等式的应用,以及球的几何性质的应用,属于难题.6.已知三棱锥A BCD -的所有棱长都相等,若AB 与平面α所成角等于3π,则平面ACD 与平面α所成角的正弦值的取值范围是( )A .⎣⎦B .⎤⎥⎣⎦C .22-⎣⎦D .⎤-⎥⎣⎦【答案】A 【解析】【分析】设出三棱锥A BCD -的边长,设E 是CD 的中点,求得cos BAE ∠和sin BAE ∠,由此判断出43BAE ππ<∠<.设平面ACD 与平面α所成二面角的平面角为θ,由min 26BAE ππθ⎛⎫=-∠+ ⎪⎝⎭和max 262BAE πππθ⎛⎫=-∠-< ⎪⎝⎭,结合三角函数恒等变换,求得sin θ的取值范围,由此得出正确选项.【详解】如图,在三棱锥A BCD -中,E 是CD 的中点,不妨设其边长为2,则2,1AB AC AD BC BD CD CE DE ========,∴AE BE ==根据余弦定理,有2222cos23BA AE BE BAE BA AE +-∠===⋅,∴sin BAE ∠===∴43BAE ππ<∠<.由题可知当平面ACD 与平面α所成二面角的平面角θ取最值时,平面α⊥平面ABE . 当θ最小时,AB 与平面α所成角为3π,则AB 与平面α的法向量1n 所成角为236πππ-=,∴AE 与1n 所成角为6BAE π∠+,而平面ACD 与平面α所成角为min 26BAE ππθ⎛⎫=-∠+ ⎪⎝⎭,∴min sin cos 6BAE πθ⎛⎫=∠+ ⎪⎝⎭cos cossin sin66BAE BAE ππ=∠-∠1332326-=⨯-=; 当θ最大时,AB 与平面α所成角为3π,则AB 与平面α的法向量2n 所成角为236πππ-=∴AE 与2n 所成角为6BAE π∠-,而平面ACD 与平面α所成角为max 262BAE πππθ⎛⎫=-∠-< ⎪⎝⎭,∴max sin cos 6BAE πθ⎛⎫=∠- ⎪⎝⎭cos cossin sin66BAE BAE ππ=∠+∠1332326=⨯+=.∴平面ACD 与平面α所成角的正弦值的取值范围为3366⎡-+⎢⎣⎦.故选:A.【点睛】本小题主要考查面面角的求法,考查线面角的概念和运用,考查空间想象能力和逻辑推理能力,属于难题.7.已知矩形,4,2,ABCD A AD E B ==为AB 中点,沿直线DE 将ADE 翻折成PDE △,直线PB 与平面BCDE 所成角最大时,线段PB 长是( )A .743 B .543C .742D .542【答案】C 【解析】 【分析】取CD 的中点F ,连接AF 交于DE 的中点O ,AF DE ⊥,进而有DE ⊥平面POF ,过点P 作PQ AF ⊥于点Q ,可证PQ ⊥平面BCDE ,连接BQ ,设直线PB 与平面BCDE 所成的角为α,平面PDE 与平面BCDE 所成的角为β,根据条件可知,AO DE PO DE ⊥⊥,PQ ⊥平面BCDE ,,PBQ POQ αβ∠=∠=,通过边长关系求出OQ β=,PQ β=,AQ AO OQ β=+=,以及利用余弦定理求出)228BQβ=+,从而得出)()22222tan8PQBQβαβ==+,根据同角三角函数关系和换元法令[]2cos64,8tβ+=∈,得出24tan1328ttα=-++-,再根据基本不等式时得出当cos3tβ=⇒=时,2tanα取得最大值,从而可求出线段PB长【详解】解:取CD的中点F,连接AF交于DE的中点O,在矩形ABCD中,4,2,AB AD E==为AB中点,所以四边形AEFD为正方形,AF DE⊥,所以,,PO DE OF DE PO OF O⊥⊥=,故DE⊥平面POF,在平面POF内过点P作PQ AF⊥于点Q,则,DE PQ DE AF O⊥=,所以PQ⊥平面BCDE,连接BQ,设直线PB与平面BCDE所成的角为α,即PBQα∠=设平面PDE与平面BCDE所成的角为β,,OF DE PO DE⊥⊥,所以POQβ∠=,所以DE PO AO===所以在Rt POQ△中,,PQ OQββ==,则AQ AO OQβ=+=,在ABQ△中,4,4AB BAQπ=∠=,则由余弦定理得出:)228BQβ=+,则有)()22222tan8PQBQβαβ==+222sin 822cos 4cos βββ=+++22sin cos 2cos 5βββ=++ 221cos cos 2cos 5βββ-=++22cos 61cos 2cos 5βββ+=-+++, 令[]2cos 64,8t β+=∈,则6cos 2t β-=, 即:24tan 1328t tα=-++-, 当直线PB 与平面BCDE 所成角α最大时,2tan α最大, 即24tan 1328t tα=-++-取得最大值时,当且仅当32t t=,此时cos 3t β=⇒=,所以,))2228PB ββ=++72124cos 2β=+==,即742PB =.故选:C.【点睛】本题考查线面角和二面角的定义,还运用余弦定理和利用基本不等式求最值,还涉及同角三角函数关系和换元法,考查转化思想和化简运算能力.8.已知四面体ABCD 的三组对棱的长分别相等,依次为3,4,x ,则x 的取值范围是()A.B.)C.)D .()4,7【答案】B 【解析】 【分析】作出图形,设3AB =,4AC =,四面体A ABC '-可以由ABC ∆和在同一平面的△A BC '沿着BC 为轴旋转构成,利用数形结合能求出x 的取值范围. 【详解】 解:如图所示,第一排 三个图讨论最短;第二排 三个图讨论最长,设3AB =,4AC =,四面体A ABC '-可以由ABC ∆和在同一平面的△A BC '沿着BC 为轴旋转构成,第一排,三个图讨论最短:当90ABC ∠<︒向90︒趋近时,BC 逐渐减少,AA BC '<,可以构成x AA BC '==的四面体; 当90ABC ∠︒时构成的四面体AA BC '>,不满足题意;= 第二排,三个图讨论最长:当90BAC ∠<︒向90︒趋近时,BC 逐渐增大,AA BC '>,可以构成x AA BC '==的四面体; 当90ABC ∠︒时构成的四面体AA BC '<,不满足题意;5;综上,x ∈5). 故选B . 【点睛】本题考查了四面体中边长的取值范围问题,也考查了推理论证能力,属于难题.。
