高中数学必修二 第一章立体几何 课时作业2.
- 格式:doc
- 大小:359.00 KB
- 文档页数:4
课时作业5 柱体、锥体、台体的表面积与体积(二)基础巩固1.正方体全面积增大为原来的2倍,则它的体积增大为原来的( )A .2倍B .4倍C.倍D .2倍22解析:S 全=6a 2,S ′全=6a ′2=2S 全,∴a ′=a . 2V =a 3,V ′=a ′3=2a 3=2V . 22答案:D2.(2019年安徽高二模拟考试) 已知一个简单几何体的三视图如图1所示,则该几何体的体积为( )图1A .3π+6B .6π+6C .3π+12D. 12解析: 由三视图知,该几何体有四分之一圆锥与三棱锥构成,故体积为V =××π×32×4+××3×3×4=3π+6,故选A. 14131312答案: A3.(2019年晋冀鲁豫高三月考) 若某几何体的三视图如图2所示,则该几何体的体积为( )图2A.B.C .2D .44323图3解析:据三视图分析知,该几何体是如图3所示的棱长为2的正方体被平面解得的三棱锥C -ADE ,且D 是正方体所在棱的中点,所以该几何体的体积V =××2=.13(12×2×2)43答案: A4.(2019年重庆高二月考) 中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图4所示(单位:寸):若π取3,其体积为12. 6(立方寸),则图中的x 的值为________.图4解析:由图可得π××x +3×1×(5.4-x )(12)2=12.6⇒x =1.6. 答案:1.65.某几何体的三视图如图5所示,则该几何体的体积为________.图5解析:由几何体的三视图得到该几何体是由底面直径为2,高为2的圆柱和底面直径为2高为1的半圆锥两部分组成,∴该几何体的体积为V =π×12×2+×π×12×1×=. 131213π6答案:13π6能力提升1.(2019年安徽高三检测) 一个三棱锥的三视图如图6所示,其中正视图、侧视图、俯视图都是直角三角形,则该三棱锥最长的棱长为( )图6A.7 B.2C.3 D.25解析:由三视图可得三棱锥为如图7所示的三棱锥B1ABD,其中底面三角形ABD是直角三角形,两直角边分别为AB=1,AD=3,BB1⊥底面ABD,且BB1=2.图7结合图形可得最长的棱为DB 1==2.故选B. 12+(3)2+222答案: B2.(2019年山东高三模拟)如图8, 一个四棱锥的底面为正方形,其三视图如图8所示,则这个四棱锥的体积为( )图8A .1B .2C .3D .4解析: 由三视图可知高为h ==3,∴V =××2(13)2-221312×2×3=2,应选B.答案: B3.在正方体ABCD -A 1B 1C 1D 1中,三棱锥D 1-AB 1C 的表面积与正方体的表面积的比为( )图9A .1∶1B. 1∶C. 1∶D. 1∶223解析:设正方体ABCD A 1B 1C 1D 1的棱长为a ,则正方体ABCD A 1B 1C 1D 1的表面积为S 2=6a 2,且三棱锥D 1AB 1C 为各棱长均为a 的正四面体,其中一个面的面积为S =××a ×a =212322232a 2,所以三棱锥D 1AB 1C 的表面积为S 1=4×a 2=2a 2,所以三棱323锥D 1AB 1C 的体积与正方体ABCD A 1B 1C 1D 1的表面积之比为S 1∶S 2=1∶.故选C.3答案:C4.如图10,在正方体ABCD A 1B 1C1D 1中,点P 是线段A 1C 1上的动点,则三棱锥P BCD 的俯视图与正视图面积之比的最大值为( )图10A .1 B. 2C.D .23解析:设正方体棱长为1,则三棱锥P BCD 的正视图是底面边长为1,高为1的三角形,面积为×1×1=;1212三棱锥P BCD 的俯视图取最大面积时,P 在A 1处,俯视图面积的最大值为1×1=1,故三棱锥P BCD 的俯视图与正视图面积之比的最大值为2,故选D.答案:D5.如图11,三棱锥A BCD 中,E 是AC 中点,F 在AD 上,且2AF =FD ,若三棱锥A BEF 的体积是2,则四棱锥B ECDF 的体积为________.图11解析:因为==,S△AEFS△ACD 12AE ·AF ·sin A 12AC ·AD ·sin A16V 正=6V A AEF =12,则V B ECDF =10. 答案:106.如图12,圆锥形封闭容器,高为h ,圆锥内水面高为h 1,且h 1=h ,若将圆锥倒置后,圆锥内水面高为h 2,求h 2.13图12解:因为==,所以=.倒置后的体积V 圆锥SOV 圆锥SO ′(23h h)3 827V 水V 圆锥S ′O 11927关系为==,所以h 2= =h .V 水V 圆锥S ′O 1h 23h 31927319h 32731937.如图13,长方体ABCD A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1, D 1C 1上,A 1E = D1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.图13(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值. 解:图14(1)交线围成的正方形EHGF 如图14.(2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8.因为四边形EHGF 为正方形,所以EH =EF =BC =10. 于是MH ==6,AH =10,HB =6.EH 2-EM 2长方体被平面α分为两个高为10的直棱柱,其体积的比值为97. (79也正确)拓展要求1.(2019年安徽蚌埠高三第二次质量检查)如图15,网格纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为( )图15A .15B .16C. D. 503533解析:本题主要考查空间几何体的三视图与体积,考查空间想象能力.由三视图可知,该几何体是四棱锥P ABCD ,如图16所示,则该几何体的体积V =×(×4×4+×2×2)×5=.131212503图16答案:C2.已知一个三棱台的上、下底面分别是边长为20 cm 和30 cm 的正三角形,侧面是全等的等腰梯形,且侧面面积等于上、下底面面积之和,求棱台的高和体积.解:如图17所示,在三棱台ABC A ′B ′C ′中,O ′,O 分别为上、下底面的中心,D ,D ′分别是BC ,B ′C ′的中点,连接OO ′,A ′D ′,AD ,DD ′,则DD ′是等腰梯形BCC ′B ′的高,记为h 0,所以S 侧=3××(20+30)h 0=75h 0.12图17上、下底面面积之和为S 上+S 下=×(202+302)=325343(cm 2).由S 侧=S 上+S 下,得75h 0=325,311所以h 0=(cm). 1333又O ′D ′=××20=(cm), 13321033OD =××30=5(cm), 13323记棱台的高为h ,则h =O ′O =h 02-(OD -O ′D ′)2= (1333)2 -(53-1033)2 =4(cm),3由棱台的体积公式,可得棱台的体积 V =(S 上+S 下+) h 3S 上S 下=×(325+×20×30) 433334=1 900(cm 3).。
2016-2017学年高中数学第1章立体几何初步2 直观图课时作业北师大版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第1章立体几何初步2 直观图课时作业北师大版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第1章立体几何初步2 直观图课时作业北师大版必修2的全部内容。
2 直观图时间:45分钟满分:80分班级________ 姓名________ 分数________一、选择题(每小题5分,共5×6=30分)1.水平放置的梯形的直观图是( )A.梯形 B.矩形C.三角形 D.任意四边形答案:A解析:斜二测画法的规则中平行性保持不变,故选A。
2.利用斜二测画法可以得到:①水平放置的三角形的直观图是三角形;②水平放置的平行四边形的直观图是平行四边形;③水平放置的正方形的直观图是正方形;④水平放置的菱形的直观图是菱形.以上结论正确的是()A.①② B.①C.③④ D.①②③④答案:A解析:因为斜二测画法是一种特殊的平行投影画法,所以①②正确;对于③④,只有平行于x轴的线段长度不变,所以不正确.3.用斜二测画法得到的一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )答案:A解析:直观图中的多边形为正方形,对角线的长为错误!,所以原图形为平行四边形,位于y轴上的对角线的长为2错误!.4.已知一条边在x轴上的正方形的直观图是一个平行四边形,此平行四边形中有一边长为4,则原正方形的面积是()A.16 B.64C.16或64 D.以上都不对答案:C解析:根据直观图的画法,平行于x轴的线段长度不变,平行于y轴的线段变为原来的一半,于是直观图中长为4的边如果平行于x′轴,则正方形的边长为4,面积为16;长为4的边如果平行于y′轴,则正方形的边长为8,面积是64。
第1章 立体几何初步(A )(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.将一个等腰梯形绕它的较长的底边所在的直线旋转一周,所得的几何体包括________________.2.一个三角形在其直观图中对应一个边长为1的正三角形,原三角形的面积为________.3.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是________.4.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角的度数为________.5.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为________.6.一个几何体的三视图如图,该几何体的表面积为________.7.一个水平放置的圆柱形储油桶(如图所示),桶内有油部分所在圆弧占底面圆周长的14,则油桶直立时,油的高度与桶的高度的比值是______.8.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为________.9.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是________(填序号).10.正方体ABCD -A 1B 1C 1D 1中,二面角C 1-AB -C 的平面角等于________.11.矩形ABCD 中,AB =4,BC =3,沿AC 将矩形ABCD 折成一个直二面角B -AC -D ,则四面体ABCD 的外接球的体积为________.12.设平面α∥平面β,A 、C ∈α,B 、D ∈β,直线AB 与CD 交于点S ,且点S 位于平面α,β之间,AS =8,BS =6,CS =12,则SD =________.13.如图所示,在直四棱柱ABCD—A1B1C1D1中,当底面四边形A1B1C1D1满足条件________时,有A1C⊥B1D1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).14.下列四个命题:①若a∥b,a∥α,则b∥α;②若a∥α,b⊂α,则a∥b;③若a∥α,则a平行于α内所有的直线;④若a∥α,a∥b,b⊄α,则b∥α.其中正确命题的序号是________.二、解答题(本大题共6小题,共90分)15.(14分)某个几何体的三视图如图所示(单位:m),(1)求该几何体的表面积(结果保留π);(2)求该几何体的体积(结果保留π).16.(14分)如图所示,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.17.(14分)沿着圆柱的一条母线将圆柱剪开,可将侧面展到一个平面上,所得的矩形称为圆柱的侧面展开图,其中矩形长与宽分别是圆柱的底面圆周长和高(母线长),所以圆柱的侧面积S=2πrl,其中r为圆柱底面圆半径,l为母线长.现已知一个圆锥的底面半径为R,高为H,在其中有一个高为x的内接圆柱.(1)求圆柱的侧面积;(2)x为何值时,圆柱的侧面积最大?18.(16分) 如图所示,长方体ABCD-A1B1C1D1中,M、N分别为AB、A1D1的中点,判断MN与平面A1BC1的位置关系,为什么?19.(16分) 如图,在四面体ABCD中,CB=CD,AD⊥BD,且E、F分别是AB、BD的中点.求证:(1)EF∥面ACD;(2)面EFC⊥面BCD.20.(16分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥面BDE;平面P AC⊥平面BDE;(2)若二面角E-BD-C为30°,求四棱锥P-ABCD的体积.第1章立体几何初步(A) 答案1.一个圆柱、两个圆锥2.6 2解析原图与其直观图的面积比为4∶2,所以34S原=24,所以S原=62.3.24π解析如图所示,由V =Sh 得,S =4,即正四棱柱底面边长为2. ∴A 1O 1=2,A 1O =R =6.∴S 球=4πR 2=24π.4.180°解析 S 底+S 侧=3S 底,2S 底=S 侧,即:2πr 2=πrl ,得2r =l .设侧面展开图的圆心角为θ, 则θπl 180°=2πr ,∴θ=180°. 5.4R6.360解析 由三视图可知该几何体是由下面一个长方体,上面一个长方体组合而成的几何体. ∵下面长方体的表面积为8×10×2+2×8×2+10×2×2=232,上面长方体的表面积为8×6×2+2×8×2+2×6×2=152,又∵长方体表面积重叠一部分,∴几何体的表面积为232+152-2×6×2=360.7.14-12π解析 设圆柱桶的底面半径为R ,高为h ,油桶直立时油面的高度为x ,则⎝⎛⎭⎫14πR 2-12R 2h =πR 2x , 所以x h =14-12π. 8.2 3 解析 由主视图和俯视图可知几何体是正方体切割后的一部分(四棱锥C 1-ABCD),还原在正方体中,如图所示.多面体最长的一条棱即为正方体的体对角线,由正方体棱长AB =2知最长棱的长为23.9.②④解析 当两个平面相交时,一个平面内的两条直线可以平行于另一个平面,故①不对;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线可以相交也可以异面,故③不对;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.10.45°11.1256π 解析 球心O 为AC 中点,半径为R =12AC =52,V =43πR 3=1256π. 12.9解析 由面面平行的性质得AC ∥BD ,AS BS =CS SD, 解得SD =9.13.B 1D 1⊥A 1C 1(答案不唯一)解析 由直四棱柱可知CC 1⊥面A 1B 1C 1D 1,所以CC 1⊥B 1D 1,要使B 1D 1⊥A 1C ,只要B 1D 1⊥平面A 1CC 1,所以只要B 1D 1⊥A 1C 1,还可以填写四边形A 1B 1C 1D 1是菱形,正方形等条件.14.④解析 ①中b 可能在α内;②a 与b 可能异面;③a 可能与α内的直线异面.15.解 由三视图可知:该几何体的下半部分是棱长为2 m 的正方体,上半部分是半径为1 m 的半球.(1)几何体的表面积为S =12×4π×12+6×22-π×12=24+π(m 2). (2)几何体的体积为V =23+12×43×π×13=8+2π3(m 3). 16.解 S 表面=S 圆台底面+S 圆台侧面+S 圆锥侧面=π×52+π×(2+5)×5+π×2×22=(42+60)π.V =V 圆台-V 圆锥=13π(r 21+r 1r 2+r 22)h -13πr 21h ′ =13π(25+10+4)×4-13π×4×2=1483π. 17.解 (1)画圆锥及内接圆柱的轴截面(如图所示).设所求圆柱的底面半径为r ,它的侧面积S 圆柱侧=2πrx .因为r R =H -x H ,所以r =R -R H·x . 所以S 圆柱侧=2πRx -2πR H·x 2. (2)因为S 圆柱侧的表达式中x 2的系数小于零,所以这个二次函数有最大值.这时圆柱的高x =H 2. 故当圆柱的高是已知圆锥的高的一半时,它的侧面积最大.18.解 直线MN ∥平面A 1BC 1,证明如下:∵MD/∈平面A 1BC 1,ND/∈平面A 1BC 1.∴MN ⊄平面A 1BC 1.如图,取A 1C 1的中点O 1,连结NO 1、BO 1.∵NO 1綊12D 1C 1, MB 綊12D 1C 1,∴NO 1綊MB . ∴四边形NO 1BM 为平行四边形.∴MN ∥BO 1.又∵BO 1⊂平面A 1BC 1,∴MN ∥平面A 1BC 1.19.解 (1)∵E ,F 分别是AB ,BD 的中点, ∴EF 是△ABD 的中位线,∴EF ∥AD ,∵EF ⊄面ACD ,AD ⊂面ACD ,∴EF ∥面ACD .(2)∵AD ⊥BD ,EF ∥AD ,∴EF ⊥BD .∵CB =CD ,F 是BD 的中点,∴CF ⊥BD .又EF ∩CF =F ,∴BD ⊥面EFC .∵BD ⊂面BCD , ∴面EFC ⊥面BCD .20.(1)证明连结OE ,如图所示.∵O 、E 分别为AC 、PC 中点,∴OE ∥PA .∵OE ⊂面BDE ,PA ⊄面BDE ,∴PA ∥面BDE .∵PO ⊥面ABCD ,∴PO ⊥BD .在正方形ABCD 中,BD ⊥AC ,又∵PO ∩AC =0,∴BD ⊥面PAC .又∵BD ⊂面BDE ,∴面PAC ⊥面BDE .(2)解 取OC 中点F ,连结EF .∵E 为PC 中点,∴EF 为△POC 的中位线,∴EF ∥PO .又∵PO ⊥面ABCD ,∴EF ⊥面ABCD∵OF ⊥BD ,∴OE ⊥BD .∴∠EOF 为二面角E -BD -C 的平面角, ∴∠EOF =30°.在Rt △OEF 中,OF =12OC =14AC =24a , ∴EF =OF·tan 30°=612a , ∴OP =2EF =66a . ∴S P -ABCD =13×a 2×66a =618a 3.。
