2022届高考数学(理)二轮专题复习课时作业:专题五 立体几何 (十三) Word版含答案
- 格式:docx
- 大小:1017.22 KB
- 文档页数:4
第三讲立体几何——大题备考【命题规律】立体几何大题一般为两问:第一问通常是线、面关系的证明;第二问通常跟角有关,一般是求线面角或二面角,有时与距离、几何体的体积有关.微专题1线面角保分题[2022·辽宁沈阳二模]如图,在四棱锥P-ABCD中,底面ABCD是正方形,P A⊥平面ABCD,P A=2AB=4,点M是P A的中点.(1)求证:BD⊥CM;(2)求直线PC与平面MCD所成角的正弦值.提分题例1 [2022·全国乙卷]如图,四面体ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E 为AC的中点.(1)证明:平面BED⊥平面ACD;(2)设AB=BD=2,∠ACB=60°,点F在BD上,当△AFC的面积最小时,求CF与平面ABD所成的角的正弦值.听课笔记:【技法领悟】利用空间向量求线面角的答题模板巩固训练1[2022·山东泰安一模]如图,在四棱锥P-ABCD中,底面ABCD是矩形,AB=2AD=2,P A⊥平面ABCD,E为PD中点.(1)若P A=1,求证:AE⊥平面PCD;(2)当直线PC与平面ACE所成角最大时,求三棱锥E-ABC的体积.微专题2二面角保分题[2022·山东临沂二模]如图,AB是圆柱底面圆O的直径,AA1、CC1为圆柱的母线,四边形ABCD是底面圆O的内接等腰梯形,且AB=AA1=2BC=2CD,E、F分别为A1D、C1C的中点.(1)证明:EF∥平面ABCD;(2)求平面OEF与平面BCC1夹角的余弦值.提分题例2 [2022·湖南岳阳三模]如图,在四棱锥P-ABCD中,底面ABCD是菱形,F是PD 的中点.(1)证明:PB∥平面AFC;(2)若直线P A⊥平面ABCD,AC=AP=2,且P A与平面AFC所成的角正弦值为√21,求7锐二面角F-AC-D的余弦值.听课笔记:AD,现例3 [2022·山东日照二模]如图,等腰梯形ABCD中,AD∥BC,AB=BC=CD=12以AC为折痕把△ABC折起,使点B到达点P的位置,且P A⊥CD.(1)证明:平面APC⊥平面ADC;(2)若M为PD上一点,且三棱锥D-ACM的体积是三棱锥P-ACM体积的2倍,求二面角P-AC-M的余弦值.听课笔记:【技法领悟】利用空间向量求二面角的答题模板巩固训练21.[2022·广东韶关二模]如图,在四棱锥P-ABCD中,底面ABCD为矩形,点S是边AB 的中点.AB=2,AD=4,P A=PD=2√2.(1)若O是侧棱PC的中点,求证:SO∥平面P AD;(2)若二面角P-AD-B的大小为2π,求直线PD与平面PBC所成角的正弦值.32.[2022·河北保定一模]如图,在等腰梯形ABCD中,AD∥BC,AD=AB=CD=1,∠BCD =60°,现将DAC沿AC折起至P AC,使得PB=√2.(1)证明:AB⊥PC;(2)求二面角A-PC-B的余弦值.微专题3探索性问题提分题例4 [2022·山东聊城三模]已知四边形ABCD为平行四边形,E为CD的中点,AB=4,△ADE为等边三角形,将三角形ADE沿AE折起,使点D到达点P的位置,且平面APE⊥平面ABCE.(1)求证:AP⊥BE;(2)试判断在线段PB上是否存在点F,使得平面AEF与平面AEP的夹角为45°.若存在,试确定点F的位置;若不存在,请说明理由.听课笔记:【技法领悟】1.通常假设问题中的数学对象存在或结论成立,再在这个前提下进行推理,如果能推出与条件吻合的数据或事实,说明假设成立,并可进一步证明;否则假设不成立.2.