题目7:矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B-AC-D,则四面体ABCD的外接球的体积是(答案:1256π)解析:∵∠ADC=∠ABC=90°,故AC为外接球的直径,易得2R=5⇒R=52,四面体ABCD的外接球的体积为4π3×(52)3=1256π.题型三、体积之比的最值问题题目8:如图,四棱锥P-ABCD中,底面为正方形,侧棱PA⊥底面ABCD,PA=4,AB=3,G,H分别在PC,CA上,且PG=45PC,PH=13PA,过直线GH作平面与侧棱PB,PD 分别交于点M,N,截面把四棱锥分成上下两部分,则上部分与下部分体积比值的最小值为解析:引理:如图,V D−EFGV D−ABC=DE∙DF∙DGDA∙DB∙DC.证明:设DB与平面DAC所成角为α,∠ADC=β,则V D−EFGV D−ABC=13×12DE∙DGsinβ∙DF∙sinα13×12DA∙DC∙sinβ∙DB∙sinα=DE∙DF∙DGDA∙DB∙DC.回归本题:设PM→=mPB→,PN→=nPD→,PG→=45PC→=45(PA→+AC→ )=45(PA→+AB→+AD→ )=45(PB→+PD→−PA→ )点评:二面角与外接球的综合题,主要利用图形的对称性即球的性质,直接作出球心,构造直角三角形进行求解。
此类题较难,江浙卷出现的较多,但是不排除全国卷也会出类似的考题。
立体几何的压轴小题练习题和详细的分析解答(3)1.有一正三棱柱(底面为正三角形的直棱柱)木料,其各棱长都为2.已知分别为上,下底面的中心,为线段的中点,过三点的截面把该木料截成两部分,则截面面积为( ) ABCD .22.如图,直三棱柱中,侧棱长为,,,点是的中点,是 侧面(含边界)上的动点.要使平面, 则线段的长的最大值为( )ABCD111ABC A B C -12,O O O 12O O A B O ,,111ABC A B C -2AC =1BC =90ACB ∠=︒D 11A B F 11AA B B 1AB ⊥1C DF 1C F3.在四棱锥中,底面,底面为正方形,,点为正方形内部的一点,且,则直线与所成角的余弦值的取值范围为( )A .B .C .D .4.已知,为两个不重合的平面,,为两条不重合的直线,且,.记直线与直线的夹角和二面角均为,直线与平面的夹角为,则下列说法正确的是( ) A .若,则B .若,则C .若,则D .若,则P ABCD -PA ⊥ABCD ABCD 3PA AB ==M ABCD 2MD MA =PMAD ,110⎫⎪⎪⎣⎭10⎛⎫⎪ ⎪⎝⎭0,10⎛ ⎝⎦0,10⎛ ⎝⎭αβm n m αβ=n β⊂m n m αβ--1θn α2θ106πθ<<122θθ>164ππθ<<12tan 2tan θθ>143ππθ<<12sin sin θθ<132ππθ<<123cos cos 4θθ>5.在棱长均为中,为中点,为中点,是上的动点,是平面上的动点,则的最小值是()A .BCD .6.如图,在圆锥中,,是上的动点,是的直径,,是的两个三等分点,,记二面角,的平面角分别为,,若,则的最大值是( )A .B .C .D.ABCD M AC E AB P DM Q ECD AP PQ +SO A B O BB 'O M N SB()0AOB θθπ∠=<<N OA B --M AB B '--αβαβ≤θ56π23π2π4π7.如图,在矩形中,,,、分别为边、的中点,沿将折起,点折至处(与不重合),若、分别为线段、的中点,则在折起过程中( )A .可以与垂直B .不能同时做到平面且平面C .当时,平面D .直线、与平面所成角分别为、,、能够同时取得最大值8.正方体中,过作直线,若直线与平面中的直线所成角的最小值为,且直线与直线所成角为,则满足条件的直线的条数为( ) A .1 B .2C .3D .4ABCD 2AB =1BC =E N AB BC DE ADE ∆A 1A 1A A M K 1A D 1A C ADE∆DE 1A C //MN 1A BE //BK 1A DE 1MN A D ⊥MN ⊥1A DE 1A E BK BCDE 1θ2θ1θ2θ1111ABCD A B C D -1D l l ABCD 6πl 1BC 4πl立体几何的压轴小题练习题和详细的分析解答(3)1.有一正三棱柱(底面为正三角形的直棱柱)木料,其各棱长都为2.已知分别为上,下底面的中心,为线段的中点,过三点的截面把该木料截成两部分,则截面面积为()ABCD.2【答案】B 【解析】【分析】【详解】如图:取中点中点,连延长交于M,易证,因为为中心,所以,过做||,则梯形即为所求截面,,,,111ABC A B C-12,O O O12O O A B O,,AB11,N A B DNO1DC11DO O M=1O1113C M C D=M EF AB ABFE12233EF=⨯=AE BF===3=故梯形面积为, 故选:B.2.如图,直三棱柱中,侧棱长为,,,点是的中点,是 侧面(含边界)上的动点.要使平面, 则线段的长的最大值为( )ABCD【答案】A 【解析】 【分析】取上靠近的四等分点为E ,由题易知,再利用空间向量证得,即当F 在上时,平面,然后求得答案. 【详解】取上靠近的四等分点为E ,连接,当点F 在上时,平面,证明如下:因为直三棱柱中,侧棱长为, ,,点是的中点,所以平面,所以以为坐标原点,分别为x 轴,y 轴,z 轴建系; 所以12+223⨯()111ABC A B C -2AC =1BC =90ACB ∠=︒D 11A B F 11AA B B 1AB ⊥1C DF 1C F 1BB 1B 1C D ⊥1AB 1AB DE ⊥DE 1AB ⊥1C DF 1BB 1B DE DE 1AB ⊥1C DF 111ABC A B C -2AC =1BC =90ACB ∠=︒D 11A B 1C D ⊥11AA B B 1C D ⊥1AB 1C 11111,C A C B C B 1111(1,0,2),(0,1,0),(,,0),(0,1,)222A B D E即 此时,即所以平面,故当F 在上时,平面, 很明显,当E 、F 重合时,线段最长,此时故选A【点睛】本题考查了立体几何的综合知识,属于探索性题型,熟悉空间向量与立体几何以及立体几何的定理是解题的关键,属于难题.3.