1.2.1平面的基本性质学习目标 1.掌握平面的表示法,点、直线与平面的位置关系.2.掌握有关平面的三个公理及三个推论.3.会用符号表示图形中点、线、面之间的位置关系.知识点一平面的概念思考几何里的“平面”有边界吗?用什么图形表示平面?答案没有.水平放置的正方形的直观图梳理(1)平面的概念广阔的草原、平静的湖面都给我们以平面的形象.和点、直线一样,平面也是从现实世界中抽象出来的几何概念.(2)平面的画法(3)平面的表示方法平面通常用希腊字母α,β,γ…表示,也可以用平行四边形的两个相对顶点的字母表示,如图中的平面α、平面AC等.知识点二点、线、面之间的位置关系思考直线和平面都是由点组成的,联系集合的观点,点和直线,平面的位置关系,如何用符号来表示?直线和平面呢?答案点和直线,平面的位置关系可用数学符号“∈”或“∉”表示,直线和平面的位置关系,可用数学符号“⊂”或“⊄”表示.梳理点、直线、平面之间的基本位置关系及语言表达知识点三平面的基本性质思考1直线l与平面α有且仅有一个公共点P.直线l是否在平面α内?有两个公共点呢?答案前者不在,后者在.思考2观察下图,你能得出什么结论?答案不共线的三点可以确定一个平面.思考3观察正方体ABCD—A1B1C1D1(如图所示),平面ABCD与平面BCC1B1有且只有两个公共点B、C吗?答案不是,平面ABCD与平面BCC1B1相交于直线BC.梳理类型一 点、直线、平面之间的位置关系的符号表示例1 如图,用符号表示下列图形中点、直线、平面之间的位置关系.解 在(1)中,α∩β=l ,a ∩α=A ,a ∩β=B .在(2)中,α∩β=l,a⊂α,b⊂β,a∩l=P,b∩l=P.反思与感悟(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.(2)根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.跟踪训练1根据下列符号表示的语句,说明点、线、面之间的位置关系,并画出相应的图形:(1)A∈α,B∉α;(2)l⊂α,m∩α=A,A∉l;(3)平面ABD∩平面BDC=BD,平面ABC∩平面ADC=AC.解(1)点A在平面α内,点B不在平面α内,如图①.(2)直线l在平面α内,直线m与平面α相交于点A,且点A不在直线l上,如图②.(3)平面ABD与平面BDC相交于BD,平面ABC与平面ADC相交于AC,如图③.类型二点线共面例2如图,已知:a⊂α,b⊂α,a∩b=A,P∈b,PQ∥a,求证:PQ⊂α.证明因为PQ∥a,所以PQ与a确定一个平面β,所以直线a⊂β,点P∈β.因为P∈b,b⊂α,所以P∈α.又因为a⊂α,所以α与β重合,所以PQ⊂α.引申探究将本例中的两条平行线改为三条,即求证:和同一条直线相交的三条平行直线一定在同一平面内.解已知:a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:a,b,c和l共面.证明:如图,∵a∥b,∴a与b确定一个平面α.∵l∩a=A,l∩b=B,∴A∈α,B∈α.又∵A∈l,B∈l,∴l⊂α.∵b∥c,∴b与c确定一个平面β,同理l⊂β.∵平面α与β都包含l和b,且b∩l=B,由公理3的推论知:经过两条相交直线有且只有一个平面,∴平面α与平面β重合,∴a,b,c和l共面.反思与感悟证明多线共面的两种方法(1)纳入法:先由部分直线确定一个平面,再证明其他直线在这个平面内.(2)重合法:先说明一些直线在一个平面内,另一些直线在另一个平面内,再证明两个平面重合.跟踪训练2已知l1∩l2=A,l2∩l3=B,l1∩l3=C如图所示.求证:直线l1,l2,l3在同一平面内.证明方法一(纳入平面法)∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴B∈l2.又∵l2⊂α,∴B∈α.同理可证C∈α.∵B∈l3,C∈l3,∴l3⊂α.∴直线l1,l2,l3在同一平面内.方法二(辅助平面法)∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴l2,l3确定一个平面β.∵A∈l2,l2⊂α,∴A∈α.∵A∈l2,l2⊂β,∴A∈β.同理可证B∈α,B∈β,C∈α,C∈β.∴不共线的三个点A,B,C既在平面α内,又在平面β内,∴平面α和β重合,即直线l1,l2,l3在同一平面内.类型三点共线、线共点问题命题角度1点共线问题例3如图,在正方体ABCD—A1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,求证:B,Q,D1三点共线.证明如图,连结A1B,CD1,显然B∈平面A1BCD1,D1∈平面A1BCD1.∴BD1⊂平面A1BCD1.同理BD1⊂平面ABC1D1.∴平面ABC1D1∩平面A1BCD1=BD1.∵A1C∩平面ABC1D1=Q,∴Q∈平面ABC1D1.又∵A1C⊂平面A1BCD1,∴Q∈平面A1BCD1.∴Q在平面A1BCD1与ABC1D1的交线上,即Q∈BD1,∴B,Q,D1三点共线.反思与感悟证明多点共线通常利用公理2,即两相交平面交线的惟一性,通过证明点分别在两个平面内,证明点在相交平面的交线上,也可选择其中两点确定一条直线,然后证明其他点也在直线上.跟踪训练3已知△ABC在平面α外,其三边所在的直线满足AB∩α=P,BC∩α=Q,AC ∩α=R,如图所示.求证:P,Q,R三点共线.证明方法一∵AB∩α=P,∴P∈AB,P∈平面α.又AB⊂平面ABC,∴P∈平面ABC.∴由公理2可知:点P在平面ABC与平面α的交线上.同理可证Q、R也在平面ABC与平面α的交线上.∴P 、Q 、R 三点共线. 方法二 ∵AP ∩AR =A ,∴直线AP 与直线AR 确定平面APR .又∵AB ∩α=P ,AC ∩α=R ,∴平面APR ∩平面α=PR .∵B ∈平面APR ,C ∈平面APR ,∴BC ⊂平面APR .∵Q ∈BC ,∴Q ∈平面APR .又Q ∈α,∴Q ∈PR , ∴P 、Q 、R 三点共线. 命题角度2 线共点问题例4 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 为AB 的中点,F 为AA 1的中点.求证:CE 、D 1F ,DA 三线交于一点.证明 如图,连结EF ,D 1C ,A 1B .∵E 为AB 的中点,F 为AA 1的中点,∴EF 綊12A 1B .又∵A 1B 綊D 1C , ∴EF 綊12D 1C ,∴E ,F ,D 1,C 四点共面, ∴D 1F 与CE 相交,设交点为P . 又D 1F ⊂平面A 1D 1DA , CE ⊂平面ABCD ,∴P 为平面A 1D 1DA 与平面ABCD 的公共点. 又平面A 1D 1DA ∩平面ABCD =DA , 根据公理2,可得P ∈DA , 即CE 、D 1F 、DA 相交于一点.反思与感悟 证明三线共点问题可把其中一条作为分别过其余两条直线的两个平面的交线,然后再证两条直线的交点在此直线上.此外还可先将其中一条直线看作某两个平面的交线,证明该交线与另两条直线分别交于两点,再证点重合,从而得三线共点.跟踪训练4已知:平面α,β,γ两两相交于三条直线l1,l2,l3,且l1,l2不平行.求证:l1,l2,l3相交于一点.证明如图,α∩β=l1,β∩γ=l2,α∩γ=l3.∵l1⊂β,l2⊂β,且l1,l2不平行,∴l1与l2必相交.设l1∩l2=P,则P∈l1⊂α,P∈l2⊂γ,∴P∈α∩γ=l3,∴l1,l2,l3相交于一点P.1.用符号表示“点A在直线l上,l在平面α外”为______.答案A∈l,l⊄α解析∵点A在直线l上,∴A∈l,∵l在平面α外,∴l⊄α.2.平面α,β有公共点A,则α,β有________个公共点.答案无数解析由公理2可得.3.下图中图形的画法正确的是________.(填序号)答案①③④⑤4.空间两两相交的三条直线,可以确定的平面数是______.答案1或3解析若三条直线两两相交,且不共点,则只能确定1个平面;若三条直线两两相交,且共点,则可以确定1个或3个平面.5.如图,a∩b=A,a∩c=B,a∩d=F,b∩c=C,c∩d=D,b∩d=E,求证:a,b,c,d 共面.证明因为A,B,C三点不共线,所以A,B,C三点确定一个平面,设为α.因为A∈a,B∈a,所以a⊂α,因为A∈b,C∈b,所以b⊂α,因为B∈c,C∈c,所以c⊂α,所以a,b,c都在α内.因为D∈c,E∈b,所以D∈α,E∈α.又因为D∈d,E∈d,所以d⊂α,所以a,b,c,d共面.1.解决立体几何问题首先应过好三大语言关,即实现这三种语言的相互转换,正确理解集合符号所表示的几何图形的实际意义,恰当地用符号语言描述图形语言,将图形语言用文字语言描述出来,再转换为符号语言.文字语言和符号语言在转换的时候,要注意符号语言所代表的含义,作直观图时,要注意线的实虚.2.在处理点线共面、三点共线及三线共点问题时初步体会三个公理的作用,突出先部分再整体的思想.课时作业一、填空题1.下列推理正确的是________.(填序号)①若A∈l,A∈α,B∈l,B∈α,则l⊂α;②若A∈α,A∈β,B∈α,B∈β,则α∩β=AB;③若A∈α,A∈l,则l⊂α;④若A,B,C∈α,A,B,C∈β,且A,B,C不共线,则α,β重合.答案①②④解析由公理1可知①正确;由公理2可知②正确;若A∈α,A∈l,则l⊂α或l与α相交,即l⊂α不一定成立,③错误;由公理3可知④正确.2.下列说法中,正确的是________.(填序号)①一条直线和一个点确定一个平面;②三角形一定是平面图形;③空间中两两相交的三条直线确定一个平面;④梯形一定是平面图形.答案②④解析因为一条直线和该直线上的一个点可确定无数个平面,所以①不正确;因为三角形的三个顶点确定一个平面,所以②正确;因为长方体中经过同一顶点的三条棱所在的直线可确定三个平面,所以③不正确;因为梯形上下底平行,而两平行线确定一个平面,所以④正确.3.如图所示,用符号语言可表示为________.(填序号)①α∩β=m,n⊂α,m∩n=A;②α∩β=m,n∈α,m∩n=A;③α∩β=m,n⊂α,A⊂m,A⊂n;④α∩β=m,n∈α,A∈m,A∈n.答案①解析很明显,α与β交于m,n在α内,m与n交于A,故选①.4.平面α∩平面β=l,点M∈α,N∈α,点P∈β,且P∉l,又MN∩l=R,过M,N,P三点所确定的平面记为γ,则β∩γ=________.答案PR解析如图,MN⊂γ,R∈MN,∴R∈γ.∵R∈l,∴R∈β.∵P∈γ,P∈β,∴β∩γ=PR.5.空间任意4点最多可以确定的平面个数为________.答案 4解析可以想象三棱锥的4个顶点,它们总共确定4个平面.6.过四条两两平行的直线中的两条最多可确定的平面个数是________.答案 6解析如四棱柱中四条侧棱两两平行,过其中两条可确定4个侧面和2个对顶面,共确定6个平面.7.如图,已知D,E是△ABC的边AC,BC上的点,平面α经过D,E两点,若直线AB与平面α的交点是P,则点P与直线DE的位置关系是________.答案P∈直线DE解析因为P∈AB,AB⊂平面ABC,所以P∈平面ABC.又P∈α,平面ABC∩平面α=DE,所以P∈直线DE.8.下列命题中正确的是________.(填序号)①空间四点中有三点共线,则此四点必共面;②两两相交的三个平面所形成的三条交线必共点;③空间两组对边分别相等的四边形是平行四边形;④平面α和平面β可以只有一个交点.答案①解析借助三棱柱,可知②错误;借助正四面体,可知③错误;由公理2,可知④错误;由推论1,可知①正确.9.在底面是平行四边形的四棱柱ABCD—A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为________.答案 5解析如图,底面是平行四边形的四棱柱ABCD—A1B1C1D1中的每一个面都是平行四边形,与AB,CC1都共面的棱为BC,D1C1,DC,AA1,BB1,共5条.10.如图,在棱长为a的正方体ABCD-A1B1C1D1中,M,N分别为AA1,C1D1的中点,过D,M,N三点的平面与直线A1B1交于点P,则线段PB1的长为________.答案 34a解析 延长DM 交D 1A 1的延长线于G 点,连结GN 交A 1B 1于点P .由M ,N 分别为AA 1,C 1D 1的中点知,P 在A 1B 1的14(靠近A 1)处,故线段PB 1的长为34a .11.在正方体ABCD -A 1B 1C 1D 1中,P ,Q ,R 分别是AB ,AD ,B 1C 1的中点,那么正方体经过P ,Q ,R 的截面图形是________.答案 正六边形解析 如图,连结B 1D 1,作RG ∥B 1D 1交C 1D 1于G ,连结QP 并延长与CB 的延长线交于M ,连结MR 交BB 1于E ,连结PE ,PE 为截面与正方体的交线.同理,延长PQ 交CD 的延长线于N ,连结NG 交DD 1于F ,连结QF .∴截面PQFGRE 为正六边形.二、解答题12.已知:A ∈l ,B ∈l ,C ∈l ,D ∉l ,如图所示.求证:直线AD ,BD ,CD 共面.证明 因为D ∉l ,所以l 与D 可以确定一个平面α,因为A ∈l ,所以A ∈α.又D ∈α,所以AD ⊂α.同理,BD ⊂α,CD ⊂α,所以AD ,BD ,CD 在同一平面α内,即直线AD ,BD ,CD 共面.13.如图,直角梯形ABDC 中,AB ∥CD ,AB >CD ,S 是直角梯形ABDC 所在平面外一点,画出平面SBD 和平面SAC 的交线.解 由题意得点S 是平面SBD 和平面SAC 的一个公共点,即点S 在交线上. 由于AB >CD ,则分别延长AC 和BD 交于点E , 如图所示,∵E ∈AC ,AC ⊂平面SAC , ∴E ∈平面SAC . 同理可证E ∈平面SBD .∴点E 在平面SBD 和平面SAC 的交线上,则连结SE ,直线SE 就是平面SBD 和平面SAC 的交线. 三、探究与拓展14.空间中有A ,B ,C ,D ,E 五个点,已知A ,B ,C ,D 在同一个平面内,B ,C ,D ,E 在同一个平面内,那么这五个点________.(填序号) ①共面; ②不一定共面; ③不共面; ④以上都不对.答案 ②解析 当B ,C ,D 三点共线时,B ,C ,D 三点不能确定平面.A ,B ,C ,D 所在的平面和B ,C ,D ,E 所在的平面可能不同,所以A ,B ,C ,D ,E 五点不一定共面.15.如图所示,在空间四边形ABCD 中,E ,F 分别是AB 和CB 上的点,G ,H 分别是CD 和AD 上的点,且AE EB =CF FB =1,AH HD =CGGD=2.求证:EH ,BD ,FG 三条直线相交于同一点.证明 如图,连结EF ,GH .因为AE EB =CF FB =1,AH HD =CGGD =2,所以EF ∥AC ,HG ∥AC ,且EF ≠GH ,所以EH ,FG 共面,且EH ,FG 不平行.不妨设EH ∩FG =O ,因为O ∈EH ,EH ⊂平面ABD ,所以O ∈平面ABD .因为O ∈FG ,FG ⊂平面BCD ,所以O ∈平面BCD .又因为平面ABD ∩平面BCD =BD ,所以O ∈BD ,所以EH ,BD ,FG 三条直线相交于同一点O .。
课时目标结合模型、动态的或静态的直观图,了解、认识和研究多面体、棱柱的结构特征.(2)(3)(1)(4)将所给的四个展开图均还原成正方体,在图(1)中,①⑤,②④,③⑥分别为相中,②⑤,①④,③⑥分别为相对的面;在图(3)中,②⑤,①④,③⑥分3.下列图形中,不是三棱柱的展开图的是()答案:C解析:根据三棱柱的立体图,可以知道选项C中的图形不是三棱柱的展开图.4.下列说法正确的是()A.棱柱的侧面都是矩形B.棱柱的侧棱不全相等C.棱柱是有两个面互相平行,其余各面都是四边形的几何体D.棱柱中至少有两个面平行答案:D解析:根据棱柱的概念,可以知道棱柱中至少有两个面平行,所以选D.5.下列关于直棱柱的描述不正确的是()A.侧棱都相等,侧面是矩形B.底面与平行于底面的截面是全等的多边形C.侧棱长等于棱柱的高D.有两个侧面是矩形的棱柱是直棱柱答案:D解析:由直棱柱的定义可知A,B,C描述均正确.对于D,举反例,如图是在直棱柱上过AD,B′C′分别作平行平面截得的棱柱ABCD-A′B′C′D′,该棱柱有两个侧面ADD′A′,BCC′B′都是矩形,但该棱柱不是直棱柱.6.如图,已知长方体ABCD—A1B1C1D1,过BC和AD分别作一个平面交底面A1B1C1D1于EF、PQ,则长方体被分成的三个几何体中,棱柱的个数是()A.0个B.1个C.2个D.3个答案:D解析:共有3个:棱柱AA1P—DD1Q,棱柱ABEP—DCFQ,棱柱BEB1—CFC1.个几何体中,有________个是棱柱.图中①③⑤都是棱柱,故有3个是棱柱.C1D1的棱长为a,P为AA1的中点,Q为棱________.如图所示,将侧面AA1B1B和侧面BB1C1C展开到同一平面内,可知当最小.ABCD-A′B′C′D′,当用平面各部分形成的多面体是棱柱吗?如果是,请指出底面及侧棱;如果不是,请右侧部分是棱柱.它是三棱柱BEB′-CFC是侧棱.左侧部分也是棱柱.它是四棱柱ABEA′-′,EF,BC,AD为侧棱.直平行六面体各棱长都等于a,底面四边形的一个角为解:如图,直平行六面体AC 1的各棱长为a ,底面平行四边形ABCD 的∠BAD =60°. 对角面ACC 1A 1、BB 1D 1D 是矩形,则对角线AC 1=A 1C ,BD 1=B 1D . ∵此直平行六面体各棱长相等, ∴两底面是菱形.在菱形ABCD 中,∠BAD =60°,∠ABC =120°, 则BD =AB =a ,AC =2AO =3a ,在Rt △A 1AC 中,A 1C =A 1A 2+AC 2=2a . 在Rt △B 1BD 中,B 1D =B 1B 2+BD 2=2a .能力提升12.(5分)一个正三棱柱的底面边长是4,高是6,过下底面的一条棱和该棱所对的上底面的顶点作截面,求此截面的面积.解:如图,正三棱柱ABC —A ′B ′C ′,符合题意的截面为△A ′BC .在Rt △A ′B ′B 中,A ′B ′=4,BB ′=6,所以A ′B =A ′B ′2+BB ′2=42+62=213.在等腰三角形A ′BC 中,O 为BC 的中点,连接A ′O ,BO =12×4=2.因为A ′O ⊥BC ,所以A ′O =A ′B 2-BO 2=(213)2-22=4 3.所以S △A ′BC =12BC ·A ′O =12×4×43=8 3.所以截面的面积为8 3.13.(15分)如图所示,在正三棱柱ABC —A 1B 1C 1中,AB =3,AA 1=4,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短路线长为29,设这条最短路线与CC 1的交点为N .求:(1)该三棱柱的侧面展开图的对角线长; (2)PC 和NC 的长.解:(1)正三棱柱ABC —A 1B 1C 1的侧面展开图是一个长为9、宽为4的矩形,其对角线长为92+42=97.(2)如图所示,将侧面沿A 1A 剪开展平,由点P 沿棱柱侧面经过棱CC 1到点M 的最短路径为线段MP .设PC =x ,在Rt △MAP 中,有(3+x )2+22=(29)2⇒x =2.故PC =2,NC =45.。
人教B版必修二:第一章-立体几何初步-课时作业【2.】及答案一、选择题1.棱柱的侧面都是()A.三角形B.四边形C.五边形D.矩形【解析】由棱柱的性质可知,棱柱的侧面都是四边形.【答案】 B2.棱锥的侧面和底面可以都是()A.三角形B.四边形C.五边形D.六边形【解析】三棱锥的侧面和底面均是三角形.【答案】 A3.四棱柱有几条侧棱,几个顶点()A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】四棱柱有四条侧棱、八个顶点(可以结合正方体观察求得).【答案】 C图1-1-174.如图1-1-17,能推断这个几何体可能是三棱台的是()A.A1B1=2,AB=3,B1C1=3,BC=4B.A1B1=1,AB=2,B1C1=1.5,BC=3,A1C1=2,AC=3 C.A1B1=1,AB=2,B1C1=1.5,BC=3,A1C1=2,AC=4 D.AB=A1B1,BC=B1C1,CA=C1A1【解析】由于棱台是由平行于底面的平面截棱锥得到的几何体,所以要使结论成立,只需A 1B 1AB =B 1C 1BC =A 1C 1 AC 便可.经验证C 选项正确.【答案】 C5.(2013·郑州高一检测)观察如图1-1-18的四个几何体,其中判断不正确的是( )图1-1-18A .①是棱柱B .②不是棱锥C .③不是棱锥D .④是棱台【解析】结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B 错误.【答案】 B 二、填空题图1-1-196.在如图1-1-19所示的长方体中,连接OA,OB,OD和OC 所得的几何体是________.【解析】此几何体由△OAB,△OAD,△ODC,△OBC和正方形ABCD围成,是四棱锥.【答案】四棱锥7.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.【解析】面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱.【答案】5698.用6根长度相等的木棒,最多可以搭成______个三角形.【解析】用三根木棒,摆成三角形,用另外3根木棒,分别从三角形的三个顶点向上搭起,搭成一个三棱锥,共4个三角形.【答案】 4三、解答题9.根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点.【解】(1)这是一个上、下底面是平行四边形,四个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥,其中六边形面是底,其余的三角形面是侧面.(3)这是一个三棱台,其中相似的两个三角形面是底面,其余三个梯形面是侧面.10.如图1-1-20,在正方形ABCD中,E、F分别为AB、BC 的中点,现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.问:(1)依据题意知该几何体是什么几何体?(2)这个几何体有几个面构成,每个面的三角形是什么三角形?图1-1-20【解】(1)三棱锥.(2)这个几何体由四个面构成,即面DEF,面DFP,面DEP,面EFP.由平面几何知识可知DE=DF,∠DPE=∠EPF=∠DPF=90°,所以△DEF为等腰三角形,△DFP、△DEP为直角三角形,△EFP为等腰直角三角形.11.如图1-1-21,在透明塑料制成的长方体ABCD—A1B1C1D1容器中灌进一些水,将容器底面一边BC置于地面上,再将容器倾斜,随着倾斜程度的不同,水的形状形成如下图(1)(2)(3)三种形状.(阴影部分)请你说出这三种形状分别是什么名称,并指出其底面.图1-1-21【解】(1)是四棱柱,底面是四边形EFGH和四边形ABCD;(2)是四棱柱,底面是四边形ABFE和四边形DCGH;(3)是三棱柱,底面是△EBF和△HCG.。