探索线段上是否存在满足条件的点时,一定注意三点共线的条件的应用.巩固训练3[2022·湖南岳阳一模]如图,在三棱锥S-ABC中,SA=SB=SC,BC⊥AC.(1)证明:平面SAB⊥平面ABC;(2)若BC=SC,SC⊥SA,试问在线段SC上是否存在点D,使直线BD与平面SAB所成的角为60°,若存在,请求出D点的位置;若不存在,请说明理由.第三讲立体几何微专题1线面角保分题解析:(1)证明:如图,连接AC,∵四边形ABCD是正方形,∴AC⊥BD.又P A ⊥平面ABCD ,BD ⊂平面ABCD ,∴P A ⊥BD , ∵P A ,AC ⊂平面P AC ,P A∩AC =A , ∴BD ⊥平面P AC , 又CM ⊂平面P AC , ∴BD ⊥CM .(2)易知AB ,AD ,AP 两两垂直,以点A 为原点,建立如图所示的空间直角坐标系A - xyz . ∵P A =2AB =4,∴A (0,0,0),P (0,0,4),M (0,0,2),C (2,2,0),D (0,2,0), ∴MC⃗⃗⃗⃗⃗⃗ =(2,2,-2),MD ⃗⃗⃗⃗⃗⃗ =(0,2,-2),PC ⃗⃗⃗⃗ =(2,2,-4). 设平面MCD 的法向量为n =(x ,y ,z ),则{n ·MC⃗⃗⃗⃗⃗⃗ =2x +2y −2z =0n ·MD ⃗⃗⃗⃗⃗⃗ =2y −2z =0,令y =1,得n =(0,1,1).设直线PC 与平面MCD 所成角为θ,由图可知0<θ<π2,则sinθ=|cos 〈n ,PC ⃗⃗⃗⃗ 〉|=|n·PC ⃗⃗⃗⃗⃗||n ||PC ⃗⃗⃗⃗⃗|=√12+12×√22+22+(−4)2=√36.即直线PC 与平面MCD 所成角的正弦值为√36.提分题[例1] 解析:(1)证明:∵AD =CD ,∠ADB = ∠BDC ,BD =BD , ∴△ABD ≌△CBD ,∴AB =CB .∵E 为AC 的中点,∴DE ⊥AC ,BE ⊥AC . ∵DE∩BE =E ,DE ,BE ⊂平面BED , ∴AC ⊥平面BED .∵AC ⊂平面ACD ,∴平面BED ⊥平面ACD .(2)如图,连接EF .由(1)知AC ⊥平面BED . 又∵EF ⊂平面BED , ∴EF ⊥AC . ∴S △AFC =12AC ·EF .当EF ⊥BD 时,EF 的长最小,此时△AFC 的面积最小. 由(1)知AB =CB =2. 又∵∠ACB =60°,∴△ABC 是边长为2的正三角形,∴BE =√3. ∵AD ⊥CD ,∴DE =1,∴DE 2+BE 2=BD 2,∴DE ⊥BE .以点E 为坐标原点,直线EA ,EB ,ED 分别为x 轴、y 轴、z 轴建立空间直角坐标系,则E (0,0,0),A (1,0,0),B (0,√3,0),C (-1,0,0),D (0,0,1),∴AB ⃗⃗⃗⃗⃗ =(-1,√3,0),AD ⃗⃗⃗⃗⃗ =(-1,0,1),DB ⃗⃗⃗⃗⃗ =(0,√3,-1),ED⃗⃗⃗⃗⃗ =(0,0,1),EC ⃗⃗⃗⃗ =(-1,0,0).设DF ⃗⃗⃗⃗⃗ =λDB ⃗⃗⃗⃗⃗ (0≤λ≤1), 则EF ⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ +λDB ⃗⃗⃗⃗⃗ =(0,0,1)+λ(0,√3,-1)=(0,√3λ,1-λ). ∵EF ⊥DB , ∴EF⃗⃗⃗⃗ ·DB ⃗⃗⃗⃗⃗ =(0,√3λ,1-λ)·(0,√3,-1)=4λ-1=0, ∴λ=14,∴EF ⃗⃗⃗⃗ =(0,√34,34),∴CF ⃗⃗⃗⃗ =EF ⃗⃗⃗⃗ −EC ⃗⃗⃗⃗ =(0,√34,34)-(-1,0,0)=(1,√34,34).