在四棱锥中,底面,底面为正方形,,点为正方形内部的一点,且,则直线与所成角的余弦值的取值范围为( ) A . B . C . D . 【答案】D 【解析】 【分析】根据题意,建立空间直角坐标系,在平面上,由计算的轨迹方程,可知的轨迹是以为圆心,以2为半径的圆,在正方形中的部分;根据平行找直线与所成角的平面角,根据的轨迹判定临界值,从而确定直线与所成角的余弦值的取值范围.【详解】 由题意,以为坐标原点,分别以为轴,建立空间直角坐标系,如图所示,则有, 1111(1,1,2),(,,)222AB DE =--=-10AB DE ⋅=1AB DE ⊥1AB ⊥1C DE DE 1AB ⊥1C DF 1CF 12C F =P ABCD -PA ⊥ABCD ABCD 3PA AB ==M ABCD 2MD MA =PMAD ,110⎫⎪⎪⎣⎭10⎛⎫⎪⎪⎝⎭0,10⎛ ⎝⎦0,10⎛ ⎝⎭ABCD 2MD MA =M M ()01,0-,ABCD PM AD M PM AD A AB AD AP ,,x y z ,,(0,0,0)(3,0,0)(030)(003)A B D P ,,,,,,,设,由化简得,即点的轨迹是以为圆心,以2为半径的圆,在正方形中的部分; 过作垂足为,连接,则有则直线与所成角的平面角为,则 根据点的轨迹是以为圆心,以2为半径的圆,在正方形中的部分, 则点轨迹与正方形的边交于一点,记为 与正方形的边交于一点,记为当点从运动到位置时,逐渐减小,逐渐增大,则的取值逐渐减小, 计算, 则直线与所成角的余弦值的取值范围是 故选: 【点睛】本题考查异面直线所成角,考查转化与化归思想,考查计算能力,综合性较强,属于难题. 4.已知,为两个不重合的平面,,为两条不重合的直线,且,.记直线与直线的夹角和二面角均为,直线与平面的夹角为,则(,,0)M x y 2MD MA ==22(1)4x y ++=M ()01,0-,ABCD M MN AB ⊥N ,PM PN //MN AD PM AD PMN ∠cos MNPMN PM∠=M ()01,0-,ABCD M ABCD AD ()01,0,1M ABCD AB )0,2M M 1M 2M MN PM cos MNPMN PM∠=111cos AM PM N PM ∠===220cos 0PM N PM ∠==PM AD ⎛ ⎝⎭D αβm n m αβ=n β⊂m n m αβ--1θn α2θ下列说法正确的是( ) A .若,则B .若,则C .若,则D .若,则 【答案】A 【解析】 【分析】直线为,点在平面的投影为,作于,连接,,化简整理得到,再根据三角函数关系,依次计算每个选项判断得到答案.【详解】如图所示:直线为,点在平面的投影为,作于,连接,.则,,设,则,. ,即. 当时,则,故,易知,故,正确;当时,要证,即,即,不恒成立,故错误; 当时,则,故错误;当时,要证,即,即,不恒成立,故错误;106πθ<<122θθ>164ππθ<<12tan 2tan θθ>143ππθ<<12sin sin θθ<132ππθ<<123cos cos 4θθ>BC n B αO BA m ⊥A OA OC 212sin sin θθ=BC n B αO BA m ⊥A OA OC 1BCA BAO θ∠=∠=2BCO θ∠=AB a 1sin aBC θ=1sin BO a θ=121sin sin sin a BO a BCθθθ==212sin sin θθ=106πθ<<21212211sin sin 2sin 2sin cos sin 2sin θθθθθθθ-=-≥-()11sin 12sin 0θθ=->12sin sin 2θθ>2106πθθ<<<122θθ>A 164ππθ<<12tan 2tan θθ>24122412sin 4sin 1sin 1sin θθθθ>--211sin 3θ<B 143ππθ<<2211sin sin sin θθθ=<C 132ππθ<<123cos cos 4θθ>()221291sin 1sin 16θθ->-217sin 9θ<D故选:.【点睛】本题考查了线线夹角,线面角,二面角,三角函数关系,意在考查学生的综合应用能力. 5.在棱长均为中,为中点,为中点,是上的动点,是平面上的动点,则的最小值是()A .BCD .【答案】A 【解析】 【分析】在正四面体中,由平面,找出在平面上的射影,再沿展开平面,使之与平面重合,此时,的最小值即为点到的距离,最后,结合数据解三角形即可. 【详解】由题知,在正四面体中,为中点,,平面,A ABCD M AC E AB P DM Q ECD AP PQ +ABCD AB ⊥CDE DM CDE DG DM ADM GDM AP PQ +A DGABCD E AB ,AB DE AB CE ∴⊥⊥AB ∴⊥CDE设中点为,连,为中点,,且, 平面, 即为在平面上的射影,沿展开平面,使之与平面重合,此时,的最小值即为点到的距离, 故过点作于点,又, , ,, , 故选:A.【点睛】本题考查空间几何体中的距离最值问题,需要学生有较强的空间想象和思维能力,综合性较强.在解决此类最值问题时,一般采用侧面展开的形式,将立体问题转化为平面问题解决. 6.