第3课时直线与平面垂直的判定【课时目标】1.理解直线与平面垂直的定义.2.掌握直线与平面垂直的判定定理并能灵活应用.1.如果直线a与平面α内的__________________,我们就说直线a与平面α互相垂直,记作:________.图形如图所示.2.从平面外一点引平面的垂线,这个点和________间的距离,叫做这个点到这个平面的距离.3.直线与平面垂直的判定定理:如果一条直线和一个平面内的两条________直线垂直,那么这条直线______于这个平面.图形表示:用符号表示为:______________________________________________________________.一、选择题1.下列命题中正确的是________(填序号).①如果直线l与平面α内的无数条直线垂直,则l⊥α;②如果直线l与平面α内的一条直线垂直,则l⊥α;③如果直线l不垂直于α,则α内没有与l垂直的直线;④如果直线l不垂直于α,则α内也可以有无数条直线与l垂直.2.直线a⊥直线b,b⊥平面β,则a与β的关系是________.3.若a、b、c表示直线,α表示平面,下列条件中能使a⊥α为________.(填序号)①a⊥b,b⊥c,b⊂α,c⊂α;②a⊥b,b∥α;③a∩b=A,b⊂α,a⊥b;④a∥b,b⊥α.4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B 的动点,且PC⊥AC,则△ABC的形状为__________三角形.5.如图①所示,在正方形SG1G2G3中,E、F分别是边G1G2、G2G3的中点,D是EF的中点,现沿SE、SF及EF把这个正方形折成一个几何体(如图②使G1、G2、G3三点重合于一点G),则下列结论中成立的有________(填序号).①SG⊥面EFG;②SD⊥面EFG;③GF⊥面SEF;④GD⊥面SEF.6.△ABC的三条边长分别是5、12、13,点P到三点的距离都等于7,那么P到平面ABC 的距离为__________________________________________________________________.7.如图所示,PA⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为________.8.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件______时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).9.如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN 是直角,则∠C1MN=________.二、解答题10.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.11.如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F 分别是AB,PC的中点,PA=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.能力提升12.如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证B1O⊥平面PAC.13.如图所示,△ABC中,∠ABC=90°,SA⊥平面ABC,过点A向SC和SB引垂线,垂足分别是P、Q,求证:(1)AQ⊥平面SBC;(2)PQ⊥SC.1.直线和平面垂直的判定方法 (1)利用线面垂直的定义. (2)利用线面垂直的判定定理.(3)利用下面两个结论:①若a ∥b ,a ⊥α,则b ⊥α;②若α∥β,a ⊥α,则a ⊥β.2.在线面垂直的问题中,通过直线与直线垂直,可以证明直线与平面垂直;直线与平面垂直后,直线和平面内的任何直线都垂直.这样,就形成了线线垂直与线面垂直连环使用的思维形式,它对解题方法、策略乃至人们的思维,无疑都是一种提示.第3课时 直线与平面垂直的判定 答案知识梳理1.任意一条直线都垂直 a ⊥α 2.垂足3.相交 垂直 m ,n ⊂α,m ∩n =O ,l ⊥m ,l ⊥n ⇒l ⊥α 作业设计1.④ 2.a ⊂β或a ∥β 3.④ 4.直角解析 易证AC ⊥面PBC ,所以AC ⊥BC . 5.① 6.323解析 由P 到三个顶点距离相等.可知,P 为△ABC 的外心,又△ABC 为直角三角形,∴P 到平面ABC 的距离为h =PD =72-⎝⎛⎭⎫1322=323.7.4解析⎭⎪⎬⎪⎫PA ⊥平面ABC BC ⊂平面ABC ⇒⎭⎪⎬⎪⎫PA ⊥BC AC ⊥BC ⇒BC ⊥平面PAC ⇒BC ⊥PC , ∴直角三角形有△PAB 、△PAC 、△ABC 、△PBC . 8.∠A 1C 1B 1=90° 解析如图所示,连结B 1C ,由BC =CC 1,可得BC 1⊥B 1C ,因此,要证AB 1⊥BC 1,则只要证明BC 1⊥平面AB 1C ,即只要证AC ⊥BC 1即可,由直三棱柱可知,只要证AC ⊥BC 即可. 因为A 1C 1∥AC ,B 1C 1∥BC ,故只要证A 1C 1⊥B 1C 1即可.(或者能推出A 1C 1⊥B 1C 1的条件,如∠A 1C 1B 1=90°等) 9.90°解析 ∵B 1C 1⊥面ABB 1A 1, ∴B 1C 1⊥MN . 又∵MN ⊥B 1M , ∴MN ⊥面C 1B 1M , ∴MN ⊥C 1M . ∴∠C 1MN =90°.10.证明 在平面B 1BCC 1中, ∵E 、F 分别是B 1C 1、B 1B 的中点, ∴△BB 1E ≌△CBF , ∴∠B 1BE =∠BCF , ∴∠BCF +∠EBC =90°,∴CF ⊥BE ,又AB ⊥平面B 1BCC 1,CF ⊂平面B 1BCC 1, ∴AB ⊥CF ,AB ∩BE =B ,∴CF ⊥平面EAB . 11.证明 (1)∵PA ⊥底面ABCD , ∴CD ⊥PA .又矩形ABCD 中,CD ⊥AD ,且AD ∩PA =A , ∴CD ⊥平面PAD , ∴CD ⊥PD .(2)取PD 的中点G ,连结AG ,FG .又∵G 、F 分别是PD ,PC 的中点,∴GF 綊12CD ,∴GF 綊AE ,∴四边形AEFG 是平行四边形,∴AG ∥EF . ∵PA =AD ,G 是PD 的中点, ∴AG ⊥PD ,∴EF ⊥PD ,∵CD ⊥平面PAD ,AG ⊂平面PAD . ∴CD ⊥AG .∴EF ⊥CD .∵PD ∩CD =D ,∴EF ⊥平面PCD .12.证明 连结AB 1,CB 1,设AB =1. ∴AB 1=CB 1=2,∵AO =CO ,∴B 1O ⊥AC . 连结PB 1.∵OB 21=OB 2+BB 21=32, PB 21=PD 21+B 1D 21=94,OP 2=PD 2+DO 2=34,∴OB 21+OP 2=PB 21. ∴B 1O ⊥PO ,又∵PO ∩AC =O , ∴B 1O ⊥平面PAC .13.证明 (1)∵SA ⊥平面ABC ,BC ⊂平面ABC , ∴SA ⊥BC .又∵BC ⊥AB ,SA ∩AB =A , ∴BC ⊥平面SAB . 又∵AQ ⊂平面SAB ,∴BC ⊥AQ .又∵AQ ⊥SB ,BC ∩SB =B , ∴AQ ⊥平面SBC .(2)∵AQ ⊥平面SBC ,SC ⊂平面SBC , ∴AQ ⊥SC .又∵AP ⊥SC ,AQ ∩AP =A , ∴SC ⊥平面APQ .∵PQ ⊂平面APQ ,∴PQ ⊥SC .。
第一章立体几何初步§1简单几何体1.1 简单旋转体1.2 简单多面体(教师用书独具)●三维目标1.知识与技能(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)掌握简单几何体的分类.2.过程与方法通过对简单几何体结构的描述和判断,培养学生的观察能力和空间想象能力.3.情感、态度与价值观通过对简单几何体的学习,体会数学的应用价值,增加学生学习数学的兴趣.●重点难点重点:简单几何体的结构特征.难点:简单几何体的分类.教学时要从生活空间里各式各样的几何体的特点入手,引导学生观察、归纳出几何体的结构特征,进而认识旋转体与多面体,找准彼此的分类特征.(教师用书独具)●教学建议本节内容是学习立体几何的第一节,是对简单几何体的初步认识,为以后学习立体几何内容作好图形基础.本节课宜采用观察总结式教学模式,即在教学过程中,让学生观察现实生活的几何体,在老师的引导下,去认识简单的旋转体和简单的多面体,让学生观察、讨论、总结出各几何体的特征,让学生学会把具体生活空间几何体抽象到数学中的立体几何体.●教学流程创设问题情景,引出问题,旋转体与多面体的特征是什么?⇒引导学生结合现实空间几何体来认识圆柱、圆锥、圆台、球与棱柱、棱锥、棱台⇒通过例1及其互动探究,使学生掌握平面图形的旋转问题⇒通过例2及其变式训练,使学生掌握简单多面体的特征⇒通过例3及变式训练,使学生认识简单组合体的构成⇒归纳整理,进行课堂小结整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈、矫正课标解读1.认识简单旋转体、简单多面体的结构特征.并能运用这些特征描述现实生活中简单物体的结构(难点).2.掌握简单几何体的分类(重点).简单旋转体观察下列图形思考它们有什么共同特点?是怎样形成的?【提示】共同特点:组成它们的面不全是平面图形.可以由平面图形旋转而成.1.旋转体的定义:一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面;封闭的旋转面围成的几何体叫作旋转体.2.圆柱、圆锥、圆台的概念及比较名称定义图形表示相关概念球以半圆的直径所在的直线为旋转轴,将半圆旋转所形成的曲面叫作球面,球面所围成的几何体叫作球体,简称球球心:半圆的圆心球的半径:连接球心和球面上任意一点的段球的直径:连接球面上两点并且过球心的段圆柱、圆锥、圆台分别以矩形的一边、直角三角形的一条直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫作圆柱、圆锥、圆台高:在旋转轴上这条边的长度底面:垂直于旋转轴的边旋转而成的圆面侧面:不垂直于旋转轴的边旋转而成的曲面母线:不垂直于旋转轴的边旋转,无论转到什么位置都叫作侧面的母线简单多面体观察下列图形思考它们有什么共同特征?【提示】组成几何体的每个面都是平面多边形.1.多面体的定义把若干个平面多边形围成的几何体叫作多面体.其中棱柱、棱锥、棱台是简单多面体.2.棱柱、棱锥、棱台的结构特征图形表示棱柱AC′或棱柱ABCDE-A′B′C′D′E′棱锥S-AC或棱锥S-ABCDE棱台AC′或棱台ABCD-A′B′C′D′结构特征有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行有一个面为多边形,其余各面为有一个公共顶点的三角形用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分侧棱平行且相等相交于一点,但不一定相等延长线交于一点侧面平行四边形三角形梯形底面平行且全等的多边形多边形平行且边数相等的多边形平面图形的旋转一个有30°角的直角三角板绕其各条边所在直线旋转所得几何体是圆锥吗?如果以斜边上的高所在的直线为轴旋转180°得到什么图形?旋转360°又得到什么图形?【思路探究】解答本题可先分析各种可能的旋转轴,然后根据旋转体的有关概念及空间想象能力进行判断.【自主解答】图(1)、(2)旋转一周得到的几何体是圆锥;图(3)旋转一周所得几何体是两个圆锥拼接而成的几何体;图(4)旋转180°是两个半圆锥的组合体,旋转360°,旋转轴左侧的直角三角形旋转得到的圆锥隐藏于右侧直角三角形旋转得到的圆锥内.1.平面图形的旋转问题一方面要观察平面图形的形状,另一方面要注意旋转轴的位置.2.线段绕轴旋转一周后形成图形的意义(1)垂直于旋转轴且与旋转轴有交点的线段旋转所得的图形是圆面;(2)垂直于旋转轴但与旋转轴没有交点的线段旋转所得的图形是圆环面;(3)不垂直于旋转轴且与旋转轴有交点的线段旋转所得的图形是圆锥侧面;(4)不垂直于旋转轴且与旋转轴没有交点的线段旋转所得的图形是圆台侧面;(5)与旋转轴平行的线段旋转所得的图形是圆柱侧面.若将本例中的三角板绕直线l旋转360°(如图1-1-1,其中三角形斜边上的高与直线l垂直),得到什么图形?图1-1-1【解】旋转360°,得一个圆柱挖去以圆柱上下两个底面为底面的两个圆锥而成的几何体.多面体的结构特征如图1-1-2所示是长方体ABCD—A′B′C′D′,当用平面BCEF把这个长方体分成两部分后,各部分形成的多面体是棱柱吗?若不是,请说明理由;若是,请指出其底面和侧棱.图1-1-2【思路探究】(1)所得的两部分中哪两个面是互相平行的?(2)若用平行平面作为棱柱的底面,各部分是否是棱柱?【自主解答】截面BCEF右方部分是棱柱BB′F—CC′E,其中平面BB′F和平面CC′E 是其底面,BC,B′C′,FE是其侧棱,截面BCEF左方部分是棱柱ABFA′—DCED′,其中四边形ABFA′和DCED′是其底面,AD,BC,FE,A′D′是其侧棱.1.对于棱柱,不要只认为底面就是上、下位置,如本题,底面可放在前后位置.2.认识、判断一个多面体的结构特征,主要从侧面、侧棱、底面等角度描述,因此只有理解并掌握好各几何体的概念,才能认清其特征.下列几何体中棱柱的个数为( )图1-1-3A.5B.4C.3D.2【解析】①③是棱柱,②④⑤⑥不是棱柱.【答案】 D简单组合体的构成观察图中的组合体,分析它们是由哪些简单几何体组成?图1-1-4【思路探究】认真分析所给几何体的结构,根据简单几何体的特征来说明其组成.【自主解答】图(1)是由一个四棱柱在它的上、下底面上向内挖去一个三棱柱形成的组合体.图(2)是由一个四棱柱和一个底面与四棱柱上底面重合的四棱锥组合而成的组合体.图(3)是由一个三棱柱和一个下底与三棱柱上底面重合的三棱台组成的组合体.1.熟练掌握各简单几何体的特征是解决本题的关键.2.组合体的构成,基本上有三类:(1)多面体与多面体的组合体;(2)多面体与旋转体的组合体;(3)旋转体与旋转体的组合体.试判断下列几何体是由哪些简单几何体组合而成的.【解】图①是由一个圆锥,一个圆柱和一个圆台组合而成的;图②是由一个四棱柱和一个四棱锥组合而成的;图③是由一个三棱台和一个三棱柱组合而成的;图④是由一个球和一个圆柱组合而成的.忽视棱柱的定义致误有两个面互相平行,其余各面都是平行四边形,由这些面围成的几何体是棱柱吗?【错解】因为棱柱的两个底面平行,其余各面都是平行四边形,所以所围成的几何体是棱柱.【错因分析】题中漏掉了“并且每相邻两个四边形的公共边都互相平行”这一条件,因此所围成的几何体不一定是棱柱.定义都是非常严格的,只要不满足所有的条件就会有特殊的例子出现.这提醒我们必须严格按照定义判定.【防范措施】正确理解简单几何体的特征、定义可以避免错误.【正解】满足题目条件的几何体不一定是棱柱,如图所示.1.棱柱、棱锥、棱台的共性棱柱、棱锥、棱台的各面都是平面多边形,因此可以看作是由平面多边形所围成的几何体,即多面体.多面体还含有除棱柱、棱锥、棱台之外的几何体.2.圆柱、圆锥、圆台、球的共性圆柱、圆锥、圆台、球从生成过程来看,它们分别是由矩形、直角三角形、直角梯形、半圆绕着某一条直线旋转而成的几何体,因此它们统称为旋转体.3.组合体的构成(1)组合体包括简单几何体的拼接和截去(或挖除)两种类型.(2)组合体――→组合类型错误!)错误!1.有下列命题,其中正确的是( )①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线都是互相平行的.A .①②B .②③C .①③D .②④【解析】 圆柱(或圆台)中上、下底面圆周上任意两点的连线,不一定是矩形(或直角梯形)中“不垂直于旋转轴的边”,故①③错误,②④正确.【答案】 D2.如图1-1-5是由图中的哪个平面图形旋转后得到的( )【解析】 因为简单组合体由一个圆台和一个圆锥所组成的,因此平面图形应由一个直角三角形和一个直角梯形构成,可排除B 、D ,再由圆台上、下底的大小比例关系可排除C.所以选A.【答案】 A3.如果一个棱锥的各个侧面都是等边三角形,那么这个棱锥不可能是( )A.三棱锥B.四棱锥C.五棱锥D.六棱锥【解析】若是六棱锥,则顶点在底面上,不能构成几何体.【答案】 D4.矩形ABCD中,AB=2,BC=3,矩形ABCD绕AB旋转得圆柱,求其底面半径r及母线长l.【解】因为AB为旋转轴,所以r=BC=3,l=AB=2.一、选择题1.下列命题中正确的是( )A.圆锥的底面和侧面都是圆面B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线【解析】A错误,圆锥的侧面应为曲面;B错误,没有说明这两个平行截面的位置关系,当这两个平行截面与底面平行时,正确,其他情况则结论就是错误的;D错误,通过圆台侧面上一点,只有一条母线.故选C.【答案】 C2.下列说法中正确的是( )A.所有的棱柱都有一个底面B.棱柱的顶点至少有6个C.棱柱的侧棱至少有4条D.棱柱的棱至少有4条【解析】棱柱都有两个底面,A错误;三棱柱的顶点最少,6个;侧棱最少,3条;棱最少,9条.故选B.【答案】 B3.(2013·宿州高一检测)在四棱锥的四个侧面中,直角三角形最多可有( )A.1个B.2个C.3个D.4个【解析】如图所示,在长方体ABCD-A1B1C1D1中,取四棱锥A1-ABCD,则此四棱锥的四个侧面都是直角三角形.【答案】 D4.下列命题中,正确的是( )①底面是正多边形的棱锥,一定是正棱锥;②所有侧棱相等的棱锥一定是正棱锥;③圆台的所有母线的延长线交于同一点;④侧面是全等的等腰三角形的三棱锥是正三棱锥.A.①④ B.②③ C.③④ D.③【解析】①中棱锥的顶点位置不定,未必能保证侧面为全等的等腰三角形,故①错;②中棱锥,当底面多边形为圆内接多边形,且圆心的正上方为棱锥的顶点时,即可使棱锥的侧棱都相等,但并不一定为正棱锥(以后可证);③正确,④不正确,反例如图:三棱锥S—ABC 中,SB=SC=AB=AC=2,SA=BC=1,显然满足条件,但并非正三棱锥.故选D.【答案】 D图1-1-65.如图1-1-6,将装有水的长方体水槽固定底面一边后倾斜,则倾斜后水槽中的水形成的几何体是( )A.棱柱 B.棱台C.棱柱与棱台的组合体 D.不确定【解析】水槽倾斜后,水有变动,但是根据棱柱的结构特征,其仍然是个棱柱,上、下两个底面发生变化.【答案】 A二、填空题6.(1)伐木工人将树伐倒后,再将枝杈砍掉,根据需要将其截成不同长度的圆木,圆木可以近似地看成________体;(2)用铁丝做一个三角形,在三个顶点上分别固定一根筷子,把三根筷子的另一端也用铁丝连接成一个三角形,从而获得一个几何体模型,如果筷子的长度相同且所在直线平行,那么这个几何体是________.【解析】(1)由圆柱的结构特征可知此圆木近似地看作是一个圆柱体;(2)在该模型中已知一面为三角形,含有筷子的三个面为平行四边形,可知另一个铁丝三角形所在面与最先的铁丝三角形所在平面平行,故此几何体是三棱柱.