设平面ABD 的法向量为n =(x ,y ,z ), 则{n ·AB ⃗⃗⃗⃗⃗ =0,n ·AD⃗⃗⃗⃗⃗ =0,即{−x +√3y =0,−x +z =0.取y =1,则x =√3,z =√3,∴n =(√3,1,√3).设当△AFC 的面积最小时,CF 与平面ABD 所成的角为θ,则sin θ=|cos 〈n ,CF ⃗⃗⃗⃗ 〉|=|n·CF ⃗⃗⃗⃗⃗||n ||CF ⃗⃗⃗⃗⃗ |=|√3×1+1×√34+√3×34|√3+1+3× √1+316+916=4√37. 故当△AFC 的面积最小时,CF 与平面ABD 所成的角的正弦值为4√37. [巩固训练1]解析:(1)证明:∵P A ⊥平面ABCD ,CD ⊂平面ABCD ,∴P A ⊥CD , ∵四边形ABCD 为矩形,∴AD ⊥CD ,又AD∩P A =A ,AD 、P A ⊂平面P AD ,∴CD ⊥平面P AD , ∵AE ⊂平面P AD ,∴AE ⊥CD ,在△P AD 中,P A =AD ,E 为PD 的中点,∴AE ⊥PD , 而PD∩CD =D ,PD 、CD ⊂平面PCD , ∴AE ⊥平面PCD .(2)以A 为坐标原点,分别以AB 、AD 、AP 所在直线为x 、y 、z 轴建立空间直角坐标系, 设AP =a (a >0),则C (2,1,0),P (0,0,a ),E (0,12,a2),∴AC ⃗⃗⃗⃗⃗ =(2,1,0),AE ⃗⃗⃗⃗⃗ =(0,12,a 2),PC ⃗⃗⃗⃗ =(2,1,-a ), 设平面ACE 的一个法向量为n =(x ,y ,z ), 则{n ·AC ⃗⃗⃗⃗⃗ =2x +y =0n ·AE⃗⃗⃗⃗⃗ =12y +a 2z =0,取y =-a ,可得n =(a2,-a ,-1).设直线PC 与平面ACE 所成角为θ,则sin θ=|cos 〈n ,PC ⃗⃗⃗⃗ 〉|=|n·FC⃗⃗⃗⃗⃗ ||n ||FC⃗⃗⃗⃗⃗ |=√54a 2+1·√5+a 2=√29+20a2+5a ≤27,当且仅当a =√2时等号成立.即当AP =√2时,直线PC 与平面ACE 所成角最大, 此时三棱锥E - ABC 的体积V =13×12×2×1×√22=√26.微专题2 二面角保分题解析:(1)证明:取AD 的中点M ,连接EM 、MC ,∵E 为A 1D 的中点,F 为CC 1的中点,∴EM ∥AA 1,EM =12AA 1,又CF ∥AA 1,CF =12AA 1, ∴EM ∥CF ,EM =CF ,∴四边形EMCF 为平行四边形,∴EF ∥CM , 又EF ⊄平面ABCD ,CM ⊂平面ABCD , ∴EF ∥平面ABCD .(2)设AB =AA 1=2BC =2CD =4,∵AC ⊥BC ,∴AC =2√3.由题意知CA 、CB 、CC 1两两垂直,故以C 为坐标原点,分别以CA 、CB 、CC 1所在直线为x 、y 、z 轴建立空间直角坐标系.则A 1(2√3,0,4)、O (√3,1,0)、F (0,0,2)、C (0,0,0)、D (√3,-1,0), ∴A 1D 的中点E 的坐标为(3√32,-12,2), ∴OF⃗⃗⃗⃗⃗ =(-√3,-1,2),EF ⃗⃗⃗⃗ =(-3√32,12,0),设平面OEF 的一个法向量为n =(x ,y ,z ),则{n ·OF ⃗⃗⃗⃗⃗ =0n ·EF ⃗⃗⃗⃗ =0,即{−√3x −y +2z =0−3√32x +12y =0,即{√3x +y −2z =03√3x −y =0, 令x =√3,得n =(√3,9,6),∵AC ⊥BC ,AC ⊥CC 1,BC ∩CC 1=C , ∴AC ⊥平面BCC 1,∴平面BCC 1的一个法向量为CA ⃗⃗⃗⃗⃗ =(2√3,0,0),cos 〈n ,CA ⃗⃗⃗⃗⃗ 〉=n·CA ⃗⃗⃗⃗⃗|n |·|CA ⃗⃗⃗⃗⃗|=√3+81+36·2√3=√1020, ∴平面OEF 与平面BCC 1夹角的余弦值为√1020. 