如图,在圆锥中,,是上的动点,是的直径,,是CE G MG M AC //MG AE∴122MG AE ==MG ∴⊥CDE DG ∴DM CDE DM ADM GDM AP PQ +A DG A AQ DG ⊥Q 3DM ==sin cos MG MDG MDG MD ∴∠==∴∠=30ADM ∠=1sin sin()2ADQ ADM MDG ∴∠=∠+∠==3sin 122AQ AD ADQ +∴=⋅∠==SO A B O BB 'O M N SB的两个三等分点,,记二面角,的平面角分别为,,若,则的最大值是( )A .B .C .D . 【答案】B【解析】【分析】设底面圆的半径为,,以所在直线为轴,以垂直于所在直线为轴,以所在直线为轴建立空间直角坐标系,写出各个点的坐标.利用法向量求得二面角与夹角的余弦值.结合即可求得的取值范围,即可得的最大值.【详解】设底面圆的半径为,,以所在直线为轴,以垂直于所在直线为轴,以所在直线为轴建立空间直角坐标系,如下图所示:()0AOB θθπ∠=<<N OA B --M AB B '--αβαβ≤θ56π23π2π4πr OS a ='B B x 'B B y OS z N OA B --M AB B '--αβ≤θθr OS a ='B B x 'B B y OS z则由可得,,是的两个三等分点则 所以 设平面的法向量为则,代入可得 化简可得 令,解得 所以 平面的法向量为由图可知, 二面角的平面角为锐二面角,所以二面角的平面角满足()0AOB θθπ∠=<<()()()0,0,0,,0,0,0,0,O B r S a ()()cos ,sin ,0,',0,0A r r B r θθ-M N SB 22,0,,,0,3333ra r a M N ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()2cos ,sin ,0,,0,33r a OA r r ON θθ⎛⎫==⎪⎝⎭NOA ()111,,m x y z =00m OA m ON ⎧⋅=⎨⋅=⎩()()()111111,,cos ,sin ,002,,,0,033x y z r r r a x y z θθ⎧⋅=⎪⎨⎛⎫⋅= ⎪⎪⎝⎭⎩1111cos sin 02033x r y r x r az θθ+=⎧⎪⎨+=⎪⎩11x =11cos 2,sin r y z aθθ=-=-cos 21,,sin r m a θθ⎛⎫=-- ⎪⎝⎭OAB ()0,0,1n =N OA B --αN OA B --α设二面角的法向量为则代入可得 化简可得 令,解得 所以 平面的法向量为由图可知, 二面角的平面角为锐二面角,所以二面角的平面角满足 由二面角的范围可知 结合余弦函数的图像与性质可知cos 1m nm n α⋅==⋅+M AB B '--()222,,k x y z =()2'cos ,sin ,0,cos ,sin ,33r a B A r r r AM r r θθθθ⎛⎫=+=-- ⎪⎝⎭'00k B A k AM ⎧⋅=⎨⋅=⎩()()()222222,,cos ,sin ,002,,cos ,sin ,033x y z r r r r a x y z r r θθθθ⎧⋅+=⎪⎨⎛⎫⋅--= ⎪⎪⎝⎭⎩2222222cos sin 02cos sin 033x r x r y r x r az x r y r θθθθ++=⎧⎪⎨--+=⎪⎩21x =221cos 2,sin r y z a θθ--==-1cos 21,,sin r k a θθ--⎛⎫=- ⎪⎝⎭AB B '()0,0,1h =M AB B '--βM AB B '--βcos 1k hk h β⋅==⋅⎛+0αβπ≤≤≤cos cos αβ≥≥化简可得,且 所以 所以的最大值是故选:B【点睛】本题考查了空间直角坐标系在求二面角中的综合应用,根据题意建立合适的空间直角坐标系,求得平面的法向量,即可求解.本题含参数较多,化简较为复杂,属于难题.7.如图,在矩形中,,,、分别为边、的中点,沿将折起,点折至处(与不重合),若、分别为线段、的中点,则在折起过程中( )A .可以与垂直B .不能同时做到平面且平面C .当时,平面D .直线、与平面所成角分别为、,、能够同时取得最大值【答案】D【解析】【分析】逐一分析各选项的正误,从而可得出结论.1cos 2θ≤-0θπ<<203πθ<≤θ23πABCD 2AB =1BC =E N AB BC DE ADE ∆A 1A 1A A M K 1A D 1A C ADE∆DE 1A C //MN 1A BE //BK 1A DE 1MN A D ⊥MN ⊥1A DE 1A E BK BCDE 1θ2θ1θ2θ【详解】对于A ,连接,假设,,,,,平面,平面,,而,A 错误;对于B ,取、中点、,连接、、、,则,平面,平面,平面,,,则四边形为梯形,且、为底, 又、分别为、的中点,,平面,平面,平面,,平面平面,EC 1DE A C ⊥45AED BEC ∠=∠=90DEC ∠=DE EC ∴⊥1AC EC C =DE ∴⊥1A EC 1A E ⊂1A EC 1DE A E ∴⊥145A ED ∠=∴DE DC G F GM GN FK FB 1//MG A E MG ⊄1A BE 1A E ⊂1A BE //MG ∴1ABE //BE CD 12BE CD =BEDC BE CD G N DE BC //GN BE ∴GN ⊄1A BE BE ⊂1A BE //GN ∴1A BE MG GN G ⋂=∴//MGN 1A BE平面,平面,同理可得平面,B 选项错误; 对于C ,连接、,当时,,而,, 与不垂直,即不垂直平面,C 选项错误;对于D ,在以为直径球面上,球心为,的轨迹为外接圆(与不重合,为的中点),连接,取中点,连接、,则,,且,,在中,,, 由余弦定理得,MN ⊂MGN//MN ∴1A BE //BK 1A DE ME EN 1MN A D ⊥22222224MN DN DM CD CN DM CD =-=+-==2254ME EN ==222ME EN MN ∴+≠MN ∴ME MN 1A DE 1A DE G 1A ∴1A AF ∆1A F F CD EC EC T TK TB 1//TK A E //BT DE 1180KTB A ED ∠+∠=118018045135KTB A ED ∴∠=-∠=-=KTB ∆11122KT A E ==122BT CE ==22252cos1354BK BT KT BT KT =+-⋅=BK ∴=当直线与平面所成角取得最大值时,点到平面的距离最大, 由于点为的中点,此时,点到平面的距离最大,由于,当与平面所成角最大时,点到平面的距离最大. 