【答案】(1)圆柱(2)三棱柱图1-1-77.图中阴影部分绕图示的直线旋转一周,形成的几何体是________.【解析】三角形旋转后围成一个圆锥,圆面旋转后形成一个球,阴影部分形成的几何体为圆锥中挖去一个球后剩余的几何体.【答案】圆锥挖去一个球的组合体8.(2013·日照高一检测)圆台两底面半径分别是2 cm和5 cm,母线长是310 cm,则它的轴截面的面积是________.【解析】画出轴截面,如图,过A作AM⊥BC于M,则BM=5-2=3(cm),AM=AB2-BM2=9(cm),∴S四边形ABCD=4+10×92=63(cm2).【答案】63 cm2三、解答题9.如图1-1-8所示几何体可看作由什么图形旋转360°得到?画出平面图形和旋转轴.图1-1-8【解】先画出几何体的轴,然后再观察寻找平面图形.旋转前的平面图形如下:10.用一个平行于圆锥底面的平面去截这个圆锥,截得的圆台上、下底面半径的比是1∶4,截去的圆锥母线长是3 cm,求圆台的母线长.【解】设圆台的母线长为y cm,圆台上、下底面半径分别是x cm、4x cm,作圆锥的轴截面如图.在Rt△SOA中,O′A′∥OA,所以SA′∶SA=O′A′∶OA.即3∶(y+3)=x∶4x,解得y=9.所以圆台的母线长为9 cm.图1-1-911.如图1-1-9所示,是一个三棱台ABC-A′B′C′,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.【解】过A′,B,C三点作一个平面,再过A′,B,C′作一个平面,就把三棱台ABC -A′B′C′分成三部分,形成的三个三棱锥分别是A′-ABC,B-A′B′C′,A′-BCC′.(教师用书独具)已知下列说法:①以直角三角形的一边为旋转轴,旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴,旋转一周所得的旋转体是圆台;③用一个平面截圆锥,可得到一个圆锥和一个圆台;④以半圆的直径所在的直线为旋转轴,将半圆旋转一周所形成的曲面叫作球.其中正确说法的个数是( )A.0 B.1 C.2 D.3【思路探究】利用旋转体的定义判断.【自主解答】甲圆锥是以直角三角形的直角边为轴旋转形成的,如果不是直角边,将得到图甲所示的几何体,故①错误.圆台是以直角梯形垂直于底边的腰为轴旋转形成的,故②错误.如图乙(1)所示,如果用来截圆锥的平面平行于圆锥的底面,则可得一圆锥和一圆台,否则将得不到圆锥与圆台(如图乙(2)所示),故③错.乙④是球面的定义,球面所围成的几何体叫作球.如常见的篮球、足球可看作球面而不是球.【答案】 A1.本题主要考查对圆锥、圆柱、圆台、球的定义的理解.特别注意旋转面与旋转体的差别:旋转体包含旋转面所围成的空间中的部分.2.概念辨析题的判断方法:①利用定义、性质直接判断;②利用常见几何体举反例.有下列说法:①球是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体;②球的直径是球面上任意两点间的连线;③用一个平面截一个球,得到的是一个圆;④空间中到一定点距离等于定长的点的集合是球.其中正确的序号是________.【解析】球可看作是半圆面绕其直径所在的直线旋转形成的,因此①正确;如果球面上的两点连线经过球心,则这条线段就是球的直径,因此②错误;球是一个几何体,平面截它应得到一个面而不是一条曲线,所以③错误;空间中到一定点距离相等的点的集合是一个球面,而不是一个球体,所以④错误.【答案】①§2直观图(教师用书独具)●三维目标1.知识与技能(1)了解空间几何体的表示形式,进一步提高对空间几何体结构特征的认识.(2)掌握斜二测画法的规则,会用斜二测画法画直观图.2.过程与方法通过用斜二测画法画水平放置的平面图形和空间几何体的直观图,提高学生识图和画图的能力,培养学生转化与化归的数学思想方法.3.情感、态度与价值观通过画直观图培养学生的探究精神和意识,通过把空间图形在平面上反映,体会现实与抽象的关系,体会数学的科学价值、应用价值.●重点难点重点:用斜二测画法画空间几何体的直观图.难点:直观图与原图形之间的转化关系.(教师用书独具)●教学建议通过观察正方体的直观图,让学生感受一下直观图的立体感,教师引导学生认识斜二测画法的规则,在教师的指导下画出平面图形的直观图进而过渡到立体图形的直观图,让学生在画图中体会斜二测画法.●教学流程创设问题情境引出问题:用什么方法画图使的图形立体感强,引出斜二测画法⇒通过例1及其变式训练,使学生掌握用斜二测画法画平面图形的直观图⇒通过例2及互动探究,使学生掌握立体几何图形的直观图的画法⇒通过例3及变式训练,使学生掌握直观图与原图形之间的转化⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正课标解读1.了解空间几何体的表示形式,进一步提高对空间几何体结构特征的认识.2.掌握斜二测画法的规则,会用斜二测画法画直观图.(重点).斜二测画法下面都是经典的图画与照片,反映着大自然、古今建筑、航空航天等真实、美丽、壮观、祥和、有意义的场景.从数学的角度看,它们都是空间图形在平面上的反映.我们怎样利用手中的纸和笔将空间几何体画为平面图形且不失真实感受呢?一个水平放置的平面图形,如果是正方形,那么它的直观图还是正方形吗?【提示】不再是正方形,是平行四边形.斜二测画法规则(1)在已知图形中建立直角坐标系xOy,画直观图时,它们分别对应x′轴和y轴,两轴交于点O′,使∠x′O′y′=45°,它们确定的平面表示水平平面.(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴和y′轴的线段.(3)已知图形中平行于x 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的12.空间立体图形的直观图画法【问题导思】如何由画平面图形直观图过渡到画立体图形的直观图?【提示】 画完水平放置的平面图形的直观图后,多画一条表示高度的数轴z 轴. 立体图形与平面图形相比多了一个z 轴,其直观图中对应于z 轴的是z ′轴,平面x ′O ′y ′表示水平平面,平面y ′O ′z ′和x ′O ′z ′表示直立平面.平行于z 轴的线段,在直观图中平行性和长度都不变.水平放置的平面图形直观图的画法图1-2-1如图1-2-1是正方形ABCE 和正三角形CDE 所组成的平面图形,试画出其水平放置的直观图.【思路探究】首先在所给图形中建立一个直角坐标系xOy→再对应画出x ′O ′y ′→按斜二测画法规则作图【自主解答】 (1)以AB 所在的直线为x 轴,AB 的中垂线为y 轴建立直角坐标系如图(1),建立坐标系x ′O ′y ′,使两轴的夹角为45°(图(2)).(2)以O ′为中点,在x ′轴上截取A ′B ′=AB ,分别过A ′,B ′作y ′轴的平行线,截取A ′E ′=12AE ,B ′C ′=12BC .在y ′轴上截取O ′D ′=12OD .(3)连接A ′E ′,E ′D ′,E ′C ′,C ′D ′,B ′C ′,并擦去作为辅助线的坐标轴,就得到所求的直观图(图(3)).1.本题原图形中没有坐标系,则选取适当的坐标系是解决本题的关键.2.在直观图中确定坐标轴上的对应点及与坐标轴平行的线段的端点的对应点比较简单,对原图中不在坐标轴上或者不在与坐标轴平行的线段上的点,常过这些点作坐标轴的平行线,以确定这些点在直观图中对应点的位置.图1-2-2如图1-2-2所示,在平面直角坐标系中,各点坐标分别为O(0,0),A(1,3),B(3,1),C(4,6),D(2,5).试画出四边形ABCD的直观图.【解】(1)先画x′轴和y′轴,使∠x′O′y′=45°(如图(1)).(2)在原图中作AE⊥x轴,垂足为E(1,0).(3)在x′轴上截去O′E′=OE,作A′E′∥y′轴,截取E′A′=1.5.(4)同理确定点B′、C′、D′,其中B′G′=0.5,C′H′=3,D′F′=2.5.(5)连线成图(擦去辅助线)(如图(2)).立体图形的直观图画法画出一个正三棱台的直观图(尺寸:上、下底面边长分别为1 cm、2 cm,高2 cm).【思路探究】画立体图形的直观图与平面图形的直观图有何区别?【自主解答】(1)画轴,以底面△ABC的垂心O为原点,OC所在直线为y轴,过O点平行于AB的直线为x轴,建立平面直角坐标系,以上底面△A′B′C′的垂心O′与O的连线为z轴,建立空间直角坐标系.(2)画下底面,在xOy平面上画△ABC的直观图,在y轴上量取OC=33cm,OD=36cm.过D作AB∥x轴,且AB=2 cm,以D为中点,则△ABC为下底面三角形的直观图.(3)画上底面,在z轴上截取OO′=2 cm,过O′作x′轴∥x轴,y′轴∥y轴,在y′轴上量取O′C′=36cm,O′D′=312cm,过D′作A′B′∥x′轴,A′B′=1cm,且以D′为中点,则△A′B′C′为上底面三角形的直观图.(4)连线成图,连接AA′,BB′,CC′,并擦去辅助线,则三棱台ABC-A′B′C′即为所要画的正三棱台的直观图.1.用斜二测画法作空间图形(立体图形)的直观图,原图形的高在直观图中长度保持不变,本题只要确定了三棱台的上、下底面,整个直观图也就确定了.2.若两次作底面较为繁琐时,可以先作相应的棱锥,运算确定上底面的位置后,用平面去截取(只需作平行线).本例中将正三棱台改为上、下底面边长分别为6 cm、8 cm,高为4 cm的正四棱台呢?【解】(1)以底面四边形ABCD的两条对角线交点O为原点,过O点平行于AB的直线为x轴,过O点平行于AD的直线为y轴,建立平面直角坐标系,以上底面四边形A1B1C1D1的两条对角线交点O1与O的连线为z轴,建立空间直角坐标系.(2)画下底面,以O为中点,在x轴上取线段EF,使得EF=8 cm,在y轴上取线段GH,使得GH =12EF ,GH 的中点为O ,再过G 、H 分别作AB ∥EF ,CD ∥EF ,AB =EF =CD =8 cm ,且使得AB 的中点为G ,CD 的中点为H ,连接AD 、BC ,这样就得到了正四棱台的下底面ABCD 的直观图.(3)画上底面,在z 轴上截取线段OO 1=4 cm ,过O 1点作O 1x ′∥Ox 、O 1y ′∥Oy ,则∠x ′O 1y ′=45°.建立坐标系x ′O 1y ′,在x ′O 1y ′中重复步骤(1)的方法画出上底面的直观图A 1B 1C 1D 1(图①).① ②(4)再连接AA 1、BB 1、CC 1、DD 1,并擦去辅助线,得到的图形就是所求的正四棱台的直观图(图②).直观图与原图形之间的转化如图1-2-3,一个水平放置的平面图形的斜二测画法的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,求原四边形的面积.图1-2-3【思路探究】 在由直观图转换为平面图形的过程中,要注意直观图中的哪些量不变?哪些量改变?怎么改变?【自主解答】 如图(1)是四边形的直观图,取B ′C ′所在直线为x ′轴.因为∠A ′B ′C ′=45°,所以取B ′A ′所在直线为y ′轴.过D ′作D ′E ′∥A ′B ′,D ′E ′交B ′C ′于E ′,则B ′E ′=A ′D ′=1.又因为梯形为等腰梯形,所以△E ′D ′C ′为等腰直角三角形.所以E ′C ′= 2. 再建立一个直角坐标系xOy ,则O 、B 重合,如图(2)所示,在x 轴上截取线段BC =B ′C =1+2,在y 轴上截取线段BA =2B ′A ′=2.过A 作AD ∥BC ,截取AD =A ′D ′=1.连接CD ,则四边形ABCD 就是四边形A ′B ′C ′D ′的平面图形.四边形ABCD 为直角梯形,上底AD =1,下底BC =1+2,高AB =2,所以S 梯形ABCD =12AB ·(AD +BC )=12×2×(1+1+2)=2+ 2.1.平面图形的直观图与原图形之间的关系要注意以下两个方面:(1)平行关系的不变性,充分利用与x 轴、y 轴平行的线段,是解题的关键.(2)长度关系的规律变化,尤其是与y 轴平行的线段计算时应特别注意长度的变化.2.求原图形的面积,关键是根据直观图还原成实际图形.如图1-2-4,已知△OBC 是△O 1B 1C 1的斜二测画法的直观图,求S △O 1B 1C 1.。
1.1.4直观图画法【课时目标】1.了解斜二测画法的概念.2.会用斜二测画法画出一些简单的平面图形和立体图形的直观图.用斜二测画法画水平放置的平面图形直观图的步骤:(1)在空间图形中取互相________的x轴和y轴,两轴交于O点,再取z轴,使∠xOz =________,且∠yOz=________.(2)画直观图时把它们画成对应的x′轴、y′轴和z′轴,它们相交于O′,并使∠x′O′y′=______(或______),∠x′O′z′=________,x′轴和y′轴所确定的平面表示水平面.(3)已知图形中平行于x轴、y轴或z轴的线段,在直观图中分别画成平行于x′轴、y′轴或z′轴的线段.(4)已知图形中平行于x轴或z轴的线段,在直观图中保持原长度________;平行于y 轴的线段,长度为原来的________.一、填空题1.下列结论:①角的水平放置的直观图一定是角;②相等的角在直观图中仍然相等;③相等的线段在直观图中仍然相等;④两条平行线段在直观图中对应的两条线段仍然平行.其中正确的有__________(填序号).2.具有如图所示直观图的平面图形ABCD的形状是____________.3.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图,则原图的周长是________ cm.4.下面每个选项的2个边长为1的正△ABC的直观图不是全等三角形的一组是______(填序号).5.△ABC面积为10,以它的一边为x轴画出直观图,其直观图的面积为________.6.一个水平放置的平面图形的直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则该平面图形的面积等于__________.7.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论,正确的是______________.8.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为____________.9.如图所示,为一个水平放置的正方形ABCO,它在直角坐标系xOy中,点B的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为______.二、解答题10.如图所示,已知几何体的三视图,用斜二测画法画出它的直观图.11.如图所示,梯形ABCD中,AB∥CD,AB=4 cm,CD=2 cm,∠DAB=30°,AD =3 cm,试画出它的直观图.能力提升12.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为________.13.在水平放置的平面α内有一个边长为1的正方形A′B′C′D′,如图,其中的对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.直观图与原图形的关系1.斜二测画法是联系直观图和原图形的桥梁,可根据它们之间的可逆关系寻找它们的联系;在求直观图的面积时,可根据斜二测画法,画出直观图,从而确定其高和底边等;而求原图形的面积可把直观图还原为原图形;此类题易混淆原图形与直观图中的垂直关系而出错,在原图形中互相垂直的直线在直观图中不一定垂直,反之也是.所以在求面积时应按照斜二测画法的规则把原图形与直观图都画出来,找出改变量与不变量.用斜二测画法画出的倍.水平放置的平面图形的直观图的面积是原图形面积的242.在用斜二测画法画直观图时,平行线段仍然平行,所画平行线段之比仍然等于它的真实长度之比,但所画夹角大小不一定是其真实夹角大小.1.1.4直观图画法答案知识梳理(1)垂直90°90°(2)45°135°90°(4)不变一半作业设计1.①②⑤解析由斜二测画法的规则判断.2.直角梯形3.8解析根据直观图的画法,原几何图形如图所示,四边形OABC 为平行四边形,OB =22,OA =1,AB =3,从而原图周长为8 cm .4.③ 5.522 解析 设△ABC 面积为S , 则直观图面积S ′=24S =522. 6.2+ 2解析 如图1所示,等腰梯形A ′B ′C ′D ′为水平放置的原平面图形的直观图,作D ′E ′∥A ′B ′交B ′C ′于E ′,由斜二测直观图画法规则,直观图是等腰梯形A ′B ′C ′D ′的原平面图形为如图2所示的直角梯形ABCD ,且AB =2,BC =1+2,AD =1,所以S ABCD =2+2.图1 图27.①②解析 斜二测画法得到的图形与原图形中的线线相交、相对线线平行关系不会改变,因此三角形的直观图是三角形,平行四边形的直观图是平行四边形. 8.2.5解析 由直观图知,原平面图形为直角三角形,且AC =A ′C ′=3,BC =2B ′C ′=4,计算得AB =5,所求中线长为2.5.9.22 解析画出直观图,则B ′到x ′轴的距离为22·12OA =24OA =22.10.解 (1)作出长方体的直观图ABCD -A 1B 1C 1D 1,如图a 所示;(2)再以上底面A 1B 1C 1D 1的对角线交点为原点建立x ′,y ′,z ′轴,如图b 所示,在z ′上取点V ′,使得V ′O ′的长度为棱锥的高,连结V ′A 1,V ′B 1,V ′C 1,V ′D 1,得到四棱锥的直观图,如图b ;(3)擦去辅助线和坐标轴,遮住部分用虚线表示,得到几何体的直观图,如图c .11.解 (1)如图a 所示,在梯形ABCD 中,以边AB 所在的直线为x 轴,点A 为原点,建立平面直角坐标系xOy .如图b 所示,画出对应的x ′轴,y ′轴,使∠x ′O ′y ′=45°. (2)在图a 中,过D 点作DE ⊥x 轴,垂足为E .在x ′轴上取A ′B ′=AB =4 cm ,A ′E ′=AE =323≈2.598 cm ;过点E ′作E ′D ′∥y ′轴,使E ′D ′=12ED ,再过点D ′作D ′C ′∥x ′轴,且使D ′C ′=DC =2 cm .(3)连结A ′D ′、B ′C ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图c 所示,则四边形A ′B ′C ′D ′就是所求作的直观图.12.62a 2解析 画△ABC 直观图如图(1)所示:则A ′D ′=32a ,又∠x ′O ′y ′=45°,∴A ′O ′=62a . 画△ABC 的实际图形,如图(2)所示,AO =2A ′O ′=6a ,BC =B ′C ′=a , ∴S △ABC =12BC·AO =62a 2.13.解四边形ABCD的真实图形如图所示,∵A′C′在水平位置,A′B′C′D′为正方形,∴∠D′A′C′=∠A′C′B′=45°,∴在原四边形ABCD中,DA⊥AC,AC⊥BC,∵DA=2D′A′=2,AC=A′C′=2,∴S四边形ABCD=AC·AD=22.。
让学生学会学习
第2课时 圆柱、圆锥、圆台、球
分层训练
1.半圆以它的直径为旋转轴, 旋转所成的曲面是 ( ) A.半球 B.球 C.球面 D.半球面
2.直角梯形以其较大的底边为旋转轴, 其余各边旋转所得的曲面的几何体可看作 ( ) A.一个棱柱叠加一个圆锥 B 一个圆台叠加一个圆锥
C.一个圆柱叠加一个圆锥
D.一个圆柱挖去一圆锥
3.线段y=2x (0≤x ≤2)绕x 轴旋转一周所得的图形是 ( ) A.圆锥 B.圆锥面
C.圆锥的底面
D.圆柱中挖去一个圆锥 4.给出下列命题:
(1)圆柱的任意两条母线互相平行; (2)球上的点与球心距离都相等;
(3)圆锥被平行于底面的平面所截, 得到两个
几何体, 其中一个仍然是圆锥, 另一个是
圆台. 其中正确命题的个数为 ( )
A. 0
B. 1
C. 2
D. 3 5.在直角坐标系中有一个直角三角形OAB , 现将该三角形分别绕x 轴, y 轴各旋转一周, 得到两个几何体, 的几何体吗? 【解】
6.如图是一个矩形及与之内切的半圆, 则阴影部分绕半圆的直径旋转一周的几何体是由哪几个简单几何体组成的? 【解】
拓展延伸
1.