提分题[例2] 解析:(1)证明:连接BD 交AC 于O , 易证O 为BD 中点,又F 是PD 的中点, 所以OF ∥PB ,又OF ⊂平面AFC ,且PB 不在平面AFC 内, 故PB ∥平面AFC .(2)取PC 中点为Q ,以O 为坐标原点,OB 为x 轴,OC 为y 轴,OQ 为z 轴建立空间直角坐标系,设OB =m ,则A (0,-1,0),B (m ,0,0),C (0,1,0),P (0,-1,2),D (-m ,0,0)⇒F (-m2,-12,1),AP ⃗⃗⃗⃗⃗ =(0,0,2),OF ⃗⃗⃗⃗⃗ =(-m 2,-12,1),OC⃗⃗⃗⃗⃗ =(0,1,0), 设平面AFC 的法向量为n =(x ,y ,z ),由{n ⊥OF ⃗⃗⃗⃗⃗ n ⊥OC ⃗⃗⃗⃗⃗ ⇒{−m2x −12y +z =0y =0,令x =2,有n =(2,0,m ),由P A 与平面AFC 所成的角正弦值为√217⇒√217=|AP ⃗⃗⃗⃗⃗ ·n||AP⃗⃗⃗⃗⃗ |·|n|=2√4+m 2⇒m =√3, 平面ACD 的法向量为m =(0,0,1),则锐二面角F - AC - D 的余弦值为 |m·n ||m |·|n |=√3√7=√217.[例3] 解析:(1)证明:在梯形ABCD 中取AD 中点N ,连接CN , 则由BC 平行且等于AN 知ABCN 为平行四边形,所以CN =AB , 由CN =12AD 知C 点在以AD 为直径的圆上,所以AC ⊥CD .又AP ⊥CD ,AP∩AC =A, AP ,AC ⊂平面P AC , ∴CD ⊥平面P AC , 又CD ⊂平面ADC , ∴平面APC ⊥平面ADC .(2)取AC 中点O ,连接PO ,由AP =PC ,可知PO ⊥AC ,再由平面P AC ⊥平面ACD ,AC 为两面交线,所以PO ⊥平面ACD ,以O 为原点,OA 为x 轴,过O 且与OA 垂直的直线为y 轴,OP 为z 轴建立空间直角坐标系,令AB =2,则A (√3,0,0),C (-√3,0,0),P (0,0,1),D (-√3,2,0), 由V P - ACM ∶V D - ACM =1∶2,得PM⃗⃗⃗⃗⃗⃗ =13PD ⃗⃗⃗⃗⃗ , 所以OM ⃗⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ +PM ⃗⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ +13PD ⃗⃗⃗⃗⃗ =(-√33,23,23), 设平面ACM 的法向量为n =(x ,y ,z ), 则由{n ·OM ⃗⃗⃗⃗⃗⃗ =0n ·OA ⃗⃗⃗⃗⃗ =0得{−√33x +23y +23z =0√3x =0,取z =-1得x =0,y =1,所以n =(0,1,-1),而平面P AC 的法向量m =(0,1,0),所以cos 〈n ,m 〉=m·n |m ||n |=√22. 又因为二面角P - AC - M 为锐二面角,所以其余弦值为√22.[巩固训练2]1.解析:(1)证明:取线段PD 的中点H ,连接SO 、OH 、HA ,如图,在△PCD 中,O 、H 分别是PC 、PD 的中点,所以OH ∥CD 且OH =12CD ,所以OH ∥AS 且OH =AS ,所以四边形ASOH 是平行四边形,所以SO ∥AH ,又AH ⊂平面P AD ,SO ⊄平面P AD ,所以SO ∥平面P AD .