所以,直线、与平面所成角能同时取到最大值.故选:D .【点睛】本题考查空间翻折几何体的应用,考查线线、线面位置关系的判断,考查线面角的求解,考查推理能力、空间想象能力以及运算求解能力,属于难题.8.正方体中,过作直线,若直线与平面中的直线所成角的最小值为,且直线与直线所成角为,则满足条件的直线的条数为( ) A .1 B .2 C .3 D .4【答案】B【解析】【分析】根据题意,由与平面中的直线所成角的最小值可得直线的运动轨迹为以为轴的圆锥母线(母线与成).由直线与直线所成角,可得此时直线的运动轨迹为以为轴的圆锥母线(母线与成).两个圆锥的交线,即为满足条件的直线的条数. 【详解】 设立方体的棱长为1,过作直线,若直线与平面中的直线所成角的最小值为 即与平面所成角为,为轴的圆锥母线(母线与成)是直线的运动轨迹,连接,易证;直线与直线所成角为;直线与直线所成角为. BK BCDE K BCDE K 1A C 1A BCDE 11A E =1A E BCDE 1A BCDE 1A E BK BCDE 1111ABCD A B C D -1D l l ABCD 6πl 1BC 4πl l ABCD l 1DD 1DD 3πl 1BC l 1D A 1D A 4πl 1D l l ABCD 6πl ABCD 6π1DD 1DD 3πl 1D A 11//D A BC l 1BC 4πl 1D A 4π此时为轴的圆锥母线(母线与成)是直线的运动轨迹两个圆锥相交得到两条交线,故选:B.【点睛】本题考查了空间中直线与直线、直线与平面的夹角,根据空间位置关系判断直线的数量,对空间想象能力和计算能力要求较高,属于难题.1D A 1D A 4l。
专题5 立体几何压轴小题一、单选题 1.(2022·全国·高三专题练习)正三棱柱ABC ﹣A 1B 1C 1中,所有棱长均为2,点E ,F 分别为棱BB 1,A 1C 1的中点,若过点A ,E ,F 作一截面,则截面的周长为( )A .B .C .D .2.(2022·全国·高三专题练习)直角ABC 中,2AB =,1BC =,D 是斜边AC 上的一动点,沿BD 将ABD △翻折到A BD ',使二面角A BD C '--为直二面角,当线段A C '的长度最小时,四面体A BCD '的外接球的表面积为( ) A .134πB .143πC .133πD .125π3.(2022·全国·高三专题练习)已知长方体1111ABCD A B C D -中,2AB =,BC =13AA =,P 为矩形1111D C B A 内一动点,设二面角P AD C --为α,直线PB 与平面ABCD 所成的角为β,若αβ=,则三棱锥11P A BC -体积的最小值是( )AB .1C D 4.(2022·全国·高三专题练习)如图,斜三棱柱111ABC A B C -中,底面ABC 是正三角形,,,E F G 分别是侧棱111,,AA BB CC 上的点,且AE CG BF >>,设直线,CA CB 与平面EFG 所成的角分别为,αβ,平面EFG 与底面ABC 所成的锐二面角为θ,则( )A .sin sin sin ,cos cos cos θαβθαβ<+≤+B .sin sin sin ,cos cos cos θαβθαβ≥+<+C .sin sin sin ,cos cos cos θαβθαβ<+>+D .sin sin sin ,cos cos cos θαβθαβ≥+≥+5.(2022·宁夏·平罗中学三模(理))已知正方体1111ABCD A B C D -的棱长为3,动点M 在侧面11BCC B 上运动(包括边界),且12MB MB =,则1D M 与平面11ADD A 所成角的正切值的取值范围为( )A.⎡⎣B.⎤⎥⎣⎦ C.⎤⎥⎣⎦D.⎡⎣6.(2022·全国·高三专题练习)如图,在四棱锥Q EFGH -中,底面是边长为4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为( )A .12B .13C .14D .157.(2022·全国·高三专题练习)在三棱锥P ABC -中,顶点P 在底面的射影为ABC 的垂心O (O 在ABC 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是( ) A .若12θθ=,则AC BC = B .若12θθ≠,则121tan tan 2θθ⋅= C .θ可能值为6πD .当θ取值最大时,12θθ=8.(2022·全国·高三专题练习)已知三棱锥P ABC -三条侧棱PA ,PB ,PC 两两互相垂直,且6PA PB PC ===,M 、N 分别为该三棱锥的内切球和外接球上的动点,则线段MN 的长度的最小值为( )A.3 B.6 C.6- D.9.(2022·全国·高三专题练习)已知在正方体1111ABCD A B C D -中,点E 为棱BC 的中点,直线l 在平面1111D C B A 内.若二面角A l E --的平面角为θ,则cos θ的最小值为( )AB .1121C D .3510.(2022·全国·高三专题练习)在三棱台111BCD B C D -中,1CC ⊥底面BCD ,BC CD ⊥,12BC CD CC ===,111B C =.若A 是BD 中点,点P 在侧面11BDD B 内,则直线1DC 与AP 夹角的正弦值的最小值是( )A .16B C D11.