(1)任意一个圆柱去掉底面后,沿任意一条母线割开,将其侧面放在平面上展开,它是什么样的平面图形?
(2)任意一个圆锥和圆台去掉底面后,沿任意一条母线割开,将其侧面放在平面上展开,它是什么样的平面图形?
(3)球能展成平面图形吗?
2.(1)一个直角梯形绕它的较长底边旋转一周,所形成的几何体是由哪些简单的几何体构成的?若绕它的较短底边呢?
(2)如图的几何体是由一个棱锥挖去一个圆柱构成的,试画出旋转一周能得到这个几何体的平面图形?
节学习疑点:。
2019-2020学年苏教版数学精品资料1.2.4 平面与平面的位置关系第1课时两平面平行的判定及性质【课时目标】1.理解并掌握两个平面平行、两个平面相交的定义.2.掌握两个平面平行的判定和性质定理,并能运用其解决一些具体问题.1.平面与平面平行的判定定理如果一个平面内有________________都平行于另一个平面,那么这两个平面平行.用符号表示为________________________.2.平面与平面平行的性质定理:如果两个平行平面同时和第三个平面相交,________________________.符号表示为:________________?a∥b.3.面面平行的其他性质:(1)两平面平行,其中一个平面内的任一直线平行于________________,即α∥βa?α?________,可用来证明线面平行;(2)夹在两个平行平面间的平行线段________;(3)平行于同一平面的两个平面________.一、填空题1.平面α∥平面β,a?α,b?β,则直线a、b的位置关系是__________.2.下列各命题中假命题有________个.①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③一条直线与两个平行平面中的一个相交,那么这条直线必和另一个相交;④若平面α内两条直线与平面β内两条直线分别平行,则α∥β.3.过正方体ABCD-A1B1C1D1的三个顶点A1、C1、B的平面与底面ABCD所在平面的交线为l,则l与A1C1的位置关系是________.4.α和β是两个不重合的平面,在下列条件中,可判定α∥β的是________.(填序号)①α内有无数条直线平行于β;②α内不共线三点到β的距离相等;③l、m是平面α内的直线,且l∥α,m∥β;④l、m是异面直线且l∥α,m∥α,l∥α,m∥β.5.已知α∥β且α与β间的距离为d,直线a与α相交于点A、与β相交于B,若AB=23 3d,则直线a与α所成的角等于________.6.如图所示,P是三角形ABC所在平面外一点,平面α∥平面ABC,α分别交线段PA、PB、PC于A′、B′、C′,若PA′∶AA′=2∶3,则S△A′B′C′∶S△ABC=________.7.α,β,γ为三个不重合的平面,a,b,c为三条不同的直线,则有下列命题,不正确的是________(填序号).①a∥cb∥c?a∥b;②a∥γb∥γ?a∥b;③α∥cβ∥c?α∥β;④α∥γβ∥γ?α∥β;⑤α∥ca∥c?α∥a; ⑥α∥γa∥γ?a∥α.8.已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于点A,C,过点P的直线n与α,β分别交于点B,D,且PA=6,AC=9,PD=8,则BD的长为________.9.如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.二、解答题10.如图所示,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC和SC的中点.求证:平面EFG∥平面BDD1B1.11.如图,在三棱柱ABC-A1B1C1中,M是A1C1的中点,平面AB1M∥平面BC1N,AC∩平面BC1N=N.求证:N为AC的中点.能力提升12.如图所示,已知正方体ABCD-A1B1C1D1中,面对角线AB1,BC1上分别有两点E、F,且B1E=C1F.求证:EF∥平面ABCD.13.如图所示,B为△ACD所在平面外一点,M,N,G分别为△ABC,△ABD,△BCD 的重心.(1)求证平面MNG∥平面ACD;(2)求S△MNG∶S△ADC.1.判定平面与平面平行的常用方法有:(1)利用定义,证明两个平面没有公共点,常用反证法.(2)利用判定定理.(3)利用平行平面的传递性,即α∥β,β∥γ,则α∥γ.2.平面与平面平行主要有以下性质:(1)面面平行的性质定理.(2)两个平面平行,其中一个平面内的任一直线平行于另一个平面.(3)夹在两个平行平面之间的平行线段相等.1.2.4平面与平面的位置关系第1课时两平面平行的判定及性质答案知识梳理1.两条相交直线a?α,b?α,a∩b=A,a∥β,b∥β?α∥β2.那么所得的两条交线平行α∥βα∩γ=a β∩γ=b3.(1)另一个平面a∥β(2)相等(3)平行作业设计1.平行或异面2.23.平行解析由面面平行的性质可知第三平面与两平行平面的交线是平行的.4.④5.60°6.4∶25解析面α∥面ABC,面PAB与它们的交线分别为A′B′,AB,∴AB∥A′B′,同理B′C′∥BC,易得△ABC∽△A′B′C′,S△A′B′C′∶S△ABC=(A′B′AB)2=(PA′PA)2=425.7.②③⑤⑥解析由公理4及平行平面的传递性知①④正确.举反例知②③⑤⑥不正确.②中a,b 可以相交,还可以异面;③中α,β可以相交;⑤中a可以在α内;⑥中a可以在α内.8.24或24 5解析当P点在平面α和平面β之间时,由三角形相似可求得BD=24,当平面α和平面β在点P同侧时可求得BD=24 5.9.M∈线段FH解析∵HN∥BD,HF∥DD1,HN∩HF=H,BD∩DD1=D,∴平面NHF∥平面B1BDD1,故线段FH上任意点M与N连结,有MN∥平面B1BDD1.10.证明如图所示,连结SB,SD,∵F、G分别是DC、SC的中点,∴FG∥SD.又∵SD?平面BDD1B1,FG?平面BDD1B1,∴直线FG∥平面BDD1B1.同理可证EG∥平面BDD1B1,又∵EG?平面EFG,FG?平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.11.证明∵平面AB1M∥平面BC1N,平面ACC1A1∩平面AB1M=AM,平面BC1N∩平面ACC1A1=C1N,∴C1N∥AM,又AC∥A1C1,∴四边形ANC1M为平行四边形,∴AN綊C1M=12A1C1=12AC,∴N为AC的中点.12.证明方法一过E、F分别作AB、BC的垂线,EM、FN分别交AB、BC于M、N,连结MN.∵BB1⊥平面ABCD,∴BB1⊥AB,BB1⊥BC,∴EM∥BB1,FN∥BB1,∴EM∥FN,∵AB1=BC1,B1E=C1F,∴AE=BF,又∠B1AB=∠C1BC=45°,∴Rt△AME≌Rt△BNF,∴EM=FN.∴四边形MNFE是平行四边形,∴EF∥MN.又MN?平面ABCD,EF?平面ABCD,∴EF∥平面ABCD.方法二过E作EG∥AB交BB1于G,连结GF,∴B1EB1A=B1GB1B,B1E=C1F,B1A=C1B,∴C1FC1B=B1GB1B,∴FG∥B1C1∥BC.又∵EG∩FG=G,AB∩BC=B,∴平面EFG∥平面ABCD.又EF?平面EFG,∴EF∥平面ABCD.13.(1)证明(1)连结BM,BN,BG并延长分别交AC,AD,CD于P,F,H.∵M,N,G分别为△ABC,△ABD,△BCD的重心,则有BMMP=BNNF=BGGH=2,且P,H,F分别为AC,CD,AD的中点.连结PF,FH,PH,有MN∥PF.又PF?平面ACD,MN?平面ACD,∴MN∥平面ACD.同理MG∥平面ACD,MG∩MN=M,∴平面MNG∥平面ACD.(2)解由(1)可知MGPH=BGBH=23,∴MG=23 PH.又PH=12AD,∴MG=13AD.同理NG=13AC,MN=13CD.∴△MNG∽△ACD,其相似比为1∶3.∴S△MNG∶S△ACD=1∶9.。
第2课时直线与平面平行的性质【课时目标】1.能应用文字语言、符号语言、图形语言准确地描述直线与平面平行的性质定理.2.能运用直线与平面平行的性质定理,证明一些空间线面平行关系的简单问题.直线与平面平行的性质定理:经过一条直线和一个平面________,经过这条直线的平面和这个平面__________,那么这条直线就和交线________.(1)符号语言描述:______________.(2)性质定理的作用:可以作为________________平行的判定方法,也提供了一种作__________的方法.一、填空题1.已知直线l∥平面α,直线m⊂α,则直线l和m的位置关系是________.2.若不在同一条直线上的三点A、B、C到平面α的距离相等,且A、B、CD/∈α,则面ABC与面α的位置关系为____________.3.若直线m不平行于平面α,且m⊄α,则下列结论成立的是________(填序号).①α内的所有直线与m异面;②α内不存在与m平行的直线;③α内存在唯一的直线与m平行;④α内的直线与m都相交.4.如图所示,长方体ABCD-A1B1C1D1中,E、F分别是棱AA1和BB1的中点,过EF 的平面EFGH分别交BC和AD于G、H,则HG与AB的位置关系是________.5.直线a∥平面α,α内有n条直线交于一点,则这n条直线中与直线a平行的直线条数为________.6.如图所示,平面α∩β=l1,α∩γ=l2,β∩γ=l3,l1∥l2,下列说法正确的是__________(填序号).①l1平行于l3,且l2平行于l3;②l1平行于l3,且l2不平行于l3;③l1不平行于l3,且l2不平行于l3;④l1不平行于l3,但l2平行于l3.7.设m、n是平面α外的两条直线,给出三个论断:①m∥n;②m∥α;③n∥α.以其中的两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:______________.(用序号表示)8.如图所示,ABCD—A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=a3,过P,M,N的平面交上底面于PQ,Q 在CD上,则PQ=________.9.如图所示,在空间四边形ABCD中,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当四边形EFGH是菱形时,AE∶EB =________.二、解答题10.ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:AP∥GH.11.如图所示,三棱锥A—BCD被一平面所截,截面为平行四边形EFGH.求证:CD∥平面EFGH.能力提升12.如图所示,在透明塑料制成的长方体ABCD—A1B1C1D1容器中灌进一些水,将固定容器底面一边BC置于地面上,再将容器倾斜,随着倾斜程度的不同,有以下命题:①水的形状成棱柱形;②水面EFGH的面积不变;③A1D1始终水面EFGH平行.其中正确的命题序号是________.13.如图所示,P 为平行四边形ABCD 所在平面外一点,M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l .(1)求证:BC ∥l ;(2)MN 与平面PAD 是否平行?试证明你的结论.直线与平面平行判定定理和直线与平面平行性质定理经常交替使用,也就是通过线线平行推出线面平行,再通过线面平行推出新的线线平行,复杂的题目还可继续推下去.可有如下示意图:线线平行――→在平面内作或找一直线线面平行――→经过直线作或找平面与平面相交的交线线线平行.第2课时 直线与平面平行的性质 答案知识梳理平行 相交 平行⎭⎪⎬⎪⎫a ∥αa ⊂ββ∩α=b ⇒a ∥b 直线和直线 平行线作业设计1.平行或异面 2.平行或相交 3.② 4.平行解析 ∵E 、F 分别是AA 1、BB 1的中点,∴EF ∥AB . 又AB ⊄平面EFGH ,EF ⊂平面EFGH ,又AB ⊂平面ABCD ,平面ABCD ∩平面EFGH =GH , ∴AB ∥GH . 5.0或1解析 设这n 条直线的交点为P ,则点P 不在直线a 上,那么直线a 和点P 确定一个平面β,则点P 既在平面α内又在平面β内,则平面α与平面β相交,设交线为直线b ,则直线b 过点P .又直线a ∥平面α,则a ∥b .很明显这样作出的直线b 有且只有一条,那么直线b 可能在这n 条直线中,也可能不在,即这n 条直线中与直线a 平行的直线至多有一条.6.①解析 ∵l 1∥l 2,l 2⊂γ,l 1⊄γ, ∴l 1∥γ.又l 1⊂β,β∩γ=l 3, ∴l 1∥l 3∴l 1∥l 3∥l 2.7.①②⇒③(或①③⇒②)解析 设过m 的平面β与α交于l . ∵m ∥α,∴m ∥l ,∵m ∥n ,∴n ∥l , ∵n ⊄α,l ⊂α,∴n ∥α. 8.223a解析 ∵MN ∥平面AC ,平面PMN ∩平面AC =PQ ,∴MN ∥PQ ,易知DP =DQ =2a3,故PQ =PD 2+DQ 2=2DP =22a3.9.m ∶n解析 ∵AC ∥平面EFGH ,∴EF ∥AC ,GH ∥AC ,∴EF =HG =m·BE BA ,同理EH =FG =n·AEAB.∵EFGH 是菱形,∴m·BE BA =n·AEAB,∴AE ∶EB =m ∶n .10.证明 如图所示,连结AC 交BD 于O ,连结MO , ∵ABCD 是平行四边形,∴O 是AC 中点, 又M 是PC 的中点, ∴AP ∥OM .根据直线和平面平行的判定定理, 则有PA ∥平面BMD .∵平面PAHG ∩平面BMD =GH , 根据直线和平面平行的性质定理, ∴PA ∥GH .11.证明 ∵四边形EFGH 为平行四边形, ∴EF ∥GH .又GH ⊂平面BCD ,EF ⊄平面BCD .而平面ACD∩平面BCD=CD,EF⊂平面ACD,∴EF∥CD.而EF⊂平面EFGH,CD⊄平面EFGH,∴CD∥平面EFGH.12.①③13.(1)证明因为BC∥AD,AD⊂平面PAD,BC⊄平面PAD,所以BC∥平面PAD.又平面PAD∩平面PBC=l,BC⊂平面PBC,所以BC∥l.(2)解MN∥平面PAD.证明如下:如图所示,取DC的中点Q.连结MQ、NQ.因为N为PC中点,所以NQ∥PD.因为PD⊂平面PAD,NQ⊄平面PAD,所以NQ∥平面PAD.同理MQ∥平面PAD.又NQ⊂平面MNQ,MQ⊂平面MNQ,NQ∩MQ=Q,所以平面MNQ∥平面PAD.所以MN∥平面PAD.。
课时作业2 中心投影、平行投影及空间几何体的三视图基础巩固1.有一个圆柱形笔筒如图1放置,它的侧视图是( )图1答案:C2.已知一个几何体是由上、下两部分构成的一个组合体,其三视图如图2所示,则这个组合体的上、下两部分分别是( )图2A.上部是一个圆锥,下部是一个圆柱B.上部是一个圆锥,下部是一个四棱柱C.上部是一个三棱锥,下部是一个四棱柱D.上部是一个三棱锥,下部是一个圆柱解析:由几何体的三视图可知,该组合体的上部是一个圆锥,下部是一个圆柱.答案:A3.若某几何体的正视图、侧视图、俯视图完全相同,则该几何体的正视图不可能是( )解析:满足选项A的有三棱锥,满足选项B的有球,满足选项C的有正方体,故选D.答案:D4.一个长方体去掉一角,如图3所示,关于它的三视图,下列画法正确的是( )图3解析:由于去掉一角后,出现了一个小三角形的面.正视图中,长方体上底面和右边侧面上的三角形的两边的正投影分别和矩形的两边重合,故B错;侧视图中的线应是虚线,故C错;俯视图中的线应是实线,故D错.答案:A5.如图4是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正视图、俯视图如图;②存在四棱柱,其正视图、俯视图如图4;③存在圆柱,其正视图、俯视图如图.其中真命题的个数是________.图4解析:①②③均是正确的,对于①,底面是等腰直角三角形的直三棱柱,让其直角三角形直角边对应的一个侧面平卧;对于②,长方体即符合题意;对于③,圆柱平卧.所以共有3个真命题.答案:36.如图5所示,在正方体ABCDA1B1C1D1中,E、F分别是AA1、C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影可能是图中的________.图5解析:要画出四边形AGFE在该正方体的各个面上的投影,只需画出四个顶点A、G、F、E在每个面上的投影,再顺次连接即得在该面上的投影,并且在两个平行平面上的投影是相同的,可得在平面ABCD和平面A1B1C1D1上的投影是图①;在平面ADD1A1和平面BCC1B1上的投影是图②;在平面ABB1A1和平面DCC1D1上的投影是图③.答案:①②③能力提升1.(2019年东莞高一模拟)定义:底面是正三角形,侧棱与底面垂直的三棱柱叫做正三棱柱.将正三棱柱截去一个角(如图6甲所示,M,N分别是AB,BC的中点)得到几何体(如图6乙),则该几何体按图6乙所示方向的侧视图为( )图6解析:由题图侧视的方向可知,M 点的投影是棱AC 的中点,N 点的投影为C ,E 点的投影为F ,故应选D.答案:D2.(2019年枣庄高一检测)已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图如图7所示,则其侧视图的面积为( )图7A.B.3432C. D .134解析:边长为1的正三角形的高为,故侧视图的底边长为3232,侧视图的底边上的高与正视图的高相等,为,所以侧视图的面3积为××=.故选C.1232334答案:C3.下列几何体各自的三视图中,有且仅有两个视图相同的是________(填序号).①正方体 ②圆锥 ③三棱台 ④正四棱锥解析:在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.所以满足仅有两个视图相同的是②④.答案:②④4.如图8,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,求该多面体最长的棱长.图8图9解:由三视图可知此几何体的直观图如图9所示,其中AB⊥AC,DC⊥AC,DC⊥BC,则BC==5,DA==32+4232+52,DB==5,3452+522因为5<<5,342所以最长的棱长为5.25.(2019年金太阳高三压轴题)“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图10,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是( )图10解析:由直观图可知俯视图应为正方形,排除A,C,又上半部分相邻两曲面的交线看得见,在俯视图中应为实线,故选B.答案:B6.根据三视图(如图11所示)想象物体原形,指出其结构特征,并画出物体的实物草图.图11图12解:由俯视图知,该几何体的底面是一直角梯形;由正视图知,该几何体是一四棱锥,且有一侧棱与底面垂直.所以该几何体如图12所示.7.画出图13中3个图形的指定视图.图13解:如图14所示.图14拓展要求1.如图15所示,画出四面体AB1CD1三视图中的正视图,以面AA1D1D为投影面,则得到的正视图可以为( )图15解析:显然AB1,AC,B1D1,CD1分别投影得到正视图的外轮廓,B1C为可见实线,AD1为不可见虚线.故A正确.答案:A2.如图16,在正四面体ABCD中,E、F、G分别是△ADC、△ABD、△BCD的中心,则△EFG在该正四面体底面BCD上的射影是( )解析:如图17,分别取BD、CD的中点M、N,则△AMN在底面上的射影是△GMN,E、F在底面上的射影分别为E′,F′,选C.图17答案:C3.一个物体由几块相同的正方体组成,其三视图如图18所示,试据图回答下列问题:图18(1)该物体有多少层?(2)该物体的最高部分位于哪里?(3)该物体一共由几个小正方体构成?解:(1)该物体一共有两层,从正视图和侧视图都可以看出来.(2)该物体最高部分位于左侧第一排和第二排.(3)从侧视图及俯视图可以看出,该物体前后一共三排,第一排左侧2个,右侧1个;第二排左侧2个,右侧没有;第三排左侧1个,右侧1个,该物体一共由7个小正方体构成.11。