(2022·全国·高三专题练习)如图,在棱长为1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足1||||5DP PB +=+1B P 与直线1AD 所成角的取值范围为( ) (参考数据:43sin53,sin37)55︒=︒=A .[37︒,53]︒B .[37︒,90]︒C .[53︒,90]︒D .[37︒,127]︒12.(2022·全国·高三专题练习)已知正方体ABCD A B C D ''''-的棱长为3,E 为棱AB 上的靠近点B 的三等分点,点P 在侧面CC D D ''上运动,当平面B EP '与平面ABCD 和平面CC D D ''所成的角相等时,则D P '的最小值为( )A B C D 13.(2022·全国·高三专题练习)已知点P 是正方体ABCD A B C D ''''-上底面A B C D ''''上的一个动点,记面ADP 与面BCP 所成的锐二面角为α,面ABP 与面CDP 所成的锐二面角为β,若αβ>,则下列叙述正确的是( ) A .APC BPD ∠>∠B .APC BPD ∠<∠C .{}{}max ,max ,APD BPC APB CPD ∠∠>∠∠ D .{}{}min ,min ,APD BPC APB CPD ∠∠>∠∠14.(2022·全国·高三专题练习)如图,将矩形纸片ABCD 折起一角落()EAF △得到EA F '△,记二面角A EF D '--的大小为π04θθ⎛⎫<< ⎪⎝⎭,直线A E ',A F '与平面BCD 所成角分别为α,β,则( ).A .αβθ+>B .αβθ+<C .π2αβ+>D .2αβθ+>15.(2022·全国·高三专题练习)如图,在正方体ABCD EFGH -中,P 在棱BC 上,BP x =,平行于BD 的直线l 在正方形EFGH 内,点E 到直线l 的距离记为d ,记二面角为A l P --为θ,已知初始状态下0x =,0d =,则( )A .当x 增大时,θ先增大后减小B .当x 增大时,θ先减小后增大C .当d 增大时,θ先增大后减小D .当d 增大时,θ先减小后增大16.(2022·广东惠州·高三阶段练习)如图,点M N 、分别是正四面体ABCD 棱AB CD 、上的点,设BM x =,直线MN 与直线BC 所成的角为θ,则( )A .当2ND CN =时,θ随着x 的增大而增大B .当2ND CN =时,θ随着x 的增大而减小C .当2CN ND =时,θ随着x 的增大而减小 D .当2CN ND =时,θ随着x 的增大而增大17.(2022·江苏·高三专题练习)如图,在三棱锥D ABC -中,AB BC CD DA ===,90,,,ABC E F O ︒∠=分别为棱,,BC DA AC 的中点,记直线EF 与平面BOD 所成角为θ,则θ的取值范围是( )A .0,4π⎛⎫ ⎪⎝⎭B .,43ππ⎛⎫ ⎪⎝⎭C .,42ππ⎛⎫ ⎪⎝⎭D .,62ππ⎛⎫ ⎪⎝⎭二、多选题18.(2022·福建泉州·模拟预测)已知正四棱台1111ABCD A B C D -的所有顶点都在球O 的球面上,11122,AB A B AA ==E 为1BDC 内部(含边界)的动点,则( )A .1//AA 平面1BDCB .球O 的表面积为6πC .1EA EA +的最小值为D .AE 与平面1BDC 所成角的最大值为60°19.(2022·河北衡水·高三阶段练习)在四棱锥P ABCD -中,已知1AB BD AD ===,BC CD ==PA PB PC PD ====) A .四边形ABCD 内接于一个圆B .四棱锥P ABCD -C .四棱锥P ABCD -外接球的球心在四棱锥P ABCD -的内部 D .四棱锥P ABCD -外接球的半径为71220.(2022·浙江·高三开学考试)如图,在ABC 中,AB AC =,BAC θ∠=,AB α⊂,设点C 在α上的射影为C ',将ABC 绕边AB 任意转动,则有( )A .若θ为锐角,则在转动过程中存在位置使2BC A BCA ∠∠='B .若θ为直角,则在转动过程中存在位置使12BC A BCA ∠∠='C .若105θ=,则在转动过程中存在位置使BC A BCA ∠∠>'D .若120θ=,则在转动过程中存在位置使BC A BCA ∠∠>'21.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的棱长为2,E 为线段1AA 的中点,AP AB AD λμ=+,其中,[0,1]λμ∈,则下列选项正确的是( )A .12μ=时,11A P ED ⊥ B .14λ=时,1B P PD +C .1λμ+=时,直线1A P 与面11BDE 的交点轨迹长度为2D .1λμ+=时,正方体被平面1PAD 截的图形最大面积是22.(2022·福建省福州屏东中学高三开学考试)已知正方体1111ABCD A B C D -棱长为2,P 为空间中一点.下列论述正确的是( )A .若112AP AD =,则异面直线BP 与1C D B .若[]()10,1BP BC BB λλ=+∈,三棱锥1P A BC -的体积为定值C .若[]()110,12BP BC BB λλ=+∈,有且仅有一个点P ,使得1A C ⊥平面1AB PD .若[]()10,1AP AD λλ=∈,则异面直线BP 和1C D 所成角取值范围是,42ππ⎡⎤⎢⎥⎣⎦23.(2022·重庆十八中两江实验中学高三阶段练习)已知在平行四边形ABCD 中,3AB =,2AD =,60A ∠=︒,把△ABD 沿BD 折起使得A 点变为'A ,则( )A .BD =B .三棱锥'A BCD -C .当'A C BD =时,三棱锥'A BCD -D .当'A C BD =时,'60A BC ∠=︒24.(2022·湖北·武汉二中模拟预测)勒洛四面体是一个非常神奇的“四面体”,它能在两个平行平面间自由转动,并且始终保持与两平面都接触,因此它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的公共部分,如图所示,若正四面体ABCD 的棱长为a ,则( )A .