§1.2 点、线、面之间的位置关系1.2.1 平面的基本性质【课时目标】 1.了解平面的概念及表示法.2.了解公理1、2、3及推论1、2、3,并能用文字语言、图形语言和符号语言分别表述.1.公理1:如果一条直线上的________在一个平面内,那么这条直线上所有的点都在这个平面内.用符号表示为:________________.2.公理2:如果________________________________,那么它们还有其他公共点,这些公共点的集合是经过这个公共点的______________.用符号表示为:⎭⎪⎬⎪⎫P ∈αP ∈β⇒α∩β=l 且P ∈l . 3.公理3:经过不在同一条直线上的三点,________________________.公理3也可简单地说成,不共线的三点确定一个平面.(1)推论1 经过________________________________________,有且只有一个平面.(2)推论2 经过____________,有且只有一个平面.(3)推论3 经过____________,有且只有一个平面.一、填空题1.下列命题:①书桌面是平面;②8个平面重叠起来,要比6个平面重叠起来厚;③有一个平面的长是50 m ,宽是20 m ;④平面是绝对的平、无厚度,可以无限延展的抽象数学概念.其中正确命题的个数为________.2.若点M 在直线b 上,b 在平面β内,则M 、b 、β之间的关系用符号可记作____________.3.已知平面α与平面β、γ都相交,则这三个平面可能的交线有________条.4.已知α、β为平面,A 、B 、M 、N 为点,a 为直线,下列推理错误的是__________(填序号).①A ∈a ,A ∈β,B ∈a ,B ∈β⇒a ⊂β;②M ∈α,M ∈β,N ∈α,N ∈β⇒α∩β=MN ;③A ∈α,A ∈β⇒α∩β=A ;④A 、B 、M ∈α,A 、B 、M ∈β,且A 、B 、M 不共线⇒α、β重合.5.空间中可以确定一个平面的条件是________.(填序号)①两条直线; ②一点和一直线;③一个三角形; ④三个点.6.空间有四个点,如果其中任意三个点不共线,则经过其中三个点的平面有__________个.7.把下列符号叙述所对应的图形(如图)的序号填在题后横线上.(1)AD/∈α,a ⊂α________.(2)α∩β=a,PD/∈α且PD/∈β________.(3)a⊄α,a∩α=A________.(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O________.8.已知α∩β=m,a⊂α,b⊂β,a∩b=A,则直线m与A的位置关系用集合符号表示为________.9.下列四个命题:①两个相交平面有不在同一直线上的三个公共点;②经过空间任意三点有且只有一个平面;③过两平行直线有且只有一个平面;④在空间两两相交的三条直线必共面.其中正确命题的序号是________.二、解答题10.如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线,并说明理由.11.如图所示,四边形ABCD中,已知AB∥CD,AB,BC,DC,AD(或延长线)分别与平面α相交于E,F,G,H,求证:E,F,G,H必在同一直线上.能力提升12.空间中三个平面两两相交于三条直线,这三条直线两两不平行,证明三条直线必相交于一点.13.如图,在正方体ABCD -A 1B 1C 1D 1中,对角线A 1C 与平面BDC 1交于点O ,AC 、BD 交于点M ,E 为AB 的中点,F 为AA 1的中点.求证:(1)C 1、O 、M 三点共线;(2)E 、C 、D 1、F 四点共面;(3)CE 、D 1F 、DA 三线共点.1.证明几点共线的方法:先考虑两个平面的交线,再证有关的点都是这两个平面的公共点,或先由某两点作一直线,再证明其他点也在这条直线上.2.证明点线共面的方法:先由有关元素确定一个基本平面,再证其他的点(或线)在这个平面内;或先由部分点线确定平面,再由其他点线确定平面,然后证明这些平面重合.注意对诸如“两平行直线确定一个平面”等依据的证明、记忆与运用.3.证明几线共点的方法:先证两线共点,再证这个点在其他直线上,而“其他”直线往往归结为平面与平面的交线.§1.2 点、线、面之间的位置关系1.2.1 平面的基本性质答案知识梳理1.两点 ⎭⎪⎬⎪⎫A ∈αB ∈α⇒AB ⊂α 2.两个平面有一个公共点 一条直线3.有且只有一个平面 (1)一条直线和这条直线外的一点 (2)两条相交直线 (3)两条平行直线作业设计1.1解析 由平面的概念,它是平滑、无厚度、可无限延展的,可以判断命题④正确,其余的命题都不符合平面的概念,所以命题①、②、③都不正确.2.M ∈b ⊂β 3.1,2或34.③解析 ∵A ∈α,A ∈β,∴A ∈α∩β.由公理可知α∩β为经过A的一条直线而不是A.故α∩β=A的写法错误.5.③6.1或4解析四点共面时有1个平面,四点不共面时有4个平面.7.(1)C(2)D(3)A(4)B8.A∈m解析因为α∩β=m,A∈a⊂α,所以A∈α,同理A∈β,故A在α与β的交线m上.9.③10.解很明显,点S是平面SBD和平面SAC的一个公共点,即点S在交线上,由于AB>CD,则分别延长AC和BD交于点E,如图所示.∵E∈AC,AC⊂平面SAC,∴E∈平面SAC.同理,可证E∈平面SBD.∴点E在平面SBD和平面SAC的交线上,连结SE,直线SE是平面SBD和平面SAC的交线.11.证明因为AB∥CD,所以AB,CD确定平面AC,AD∩α=H,因为H∈平面AC,H∈α,由公理3可知,H必在平面AC与平面α的交线上.同理F、G、E都在平面AC与平面α的交线上,因此E,F,G,H必在同一直线上.12.证明∵l1⊂β,l2⊂β,l1l2,∴l1∩l2交于一点,记交点为P.∵P∈l1⊂β,P∈l2⊂γ,∴P∈β∩γ=l3,∴l1,l2,l3交于一点.13.证明(1)∵C1、O、M∈平面BDC1,又C1、O、M∈平面A1ACC1,由公理3知,点C1、O、M在平面BDC1与平面A1ACC1的交线上,∴C1、O、M三点共线.(2)∵E,F分别是AB,A1A的中点,∴EF∥A1B.∵A1B∥CD1,∴EF∥CD1.∴E、C、D1、F四点共面.(3)由(2)可知:四点E、C、D1、F共面.又∵EF=12A1B.∴D1F,CE为相交直线,记交点为P.则P∈D1F⊂平面ADD1A1,P∈CE⊂平面ADCB.∴P∈平面ADD1A1∩平面ADCB=AD.∴CE、D1F、DA三线共点.。
第1章立体几何初步(B)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.等边三角形的边长为a,它绕其一边所在的直线旋转一周,则所得旋转体的体积为________.2.若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为________.3.如图,是一个正方体的展开图,在原正方体中,相对的面分别是________.4.如图,△O′A′B′是水平放置的△OAB的直观图,则△AOB的面积是________.5.一个几何体的三视图如图所示,则这个几何体的体积等于________.6.如图所示,在正方体ABCD—A1B1C1D1中,M、N分别是BB1、BC的中点.则图中阴影部分在平面ADD1A1上的正投影为________(填序号).7.对于平面α和共面的直线m、n,下列命题中真命题是________(填序号).①若m⊥α,m⊥n,则n∥α;②若m∥α,n∥α,则m∥n;③若m⊂α,n∥α,则m∥n;④若m、n与α所成的角相等,则m∥n.8.给出以下四个命题①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.其中真命题为________(填序号).9.设α、β是两个不同的平面,l 是一条直线,以下命题正确的是________.(填序号) ①若l ⊥α,α⊥β,则l ⊂β; ②若l ∥α,α∥β,则l ⊂β; ③若l ⊥α,α∥β,则l ⊥β; ④若l ∥α,α⊥β,则l ⊥β. 10.如图所示,在长方体ABCD —A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为________.11.设α∥β,A ∈α,C ∈α,B ∈β,D ∈β,直线AB 与CD 交于O ,若AO =8,BO =9,CD =34,则CO =________.12.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.①若AC =BD ,则四边形EFGH 是______;②若AC ⊥BD ,则四边形EFGH 是______.13.在边长为a 的等边三角形ABC 中,AD ⊥BC 于D ,沿AD 折成二面角B -AD -C 后,BC =12a ,这时二面角B -AD -C 的大小为________.14.如图,四棱锥S -ABCD 中,底面ABCD 为平行四边形,E 是SA 上一点,当点E 满足条件:________时,SC ∥平面EBD .二、解答题(本大题共6小题,共90分)15.(14分)如图所示,空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,且满足AE EB =AH HD =12,CF FB =CGGD=2.(1)求证:四边形EFGH 是梯形;(2)若BD =a ,求梯形EFGH 的中位线的长.16.(14分)某几何体的三视图如图所示,P是正方形ABCD对角线的交点,G是PB的中点.(1)根据三视图,画出该几何体的直观图;(2)在直观图中,①证明:PD∥面AGC;②证明:面PBD⊥面AGC.17.(14分)如图,在四棱锥P-ABCD中,侧面P AD⊥底面ABCD,侧棱P A⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点.(1)若CD∥平面PBO,试指出点O的位置;(2)求证:平面P AB⊥平面PCD.18.(16分)如图所示,有一块扇形铁皮OAB ,∠AOB =60°,OA =72 cm ,要剪下来一个扇形环ABCD ,作圆台形容器的侧面,并且余下的扇形OCD 内剪下一块与其相切的圆形使它恰好作圆台形容器的下底面(大底面).试求:(1)AD 应取多长?(2)容器的容积.19.(16分)如图,在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =12P A ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC .(1)求证:OD ∥平面P AB ;(2)求直线OD 与平面PBC 所成角的正弦值.20.(16分)如图(1),在直角梯形ABCP 中,BC ∥AP ,AB ⊥BC ,CD ⊥AP ,AD =DC =PD =2,E 、F 、G 、H 分别为线段PC 、PD 、BC 、CD 的中点,现将△PDC 沿DC 折起,使平面PDC ⊥平面ABCD (图(2)).(1)求证:AP ∥平面EFG ; (2)求证:AH ⊥GF ;(3)求四棱锥P -ABCD 的外接球的表面积. 第1章 立体几何初步(B) 答案1.14πa 3 解析如图,正三角形ABC 中,AB =a ,高AD =32a , ∴V =13πAD 2·CB =13π·⎝⎛⎭⎫32a 2·a =14πa 3. 2.27π解析 若正方体的顶点都在同一球面上,则球的直径d 等于正方体的体对角线的长.∵棱长为3,∴d = 3·32=3 3⇒R =3 32.∴S =4πR 2=27π.3.①与④,②与⑥,③与⑤解析 将展开图还原为正方体,可得①与④相对,②与⑥相对,③与⑤相对. 4.12解析 △OAB 为直角三角形,两直角边分别为4和6,S =12. 5.4解析 由三视图得几何体为四棱锥,如图记作S -ABCD ,其中SA ⊥面ABCD ,SA =2,AB =2,AD =2,CD =4,且ABCD 为直角梯形.∠DAB =90°,∴V =13SA ×12(AB +CD)×AD=13×2×12×(2+4)×2=4. 6.① 7.③解析 关键在于“共面的直线m 、n ”,且直线m ,n 没有公共点,故一定平行. 8.①②④ 9.③解析 当l ⊥α,α⊥β时不一定有l ⊂β,还有可能l ∥β,故①不对,当l ∥α,α∥β时,l ⊂β或l ∥β,故②不对,若α∥β,α内必有两条相交直线m ,n 与平面β内的两条相交直线m ′,n ′平行,又l ⊥α,则l ⊥m ,l ⊥n ,即l ⊥m ′,l ⊥n ′,故l ⊥β,因此③正确,若l ∥α,α⊥β,则l 与β相交或l ∥β或l ⊂β,故④不对.10.105解析 如图所示,在平面A 1B 1C 1D 1内过点C 1作B 1D 1的垂线,垂足为E .连结BE .⎭⎪⎬⎪⎫C 1E ⊥B 1D 1C 1E ⊥BB 1⇒C 1E ⊥平面BDD 1B 1. ∴∠C 1BE 的正弦值就是所求值.∵BC 1=22+12=5,C 1E =2×222=2.∴sin ∠C 1BE =C 1E BC 1=25=105.11.16或272解析 当AB 与CD 的交点O 在两平面之间时CO =16;当AB 与CD 的交点O 在两平面之外时,CO =272.12.菱形 矩形 13.60°解析 如图所示可知,∠CDB 为二面角B -AD -C 的平面角,由CD =BD =BC =12a ,可知∠CDB =60°.14.E 是SA 的中点解析 连结AC 交BD 于O ,则O 为AC 中点,∴EO ∥SCEO ⊂面EBD ,SC ⊄面EBD , ∴SC ∥面EBD .15.解 (1)因为AE EB =AH HD =12,所以EH ∥BD ,且EH =13BD .因为CF FB =CGGD=2,所以FG ∥BD ,且FG =23BD .因而EH ∥FG ,且EH =12FG ,故四边形EFGH 是梯形.(2)因为BD =a ,所以EH =13a ,FG =23a ,所以梯形EFGH 的中位线的长为12(EH +FG)=12a . 16.(1)解 该几何体的直观图如图所示(2)①证明 连结AC ,BD 交于点O ,连结OG ,因为G 为PB 的中点,O 为BD 的中点,所以OG ∥PD .又OG ⊂面AGC ,PD ⊄面AGC ,所以PD ∥面AGC .②证明 连结PO ,由三视图,PO ⊥面ABCD ,所以AO ⊥PO . 又AO ⊥BO ,所以AO ⊥面PBD . 因为AO ⊂面AGC , 所以面PBD ⊥面AGC .17.(1)解 ∵CD ∥平面PBO ,CD ⊂平面ABCD , 且平面ABCD ∩平面PBO =BO , ∴BO ∥CD .又BC ∥AD ,∴四边形BCDO 为平行四边形. 则BC =DO ,而AD =3BC ,∴AD =3OD ,即点O 是靠近点D 的线段AD 的一个三等分点.(2)证明 ∵侧面PAD ⊥底面ABCD ,面PAD ∩面ABCD =AD ,AB ⊂底面ABCD ,且AB ⊥AD ,∴AB ⊥平面PAD .又PD ⊂平面PAD , ∴AB ⊥PD .又PA ⊥PD ,且AB ∩PA =A , ∴PD ⊥平面PAB . 又PD ⊂平面PCD ,∴平面PAB ⊥平面PCD . 18.解(1)设圆台上、下底面半径分别为r 、R ,AD =x ,则OD =72-x ,由题意得⎩⎪⎨⎪⎧2πR =60·π180×7272-x =3R,∴⎩⎪⎨⎪⎧R =12x =36.即AD 应取36 cm .(2)∵2πr =π3·OD =π3·36,∴r =6 cm ,圆台的高h =x 2-(R -r )2=362-(12-6)2=635. ∴V =13πh(R 2+Rr +r 2)=13π·635·(122+12×6+62)=50435π(cm 3).19.(1)证明 如图,∵O 、D 分别为AC 、PC 的中点, ∴OD ∥PA .又PA ⊂平面PAB ,OD ⊄平面PAB , ∴OD ∥平面PAB .(2)解 ∵AB ⊥BC ,OA =OC , ∴OA =OB =OC .又∵OP ⊥平面ABC ,∴PA =PB =PC .取BC 的中点E ,连结PE ,OE ,则BC ⊥平面POE , 作OF ⊥PE 于F ,连结DF ,则OF ⊥平面PBC ,∴∠ODF 是OD 与平面PBC 所成的角. 设AB =BC =a ,则PA =PB =PC =2a ,OA =OB =OC =22a ,PO =142a .在△PBC 中,∵PE ⊥BC ,PB =PC ,∴PE =152a .∴OF =21030a .又∵O 、D 分别为AC 、PC 的中点,∴OD =PA2=a .在Rt △ODF 中,sin ∠ODF =OF OD =21030.∴OD 与平面PBC 所成角的正弦值为21030.20.(1)证明 取AD 的中点M ,连结FM 、GM .∵EF∥CD,GM∥CD,∴EF∥GM.∴EF、GM确定平面EFG.∵AP∥FM,AP⊄平面EFG,FM⊂平面EFG,∴AP∥平面EFG.(2)证明连结GD,易证△ADH≌△DCG.∴∠HAD=∠GDC,AH⊥DG.又AH⊥DF,DG∩DF=D,∴AH⊥平面DFG.又∵GF⊂平面DFG,∴AH⊥GF.(3)解将四棱锥P-ABCD补全为棱长为2的正方体,则正方体的外接球也就是四棱锥的外接球.设正方体的外接球的半径为R,则2R=23,即R=3.∴S球面=4π(3)2=12π.。
第一章 立体几何初步[课时作业] [A 组 基础巩固]1.观察如图所示几何体,其中判断正确的是( )A .①是棱台B .②是圆台C .③是棱锥D .④不是棱柱解析:A 、B 显然不正确,而④是棱柱,所以D 不正确. 答案:C2.棱台不一定具有的性质是( ) A .两底面相似 B .侧面都是梯形 C .侧棱都相等D .侧棱延长后都交于一点解析:由棱台的定义可知,棱台是用平行于棱锥底面的平面去截棱锥而得到的,所以A ,B ,D 选项都成立,只有选项C 不一定成立. 答案:C3.如图所示的平面中的阴影部分绕虚线旋转一周,形成的几何体的形状为( ) A .一个球体B .一个球体中间挖去一个圆柱C .一个圆柱D .一个球体中间挖去一个长方体解析:易知外部得到一个球体,中间空白部分为圆柱. 答案:B4.用一平行于棱锥底面的平面截某棱锥,截得的棱台上、下底面面积比为1∶4,截去的棱锥的高是3 cm ,则棱台的高是( ) A .12 cm B .9 cm C .6 cmD .3 cm解析:设原棱锥的高为h cm ,依题意可得(3h )2=14,解得h =6,所以棱台的高为6-3=3(cm).答案:D5.一个棱柱至少有________个面,面数最少的棱柱有________个顶点,有________条棱. 解析:因为面数最少的棱柱是三棱柱,所以至少有5个面,6个顶点,9条棱. 答案:5 6 96.将等边三角形绕它的一条中线旋转180°,形成的几何体是________. 解析:结合圆锥的概念及结构特征知该几何体为圆锥. 答案:圆锥7.若把图(1)中的4个图形分别绕虚线旋转一周,能形成图(2)中的几何体,按顺序与1,2,3,4对应的几何体分别是图(2)中的________.答案:a ,d ,b ,c8.用一个平面截半径为5 cm 的球,球心与截面圆心之间的距离为4 cm ,则截面圆的周长为________cm.解析:设截面圆的半径为r cm ,依题意有r =52-42=3,于是截面圆的周长为2π×3=6π(cm).答案:6π9.根据下列关于空间几何体的描述,说出几何体的名称:(1)由7个面围成的几何体,其中一个面是六边形,其余6个面都是三角形,且这6个面有一个公共顶点;(2)由6个面围成的几何体,其中上、下两个面是相似四边形,其余4个面都是梯形,并且这些梯形的腰延长后能相交于一点. 解析:(1)这个一个六棱锥; (2)这是一个四棱台.10.如图,圆锥底面半径是6,轴截面的顶角是直角,过两条母线的截面截去底面圆周的16,求截面面积.解析:由题知,轴截面顶角∠ASB =90°,所以SA =SB =SC =6 2. 又∠BOC =60°,所以OB =OC =BC =6. 作SD ⊥BC ,垂足为D (图略),有SD =72-9=37.则S △SCB =12×6×37=97.[B 组 能力提升]1.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( ) A .棱柱 B .棱台C .棱柱与棱锥的组合体D .不能确定解析:长方体水槽固定底面一边后倾斜,水槽中的水形成的几何体始终有两个互相平行的平面,而其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,这符合棱柱的定义. 答案:A2.正四棱锥S -ABCD 的所有棱长都等于a ,过不相邻的两条侧棱作截面SAC ,如图,则截面的面积为( ) A.32a 2 B .a 2 C.12a 2 D.13a 2 解析:△SAC 是等腰三角形,且SA =SC =a ,底边AC =2a ,取AC 的中点O ,连接SO ,则SO ⊥AC ,且SO =SC 2-OC 2=22a ,于是S △SAC =12×2a ×22a =12a 2. 答案:C3.如图所示,是由等腰梯形、矩形、半圆、圆、倒三角形对接形成的轴对称平面图形,若将它绕轴l 旋转180°后形成一个组合体,有以下命题: ①该组合体可以分割成圆台、圆柱、圆锥和两个球体 ②该组合体关于轴l 对称③该组合体中的圆锥和球只有一个公共点 ④该组合体中的球和半球只有一个公共点 其中正确的是________.解析:根据旋转体的定义及性质知②③④正确. 答案:②③④4.四面体P -ABC 中,三组对棱的长分别相等,依次为5,4,x ,则实数x 的取值范围是________. 解析:由于四面体的三组对棱分别相等,故可构造在长方体内的四面体P -ABC (如图所示),其中P A =BC =5,PC =AB =4,PB =AC =x .设BP ′=a ,PP ′=b ,CP ′=c ,则有⎩⎪⎨⎪⎧a 2+b 2=x 2 ①a 2+c 2=25②c 2+b 2=16③由②-③得a 2-b 2=9,结合①知2b 2=x 2-9>0,∴x >3.由②+③得a 2+b 2+2c 2=41,结合①知,2c 2=41-x 2>0,∴x <41.综上可得,实数x 的取值范围是(3,41). 答案:(3,41)5.正六棱锥的底面周长为24,H 是BC 的中点,∠SHO =60°,求:(1)棱锥的高;(2)斜高;(3)侧棱长.解析:∵正六棱锥的底面周长为24,∴正六棱锥的底面边长为4,在正六棱锥S -ABCDEF 中,如图,则SH ⊥BC ,O 是正六边形ABCDEF 的中心.连接SO , 则SO ⊥底面ABCDEF . (1)在Rt △SOH 中,OH =32BC =23,∠SHO =60°,∴SO =OH ·tan 60°=6. (2)同样在Rt △SOH 中,斜高SH =2OH =4 3. (3)Rt △SOB 中,SO =6,OB =BC =4, ∴SB =SO 2+OB 2=213.6.如图,正四棱台AC′的高是17 cm,两底面的边长分别是4 cm和16 cm,求这个棱台的侧棱长和斜高.解析:设棱台两底面的中心分别是O′和O,B′C′、BC的中点分别是E′、E.连接O′O,E′E、O′B′、OB、O′E′、OE,则OBB′O′、OEE′O′都是直角梯形.在正方形ABCD中,BC=16 cm,则OB=8 2 cm,OE=8 cm.在正方形A′B′C′D′中,B′C′=4 cm,则O′B′=2 2 cm,O′E′=2 cm.在直角梯形O′OBB′中,B′B=OO′2+(OB-O′B′)2=172+(82-22)2=19(cm).在直角梯形O′OEE′中,EE′=OO′2+(OE-O′E′)2=172+(8-2)2=513(cm).即这个棱台的侧棱长为19 cm,斜高为513 cm.。
凡事豫(预)则立,不豫(预)则废。
第21课时 面积与体积复习课
分层训练
1、已知正四棱柱的底面边长是3
,侧面的对角线长是,求这个正四棱柱的侧面积。
2、求底面边长为2,高为1的正三棱锥的全面积。
3、在长方体ABCD-A 1B 1C 1D 1中,用截面截下一个棱锥C-A 1DD 1,求C-A 1DD 1的体积与剩余部分的体积之比.
4、在△ABC 中,AB=2,AC=1.5,∠ABC=1200(如图).若将△ABC 绕直线AC 旋转一周,求形成的旋转体的体积.
5、用一张长12cm ,宽8cm 的矩形围成圆柱形的侧面,求这个圆柱的体积。
6、已知一个铜质的五棱柱底面积为16cm 2,高为4cm ,现将它熔化后铸成一个正方体的铜块,那么铸成的铜块的棱长为多少(不计损耗)?
7、若一个六棱锥的高为10cm ,底面是边长为6cm 的正六边形,求这个六棱锥的体积.
拓展延伸
8、一个正四棱台形油槽可以装煤油190升,假如它的上、下底边长分别等于60cm 和40cm ,求它的深度.
9、一个平面截一个球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,求该球的表面积和体积。
10、已知正三棱柱的底面边长为1,侧棱长为2,这样的三棱柱能否放进一个体积为16 的小球?为什么?
本节学习疑点:
A A 1
B
C
D B 1 D 1 C 1。
第一章 空间几何体 第1课时 多面体的结构特征一、基础过关1.下列说法中正确的是( )A .棱柱的侧面可以是三角形B .由6个大小一样的正方形所组成的图形是正方体的展开图C .正方体的各条棱长都相等D .棱柱的各条棱长都相等 2.棱台不具备的特点是( )A .两底面相似B .侧面都是梯形C .侧棱都相等D .侧棱延长后都交于一点3. 如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A .棱柱B .棱台C .棱柱与棱锥的组合体D .不能确定4.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A .1∶2B .1∶4C .2∶1D .4∶15.一个棱柱有10个顶点,所有的侧棱长的和为60 cm ,则每条侧棱长为________cm. 6.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图________(填序号).7.如图所示为长方体ABCD —A ′B ′C ′D ′,当用平面BCFE 把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.8.如图所示的是一个三棱台ABC —A 1B 1C 1,如何用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.二、能力提升9.下图中不可能围成正方体的是()10.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________(写出所有正确结论的编号).①矩形; ②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体; ④每个面都是等边三角形的四面体; ⑤每个面都是直角三角形的四面体.11.根据下列对于几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形; (2)由五个面围成,其中一个面是正方形,其它各面都是有一个公共顶点的全等三角形.三、探究与拓展12.正方体的截面可能是什么形状的图形?第二课时 旋转体与简单组合体的结构特征一、基础过关 1.下列说法正确的是( )A .直角三角形绕一边旋转得到的旋转体是圆锥B .夹在圆柱的两个截面间的几何体还是一个旋转体C .圆锥截去一个小圆锥后剩余部分是圆台D .通过圆台侧面上一点,有无数条母线 2.下列说法正确的是( )A .直线绕定直线旋转形成柱面B .半圆绕定直线旋转形成球体C .有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台D .圆柱的任意两条母线所在的直线是相互平行的3.如图所示的几何体是由一个圆柱挖去一个以圆柱上底面为底面,下底面圆心为顶点的圆锥而得到的组合体,现用一个竖直的平面去截这个组合体,则截面图形可能是()A .(1)(2)B .(1)(3)C .(1)(4)D .(1)(5) 4.观察如图所示的四个几何体,其中判断正确的是()A .a 是棱台B .b 是圆台C .c 是棱锥D .d 不是棱柱5.将等边三角形绕它的一条中线旋转180°,形成的几何体是________. 6.请描述下列几何体的结构特征,并说出它的名称.(1)由7个面围成,其中两个面是互相平行且全等的五边形,其它面都是全等 的矩形;(2)如右图,一个圆环面绕着过圆心的直线l 旋转180°.7. 如图所示,梯形ABCD 中,AD ∥BC ,且AD <BC ,当梯形ABCD 绕AD 所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.二、能力提升8.下列说法正确的个数是( )①长方形绕一条直线旋转一周所形成的几何体是圆柱;②过圆锥侧面上一点有无数条母线;③圆锥的母线互相平行. A .0B .1C .2D .39.一个正方体内有一个内切球,作正方体的对角面,所得截面图形是下图中的()10.已知球O 是棱长为1的正方体ABCD —A 1B 1C 1D 1的内切球,则平面ACD 1截球O 所得的截面面积为________.11.以直角三角形的一条边所在的直线为旋转轴,其余两边旋转形成的面所围成的旋转体有哪些?三、探究与拓展12.如图所示,圆台母线AB 长为20 cm ,上、下底面半径分别为5 cm 和10 cm ,从母线AB 的中点M 拉一条绳子绕圆台侧面转到B 点,求这条绳长的最小值.§1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影 1.2.2 空间几何体的三视图一、基础过关 1.下列命题正确的是( )A .矩形的平行投影一定是矩形B .梯形的平行投影一定是梯形C .两条相交直线的投影可能平行D .一条线段中点的平行投影仍是这条线段投影的中点 2.如图所示的一个几何体,哪一个是该几何体的俯视图()3.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是()A .①②B .①③C .①④D .②④4.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图()5.根据如图所示俯视图,找出对应的物体.(1)对应________;(2)对应________;(3)对应________;(4)对应________;(5)对应________.6.若一个三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是______和________.7.在下面图形中,图(b)是图(a)中实物画出的正视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出侧视图(尺寸不作严格要求).8.画出如图所示的四棱锥和三棱柱的三视图.二、能力提升9.一个长方体去掉一角的直观图如图所示,关于它的三视图,下列画法正确的是()10.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱11.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是________.12.如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.三、探究与拓展13.用小立方体搭成一个几何体,使它的正视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?1.2.3空间几何体的直观图一、基础过关1.下列结论:①角的水平放置的直观图一定是角;②相等的角在直观图中仍然相等;③相等的线段在直观图中仍然相等;④两条平行线段在直观图中对应的两条线段仍然平行.其中正确的有()A.①②B.①④C.③④D.①③④2.在用斜二测画法画水平放置的△ABC时,若∠A的两边分别平行于x轴、y轴,则在直观图中∠A′等于()A.45°B.135°C.90°D.45°或135°3.下面每个选项的2个边长为1的正△ABC的直观图不是全等三角形的一组是()4.如图甲所示为一个平面图形的直观图,则此平面图形可能是图乙中的()5.利用斜二测画法得到:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④菱形的直观图是菱形.以上结论中,正确的是______________.(填序号)6.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为____________.7.如图是一梯形OABC的直观图,其直观图面积为S.求梯形OABC的面积.8.如图所示,已知几何体的三视图,用斜二测画法画出它的直观图.二、能力提升9.如图,正方形O ′A ′B ′C ′的边长为1 cm ,它是水平放置的一个平面图形的直观图,则原图的周长是( )A .8 cmB .6 cmC .2(1+3) cmD .2(1+2) cm10.如图所示的是水平放置的△ABC 在直角坐标系的直观图,其中D ′是A ′C ′的中点,且∠A ′C ′B ′≠30°,则原图形中与线段BD 的长相等的线段有________条. 11.如图所示,为一个水平放置的正方形ABCO ,它在直角坐标系xOy 中,点B 的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B ′到x ′轴的距离为________.12.如图所示,梯形ABCD 中,AB ∥CD ,AB =4 cm ,CD =2 cm ,∠DAB =30°,AD =3 cm ,试画出它的直观图.三、探究与拓展13.在水平放置的平面α内有一个边长为1的正方形A ′B ′C ′D ′,如图,其中的对角线A ′C ′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.§1.3 空间几何体的表面积与体积第一课时 柱体、锥体、台体的表面积一、基础过关1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( )A .8B .8πC .4πD .2π2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比为 ( )A .1+2π2πB .1+4π4πC .1+2ππD .1+4π2π3.若一个圆台的正视图如图所示,则其侧面积等于()A .6B .6πC .35πD .65π 4.三视图如图所示的几何体的全面积是()A .7+ 2B .112+2C .7+ 3D .325.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是________. 6.一简单组合体的三视图及尺寸如下图所示(单位:cm),则该组合体的表面积为________cm 2.7.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.8.长方体ABCD —A 1B 1C 1D 1中,宽、长、高分别为3、4、5,现有一个小虫从A 出发沿长方体表面爬行到C 1来获取食物,求其路程的最小值.二、能力提升9.已知由半圆的四分之三截成的扇形的面积为B ,由这个扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( ) A .11∶8B .3∶8C .8∶3D .13∶8 10.一个几何体的三视图如图,该几何体的表面积为()A .372B .360C .292D .28011.一个几何体的三视图如图所示,则该几何体的表面积为________.12.有一根长为3π cm ,底面半径为1 cm 的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,求铁丝的最短长度.三、探究与拓展13.有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).第二课时 柱体、锥体、台体、球的体积与球的表面积一、基础过关1.一个三棱锥的高和底面边长都缩小为原来的12时,它的体积是原来的( )A .12B .14C .18D .242.两个球的半径之比为1∶3,那么两个球的表面积之比为 ( )A .1∶9B .1∶27C .1∶3D .1∶1 3.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( )A .a ∶bB .b ∶aC .a 2∶b 2D .b 2∶a 24.若球的体积与表面积相等,则球的半径是( )A .1B .2C .3D .45.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________ cm. 6.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则四棱锥A -BB 1D 1D 的体积为______ cm 3.7.(1)表面积相等的正方体和球中,体积较大的几何体是______;(2)体积相等的正方体和球中,表面积较小的几何体是______.8.在球面上有四个点P 、A 、B 、C ,如果P A 、PB 、PC 两两垂直且P A =PB =PC =a ,求这个球的体积.二、能力提升9.有一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积和体积分别为( )A .24π cm 2,12π cm 3B .15π cm 2,12π cm 3C .24π cm 2,36π cm 3D .以上都不正确10.圆柱的底面半径为1,母线长为2,则它的体积和表面积分别为( )A .2π,6πB .3π,5πC .4π,6πD .2π,4π11.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________ m 3.12.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r 的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.三、探究与拓展13.有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.章末检测一、选择题1.如图所示的长方体,将其左侧面作为上底面,右侧面作为下底面,水平放置,所得的几何体是 ( ) A .棱柱B .棱台C .棱柱与棱锥组合体D .无法确定1题图 2题图2.