能够容纳勒洛四面体的正方体的棱长的最小值为aB .勒洛四面体能够容纳的最大球的半径为1a ⎛ ⎝⎭C .勒洛四面体的截面面积的最大值为(212π4aD .勒洛四面体的体积33V ⎫∈⎪⎪⎝⎭25.(2022·湖南·模拟预测)已知边长为2的菱形ABCD 中,3ADC π∠=,将ADC 沿AC 翻折,连接AC ,BD ,设点O 为AC 的中点,点D 在平面ABC 上的投影为'D ,二面角D AC B --的大小为θ.下列说法正确的是( )A .在翻折过程中,点'D 是直线OB 上的一个动点 B .在翻折过程中,直线AD ,BC 不可能相互垂直 C .在翻折过程中,三棱锥D ABC -D .在翻折过程中,三棱锥D ABC -表面积最大值为426.(2022·湖南怀化·一模)如下图,正方体1111ABCD A B C D -中,M 为1CC 上的动点,AM ⊥平面α,则下面说法正确的是( )A .直线AB 与平面α所成角的正弦值范围为2⎣⎦B .点M 与点1C 重合时,平面α截正方体所得的截面,其面积越大,周长就越大 C .点M 为1CC 的中点时,平面α经过点B ,则平面α截正方体所得截面图形是等腰梯形D .已知N 为1DD 中点,当AM MN +的和最小时,M 为1CC 的三等分点27.(2022·河北·模拟预测)如图,在正三棱柱111ABC A B C -中,1AB AA =D 为棱1CC 上的动点,则( )A .三棱锥D ABC -B .存在点D ,使得平面1A BD ⊥平面11ABB AC .A 到平面1A BDD .1A BD 28.(2022·全国·高三专题练习)如图,在直棱柱1111ABCD A B C D -中,各棱长均为2,π3ABC ∠=,则下列说法正确的是( )A .三棱锥1A ABC -外接球的体积为27B .异面直线1AB 与1BCC .当点M 在棱1BB 上运动时,1MD MA +最小值为D .N 是ABCD 所在平面上一动点,若N 到直线1AA 与BC 的距离相等,则N 的轨迹为抛物线 29.(2022·广东·三模)在正方体1111ABCD A B C D -中,1AB =,点P 满足1CP CD CC λμ=+,其中[][]0,1,0,1λμ∈∈,则下列结论正确的是( )A .当1//B P 平面1A BD 时,1B P 可能垂直1CD B .若1B P 与平面11CCD D 所成角为4π,则点P 的轨迹长度为2πC .当λμ=时,1||DP A P +D .当1λ=时,正方体经过点1A 、P 、C 的截面面积的取值范围为 30.(2022·全国·高三专题练习)已知正四棱柱1111ABCD A B C D -中,122CC AB ==,E 为1CC 的中点,P 为棱1AA 上的动点,平面α过B ,E ,P 三点,则( )A .平面α⊥平面11AB EB .平面α与正四棱柱表面的交线围成的图形一定是四边形C .当P 与A 重合时,α截此四棱柱的外接球所得的截面面积为11π8D .存在点P ,使得AD 与平面α所成角的大小为π331.(2022·河北唐山·二模)如图,正方体1111ABCD A B C D -中,顶点A 在平面α内,其余顶点在α的同侧,顶点1A ,B ,C 到α1,2,则( )A .BC ∥平面αB .平面1A AC ⊥平面αC .直线1AB 与α所成角比直线1AA 与α所成角大D .正方体的棱长为32.(2022·江苏南通·模拟预测)设正方体ABCD —1111D C B A 的棱长为2,P 为底面正方形ABCD 内(含边界)的一动点,则( ) A .存在点P ,使得A 1P ∥平面11B CDB .当PC PD ⊥时,|A 1P |2的最小值是10-C .若1APC 的面积为1,则动点P 的轨迹是抛物线的一部分 D .若三棱锥P —111A B C 的外接球表面积为41π4,则动点P 的轨迹围成图形的面积为π 33.(2022·全国·高三专题练习)三棱锥A BCD -各顶点均在表面积为20π的球体表面上,2,120AB CB ABC ∠===,90BCD ∠=,则( )A .若CD AB ⊥,则2CD = B .若2CD =,则CD AB ⊥C .线段AD D .三棱锥A BCD -34.(2022·湖北·宜城市第二高级中学高三开学考试)如图,ABCD 是边长为5的正方形,半圆面APD ⊥平面ABCD .点P 为半圆弧AD 上一动点(点P 与点A ,D 不重合).下列说法正确的是( )A .三棱锥P -ABD 的四个面都是直角三角形B .三棱锥P 一ABD 体积的最大值为1254C .异面直线P A 与BC 的距离为定值D .当直线PB 与平面ABCD 所成角最大时,平面P AB 截四棱锥P -ABCD 外接球的截面面积为(2534π35.(2022·广东·佛山市南海区艺术高级中学模拟预测)如图,若正方体的棱长为1,点M 是正方体1111ABCD A B C D -的侧面11ADD A 上的一个动点(含边界),P 是棱1CC 的中点,则下列结论正确的是( )A .沿正方体的表面从点A 到点PB .若保持||PM =M 在侧面内运动路径的长度为3π C .三棱锥1B C MD -的体积最大值为16D .若M 在平面11ADD A 内运动,且111MD B B D B ∠=∠,点M 的轨迹为抛物线36.(2022·江苏·徐州市第七中学高三阶段练习)在棱长为1的正方体1111ABCD A B C D -中,P 为侧面11BCC B (不含边界)内的动点,Q 为线段1A C 上的动点,若直线1A P 与11A B 的夹角为45,则下列说法正确的是( )A.线段1A PB 1A Q PQ +的最小值为1C .对任意点P ,总存在点Q ,便得1⊥D Q CPD .存在点P ,使得直线1A P 与平面11ADD A 所成的角为60°37.(2022·全国·高三专题练习)已知点A 为圆台12O O 下底面圆2O 上的一点,S 为上底面圆1O 上一点,且11SO =,12OO 22O A =,则下列说法正确的有( ) A .直线SA 与直线12O O 所成角最小值为6πB .直线SA 与直线12O O 所成角最大值为3πCD .直线1AO 与平面12SO O 38.(2022·全国·高三专题练习)如图,在正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则下列结论正确的是( )A .直线1BD ⊥平面11AC DB .三棱锥11D AC P -的体积为定值C .异面直线AP 与1AD 所成角的取值范围是[]30,90︒︒D .直线1C P 与平面11AC D 三、填空题39.(2022·湖南·高三开学考试)三棱锥P ABC -中,PA PB PC ==,底面ABC 是边长为2的正三角形,,E F 分别是,PA AB 的中点,且CE EF ⊥,若M 为三棱锥P ABC -外接球上的动点,则点M 到平面ABC 距离的最大值为___________.40.(2022·河南·高三阶段练习(理))如图,在棱长为1111ABCD A B C D -中,若1ABA △绕1A B 旋转一周,则在旋转过程中,三棱锥1A BDC -的体积的取值范围为______.41.(2022·新疆·模拟预测(理))已知正方体1111ABCD A B C D -的棱长为1,M 、N 分别为棱1AA 、11A D 的中点,P 为棱11A B 上的动点,Q 为线段11B D 的中点.则下列结论中正确序号为______.⊥MN CP ⊥;⊥//AQ 平面MNP ;⊥PDQ ∠的余弦值的取值范围是⎣⎦;⊥⊥1APC 周长的最小值为42.(2022·山东聊城·一模)在矩形ABCD 中,E 是AB 的中点,1,2AD AB ==,将ADE 沿DE 折起得到A DE ',设A C '的中点为M ,若将A DE '绕DE 旋转90,则在此过程中动点M 形成的轨迹长度为___________.43.(2022·全国·高三专题练习)在棱长为a 的正方体1111ABCD A B C D -中,M ,N 分别为1BD ,11B C 的中点,点P 在正方体表面上运动,且满足MP CN ⊥,点P 轨迹的长度是___________.44.(2022·全国·高三专题练习)已知等边ABC 的边长为,M N 分别为,AB AC 的中点,将AMN 沿MN 折起得到四棱锥A MNCB -.点P 为四棱锥A MNCB -的外接球球面上任意一点,当四棱锥A MNCB -的体积最大时,P 到平面MNCB 距离的最大值为________.45.(2022·河南·高三开学考试(理))如图,在ABC 中,2BC AC =,120ACB ∠=︒,CD 是ACB ∠的角平分线,沿CD 将ACD △折起到A CD '△的位置,使得平面A CD '⊥平面BCD .若A B '=,则三棱锥A BCD '-外接球的表面积是________.46.(2022·湖北·黄冈中学二模)如图,棱长为1的正方体1111ABCD A B C D -,点P 沿正方形ABCD 按ABCDA 的方向作匀速运动,点Q 沿正方形11B C CB 按111B C CBB 的方向以同样的速度作匀速运动,且点,P Q 分别从点A 与点1B 同时出发,则PQ 的中点的轨迹所围成图形的面积大小是________.47.(2022·四川·成都七中高三阶段练习(理))如图,在正方体1111ABCD A B C D -中,点M ,N 分别为棱11,B C CD 上的动点(包含端点),则下列说法正确的是___________.⊥当M 为棱11B C 的中点时,则在棱CD 上存在点N 使得MN AC ⊥;⊥当M ,N 分别为棱11,B C CD 的中点时,则在正方体中存在棱与平面1A MN 平行;⊥当M ,N 分别为棱11,B C CD 的中点时,则过1A ,M ,N 三点作正方体的截面,所得截面为五边形;⊥直线MN 与平面ABCD ⊥若正方体的棱长为2,点1D 到平面1A MN .48.(2022·全国·高三专题练习(理))如图,在四棱锥S ABCD -中,底面ABCD 是矩形,侧面SCD ⊥底面ABCD ,SAB △是边长为2的等边三角形,点,P Q 分别为侧棱,SA SB 上的动点,记s DP PQ QC =++,则s 的最小值的取值范围是_________.四、双空题49.(2022·全国·高三专题练习(文))祖暅原理:“幂势既同,则积不容异”.即:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.如图⊥是一个椭圆球形瓷凳,其轴截面为图⊥中的实线图形,两段曲线是椭圆22219x y a+=的一部分,若瓷凳底面圆的直径为4,高为6,则2a =__________;利用祖暅原理可求得该椭圆球形瓷凳的体积为__________50.(2022·河南·方城第一高级中学模拟预测(文))某中学开展劳动实习,学生对圆台体木块进行平面切割,已知圆台的上底面半径为1,下底面半径为2,要求切割面经过圆台的两条母线且使得切割面的面积最大.____________. 51.(2022·全国·高三专题练习)斜线OA 与平面α成15°角,斜足为O ,A '为A 在α内的射影,B 为OA的中点,l 是α内过点O 的动直线,若l 上存在点1P ,2P 使1230APB AP B ︒∠=∠=,则12||P P AB 则的最大值是_______,此时二面角12A PP A '--平面角的正弦值是_______52.(2022·重庆南开中学模拟预测)正方体ABCD A B C D ''''-的棱长为2,动点P 在对角线BD '上,过点P 作垂直于BD '的平面α,记平面α截正方体得到的截面多边形(含三角形)的周长为()y f x =,设(0BP x x =∈,. (1)下列说法中,正确的编号为__________.⊥截面多边形可能为四边形;⊥f =⎝⎭⊥函数()f x 的图象关于x =.(2)当x =P ABC -的外接球的表面积为__________.。