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能...为:①长方形;②正方形;③圆.其中正确的是()A.①②B.②③C.①③D.①②3.如图所示的正方体中,M、N分别是AA1、CC1的中点,作四边形D1MBN,则四边形D1MBN在正方体各个面上的正投影图形中,不可能出现的是()4.如图所示的是水平放置的三角形直观图,D′是△A′B′C′中B′C′边上的一点,且D′离C′比D′离B′近,又A′D′∥y′轴,那么原△ABC的AB、AD、AC三条线段中()A.最长的是AB,最短的是AC B.最长的是AC,最短的是ABC.最长的是AB,最短的是AD D.最长的是AD,最短的是AC4题图5题图5.具有如图所示直观图的平面图形ABCD是()A.等腰梯形B.直角梯形C.任意四边形 D.平行四边形6.如图是一个几何体的三视图,则在此几何体中,直角三角形的个数是()A.1 B.2 C.3 D.47.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.188.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为()A.6πB.43πC.46πD.63π9.如图所示,则这个几何体的体积等于()A.4 B.6 C.8 D.1210.将正三棱柱截去三个角(如图1所示,A,B,C分别是△GHI三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图为选项图中的()11.圆锥的表面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为()A.120°B.150°C.180°D.240°12.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.26B.36C.23D.22二、填空题13.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱14.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于________ cm3.15.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是________.16.一个水平放置的圆柱形储油桶(如图所示),桶内有油部分所在圆弧占底面圆周长的14,则油桶直立时,油的高度与桶的高度的比值是________.三、解答题17.某个几何体的三视图如图所示(单位:m),(1)求该几何体的表面积(结果保留π);(2)求该几何体的体积(结果保留π).18.如图是一个空间几何体的三视图,其中正视图和侧视图都是边长为2的正三角形,俯视图如图.(1)在给定的直角坐标系中作出这个几何体的直观图(不写作法);(2)求这个几何体的体积.19.如图所示,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD 绕AD旋转一周所成几何体的表面积及体积.20.如图所示,有一块扇形铁皮OAB,∠AOB=60°,OA=72 cm,要剪下来一个扇形环ABCD,作圆台形容器的侧面,并且余下的扇形OCD内剪下一块与其相切的圆形使它恰好作圆台形容器的下底面(大底面).试求:(1)AD的长;(2)容器的容积.第一章空间几何体参考答案第1课时多面体的结构特征参考答案1.C 2.C 3.A 4.B 5.12 6.①②7.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′—CFC′,其中△BEB′和△CFC′是底面.EF,B′C′,BC是侧棱,截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′—DCFD′.其中四边形ABEA′和四边形DCFD′是底面.A′D′,EF,BC,AD为侧棱.8.解过A1、B、C三点作一个平面,再过A1、B、C1作一个平面,就把三棱台ABC—A1B1C1分成三部分,形成的三个三棱锥分别是A1—ABC,B—A1B1C1,A1—BCC1.9.D10.①③④⑤11.解(1)该几何体有两个面是互相平行且全等的正六边形,其他各面都是矩形,可满足每相邻两个面的公共边都相互平行,故该几何体是六棱柱.(2)该几何体的其中一个面是四边形,其余各面都是三角形,并且这些三角形有一个公共顶点,因此该几何体是四棱锥.12.解本问题可以有如下各种答案:①截面可以是三角形:等边三角形、等腰三角形、一般三角形;②截面三角形是锐角三角形;③截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形中至少有一组对边平行;④截面可以是五边形;⑤截面可以是六边形;⑥截面六边形可以是等角(均为120°)的六边形.特别地,可以是正六边形.截面图形举例第二课时旋转体与简单组合体的结构特征参考答案1.C 2.D 3.D 4.C 5.圆锥6.解(1)特征:具有棱柱的特征,且侧面都是全等的矩形,底面是正五边形.几何体为正五棱柱.(2)由两个同心的大球和小球,大球里去掉小球剩下的部分形成的几何体,即空心球.7.解如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.8.A9.B10.π611.解 假设直角三角形ABC 中,∠C =90°.以AC 边所在的直线为旋转轴,其余两边旋转形成的面所围成的旋转体如图(1)所示.当以BC 边所在的直线为旋转轴,其余两边旋转形成的面所围成的旋转体如图(2)所示. 当以AB 边所在的直线为旋转轴,其余两边旋转形成的面所围成的旋转体如图(3)所示.12.解 作出圆台的侧面展开图,如图所示,由其轴截面中Rt △OP A 与Rt △OQB 相似,得OA OA +AB =510,可Q 的周长相等,求得OA =20 cm.设∠BOB ′=α,由于扇形弧BB ′的长与底面圆而底面圆Q 的周长为2π×10 cm.扇形OBB ′的半径为OA +AB =20+20=40 cm ,扇度20π为所在圆形OBB ′所在圆的周长为2π×40=80π cm.所以扇形弧BB ′的长周长的14.所以OB ⊥OB ′.所以在Rt △B ′OM 中,B ′M 2=402+302,所以B ′M =50 cm ,即所求绳长的最小值为50 cm.1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图参考答案1.D 2.C 3.D 4.C5.(1)D (2)A (3)E (4)C (5)B 6.2 47.解 图(a)是由两个长方体组合而成的,正视图正确,俯视图错误,俯视图应该画出不可见轮廓线(用虚线表示),侧视图轮廓是一个矩形,有一条可视的交线(用实线表示),正确画法如图所示.8.解 三视图如图所示:9.A 10.D 11.612.解 该物体是由一个正六棱柱和一个圆柱组合而成的,正视图反映正六棱柱的三个侧面和圆柱侧面,侧视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图如图所示.13.解 由于正视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.1.2.3 空间几何体的直观图参考答案1.B 2.D 3.C 4.C 5.①② 6.2.57.解 设O ′C ′=h ,则原梯形是一个直角梯形且高为2h .过C ′作C ′D ′⊥O ′A ′于D ′,则C ′D ′=22h . 由题意知12C ′D ′(C ′B ′+O ′A ′)=S .即24h (C ′B ′+O ′A ′)=S . 又原直角梯形面积为S ′=12·2h (C ′B ′+O ′A ′)=h (C ′B ′+O ′A ′)=4S2=22S .所以梯形OABC 的面积为22S .8.解 (1)作出长方体的直观图ABCD -A 1B 1C 1D 1,如图a 所示;(2)再以上底面A 1B 1C 1D 1的对角线交点为原点建立x ′,y ′,z ′轴,如图b 所示,在z ′上取点V ′,使得V ′O ′的长度为棱锥的高,连接V ′A 1,V ′B 1,V ′C 1,V ′D 1,得到四棱锥的直观图,如图b ; (3)擦去辅助线和坐标轴,遮住部分用虚线表示,得到几何体的直观图,如图c.9.A 10.2 11.2212.解 画法:步骤:(1)如图a 所示,在梯形ABCD 中, 以边AB 所在的直线为x 轴,点A 为原点, 建立平面直角坐标系xOy .如图b 所示,画出对应的x ′轴,y ′轴,使∠x ′O ′y ′=45°. (2)在图a 中,过D 点作DE ⊥x 轴,垂足为E .在图b 中, 在x ′轴上取A ′B ′=AB =4 cm ,A ′E ′=AE =323≈2.598 cm ;过点E ′作E ′D ′∥y ′轴,使E ′D ′=12ED =12×32=0.75 cm ,再过点D ′作D ′C ′∥x ′轴,且使D ′C ′=DC =2 cm.(3)连接A ′D ′、B ′C ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图c 所示,则四边形A ′B ′C ′D ′就是所求作的直观图.13.解 四边形ABCD 的真实图形如图所示,∵A ′C ′在水平位置,A ′B ′C ′D ′为正方形, ∴∠D ′A ′C ′=∠A ′C ′B ′ =45°,∴在原四边形ABCD 中, DA ⊥AC ,AC ⊥BC , ∵DA =2D ′A ′=2, AC =A ′C ′=2,∴S 四边形ABCD =AC ·AD =2 2.第一课时 柱体、锥体、台体的表面积参考答案1.B 2.A 3.C 4.A 5.60° 6.12 800 7.28.解 把长方体含AC 1的面作展开图,有三种情形如图所示:利用勾股定理可得AC 1的长分别为90、74、80.由此可见图②是最短路线,其路程的最小值为74. 9.A 10.B 11.3812.解 把圆柱侧面及缠绕其上的铁丝展开,在平面上得到矩形ABCD (如图所示),由题意知BC =3π cm ,AB =4π cm ,点A 与点C 分别是铁丝的起、止位置,故线段AC 的长度即为铁丝的最短长度. AC =AB 2+BC 2=5π cm , 故铁丝的最短长度为5π cm.13.解 易知由下向上三个正方体的棱长依次为2,2,1.考虑该几何体在水平面的投影,可知其水平面的面积之和为下底面积最大正方体的底面面积的二倍. ∴S 表=2S 下+S 侧=2×22+4×[22+(2)2+12]=36. ∴该几何体的表面积为36.第二课时 柱体、锥体、台体、球的体积与球的表面积参考答案1.C 2.A 3.B 4.C 5.3 6.6 7.(1)球 (2)球8.解 ∵P A 、PB 、PC 两两垂直,P A =PB =PC =a .∴以P A 、PB 、PC 为相邻三条棱可以构造正方体. 又∵P 、A 、B 、C 四点是球面上四点,∴球是正方体的外接球,正方体的对角线是球的直径.∴2R =3a ,R =32a ,∴V =43πR 3=43π(32a )3=32πa 3.9.A 10.A 11.9π+1812.解 由题意知,圆锥的轴截面为正三角形,如图所示为圆锥的轴截面.根据切线性质知,当球在容器内时,水深为3r ,水面的半径为3r ,则容器内水的体积为V =V 圆锥-V球=13π·(3r )2·3r -43πr 3=53πr 3, 而将球取出后,设容器内水的深度为h ,则水面圆的半径为33h ,从而容器内水的体积是V ′=13π·(33h )2·h =19πh 3,由V =V ′,得h =315r . 即容器中水的深度为315r .13.解 设正方体的棱长为a .如图所示.(1)中正方体的内切球球心是正方体的中心,切点是正方体六个面的中心,经过四个切点及球心作截面, 所以有2r 1=a ,r 1=a 2,所以S 1=4πr21=πa 2.(2)中球与正方体的各棱的切点在每条棱的中点, 过球心作正方体的对角面得截面,2r 2=2a ,r 2=22a ,所以S 2=4πr 22=2πa 2.(3)中正方体的各个顶点在球面上, 过球心作正方体的对角面得截面,所以有2r 3=3a ,r 3=32a ,所以S 3=4πr 23=3πa 2.综上可得S 1∶S 2∶S 3=1∶2∶3.章末检测答案1.A 2.B 3.D 4.C 5.B 6.D 7.B 8.B 9.A 10.A 11.C 12.A 13.①②③⑤ 14.1 15.24π16.14-12π17.解 由三视图可知:该几何体的下半部分是棱长为2 m 的正方体,上半部分是半径为1 m 的半球.(1)几何体的表面积为S =12×4π×12+6×22-π×12=24+π(m 2).(2)几何体的体积为V =23+12×43×π×13=8+2π3(m 3).18.解 (1)直观图如图.(2)这个几何体是一个四棱锥. 它的底面边长为2,高为3,所以体积V =13×22×3=433.19.解 S 表面=S 圆台底面+S 圆台侧面+S 圆锥侧面=π×52+π×(2+5)×5+π×2×2 2 =(42+60)π.V =V 圆台-V 圆锥=13π(r 21+r 1r 2+r 22)h -13πr 21h ′ =13π(25+10+4)×4-13π×4×2 =1483π. 20.解 (1)设圆台上、下底面半径分别为r 、R ,AD =x ,则OD =72-x ,由题意得⎩⎪⎨⎪⎧2πR =60·π180×7272-x =3R,∴⎩⎪⎨⎪⎧R =12x =36.即AD 应取36 cm.(2)∵2πr =π3·OD =π3·36,∴r =6 cm ,圆台的高h =x 2-(R -r )2=362-(12-6)2=635. ∴V =13πh (R 2+Rr +r 2)=13π·635·(122+12×6+62)=50435π(cm 3).。
2016-2017学年高中数学第1章立体几何初步1.2 简单多面体课时作业北师大版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学第1章立体几何初步1.2 简单多面体课时作业北师大版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学第1章立体几何初步1.2 简单多面体课时作业北师大版必修2的全部内容。
1.2 简单多面体时间:45分钟满分:80分班级________ 姓名________ 分数________一、选择题(每小题5分,共5×6=30分)1.在下列立体图形中,有5个面的是( )A.四棱锥 B.五棱锥C.四棱柱 D.五棱柱答案:A解析:柱体均有两个底面,锥体只有一个底面.2.下列说法错误的是()A.多面体是由若干个平面多边形围成的几何体B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形答案:D解析:根据多面体的概念知A说法正确;棱柱侧面为平行四边形,其侧棱的条数、侧面的个数与底面多边形的边数相等,所以B说法正确;长方体、正方体都是棱柱,所以C说法正确;三棱柱的侧面是平行四边形,不是三角形,所以D说法错误.3.如图,将装有水的长方体水槽固定底面一边后倾斜,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱台的组合体D.不确定答案:A解析:水槽倾斜后,水有变动,但是根据棱柱的结构特征,其仍然是个棱柱,上、下两个底面发生变化.4.若正三棱锥的底面边长为3,侧棱长为错误!,则该棱锥的高等于( )A。
一、选择题
1.棱柱的侧面都是()
A.三角形B.四边形
C.五边形D.矩形
【解析】由棱柱的性质可知,棱柱的侧面都是四边形.
【答案】 B
2.棱锥的侧面和底面可以都是()
A.三角形B.四边形
C.五边形D.六边形
【解析】三棱锥的侧面和底面均是三角形.
【答案】 A
3.四棱柱有几条侧棱,几个顶点()
A.四条侧棱、四个顶点B.八条侧棱、四个顶点
C.四条侧棱、八个顶点D.六条侧棱、八个顶点
【解析】四棱柱有四条侧棱、八个顶点(可以结合正方体观察求得).【答案】 C
图1-1-17
4.如图1-1-17,能推断这个几何体可能是三棱台的是()
A.A1B1=2,AB=3,B1C1=3,BC=4
B.A1B1=1,AB=2,B1C1=1.5,BC=3,A1C1=2,AC=3
C.A1B1=1,AB=2,B1C1=1.5,BC=3,A1C1=2,AC=4
D.AB=A1B1,BC=B1C1,CA=C1A1
【解析】 由于棱台是由平行于底面的平面截棱锥得到的几何体,所以要使结论成立,只需A 1B 1AB =B 1C 1BC =A 1C 1
AC 便可.
经验证C 选项正确. 【答案】 C
5.(2013·郑州高一检测)观察如图1-1-18的四个几何体,其中判断不正确的是( )
图1-1-18
A .①是棱柱
B .②不是棱锥
C .③不是棱锥
D .④是棱台
【解析】 结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B 错误.
【答案】 B 二、填空题
图1-1-19
6.在如图1-1-19所示的长方体中,连接OA,OB,OD和OC所得的几何体是________.
【解析】此几何体由△OAB,△OAD,△ODC,△OBC和正方形ABCD围成,是四棱锥.
【答案】四棱锥
7.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.
【解析】面数最少的棱台是三棱台,共有5个面,6个顶点,9条棱.
【答案】569
8.用6根长度相等的木棒,最多可以搭成______个三角形.
【解析】用三根木棒,摆成三角形,用另外3根木棒,分别从三角形的三个顶点向上搭起,搭成一个三棱锥,共4个三角形.
【答案】 4
三、解答题
9.根据下列关于空间几何体的描述,说出几何体的名称:
(1)由6个平行四边形围成的几何体;
(2)由7个面围成,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;
(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点.
【解】(1)这是一个上、下底面是平行四边形,四个侧面也是平行四边形的四棱柱.
(2)这是一个六棱锥,其中六边形面是底,其余的三角形面是侧面.
(3)这是一个三棱台,其中相似的两个三角形面是底面,其余三个梯形面是侧面.
10.如图1-1-20,在正方形ABCD中,E、F分别为AB、BC的中点,现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,
重合后的点记为P.
问:(1)依据题意知该几何体是什么几何体?
(2)这个几何体有几个面构成,每个面的三角形是什么三角形?
图1-1-20
【解】(1)三棱锥.
(2)这个几何体由四个面构成,即面DEF,面DFP,面DEP,面EFP.由平面几何知识可知DE=DF,∠DPE=∠EPF=∠DPF=90°,所以△DEF为等腰三角形,△DFP、△DEP为直角三角形,△EFP为等腰直角三角形.
11.如图1-1-21,在透明塑料制成的长方体ABCD—A1B1C1D1容器中灌进一些水,将容器底面一边BC置于地面上,再将容器倾斜,随着倾斜程度的不同,水的形状形成如下图(1)(2)(3)三种形状.(阴影部分)
请你说出这三种形状分别是什么名称,并指出其底面.
图1-1-21
【解】(1)是四棱柱,底面是四边形EFGH和四边形ABCD;(2)是四棱柱,底面是四边形ABFE和四边形DCGH;(3)是三棱柱,底面是△EBF和△HCG.。