(2)取线段AD 、BC 的中点E 、F ,连结PE 、EF .由点E 是线段AD 的中点,P A =PD 可得PE ⊥AD ,又EF ⊥AD ,所以∠PEF 是二面角P - AD - B 的平面角,即∠PEF =23π,以E 为原点,EA⃗⃗⃗⃗⃗ 、EF ⃗⃗⃗⃗ 方向分别为x 轴、y 轴正方向,建立如图所示坐标系,在△P AD 中,AD =4,P A =PD =2√2知:PE =2,所以P (0,-1,√3),D (-2,0,0),B (2,2,0),C (-2,2,0),所以PD⃗⃗⃗⃗⃗ =(-2,1,-√3),PB ⃗⃗⃗⃗⃗ =(2,3,-√3),PC ⃗⃗⃗⃗ =(-2,3,-√3), 设平面PBC 的法向量n =(x ,y ,z ),则{n ·PB ⃗⃗⃗⃗⃗=0n ·PC⃗⃗⃗⃗ =0,即{2x +3y −√3z =0−2x +3y −√3z =0,可取n =(0,1,√3),设直线PD 与平面PBC 所成角为θ, 则sin θ=|cos 〈PD⃗⃗⃗⃗⃗ ,n 〉|=2·2√2=√24,所以直线PD 与平面PBC 所成角的正弦值为√24.2.解析:(1)证明:在等腰梯形ABCD 中,过A 作AE ⊥BC 于E ,过D 作DF ⊥BC 于F ,因为在等腰梯形ABCD 中,AD ∥BC ,AD =AB =CD =1,∠BCD =60°,所以BE =CF =12CD =12,AE =DF =√12−(12)2=√32, 所以AC =BD =√(32)2+(√32)2=√3, BC =2,所以BD 2+CD 2=BC 2,所以BD ⊥CD ,同理AB ⊥AC , 又因为AP =AB =1,PB =√2, ∴AP 2+AB 2=PB 2,∴AB ⊥AP又AC∩AP =A ,AC ,AP ⊂平面ACP , 所以AB ⊥平面ACP , 因为PC ⊂平面ACP , 所以AB ⊥PC .(2)取AC 的中点为M ,BC 的中点为N ,则MN ∥AB , 因为AB ⊥平面ACP ,所以MN ⊥平面ACP ,因为AC ,PM ⊂平面ACP ,所以MN ⊥AC ,MN ⊥PM , 因为P A =PC ,AC 的中点为M ,所以PM ⊥AC , 所以MN ,MC ,MP 两两垂直,所以以M 为原点,以MN 所在直线为x 轴,以MC 所在直线为y 轴,以MP 所在直线为z 轴建立空间直角坐标系,则A (0,-√32,0),B (1,-√32,0),C (0,√32,0),P (0,0,12),PC ⃗⃗⃗⃗ =(0,√32,-12),PB ⃗⃗⃗⃗⃗ =(1,-√32,-12), 平面APC 的一个法向量为m =AB⃗⃗⃗⃗⃗ =(1,0,0), 设平面PBC 的一个法向量为n =(x ,y ,z ),则 {n ·PC⃗⃗⃗⃗ =√32y −12z =0n ·PB ⃗⃗⃗⃗⃗ =x −√32y −12z =0,令y =1,则n =(√3,1,√3),所以cos 〈m ,n 〉=m·n |m ||n |=√31×√7=√217, 因为二面角A - PC - B 为锐角, 所以二面角A - PC - B 的余弦值为√217.微专题3 探索性问题提分题[例4] 解析:(1)证明:因为四边形ABCD 为平行四边形,且△ADE 为等边三角形, 所以∠BCE =120°,又E 为CD 的中点,所以CE =ED =DA =CB ,即△BCE 为等腰三角形, 所以∠CEB =30°.所以∠AEB =180°-∠AED -∠BEC =90°, 即BE ⊥AE .又因为平面AEP ⊥平面ABCE ,平面APE ∩平面ABCE =AE ,BE ⊂平面ABCE , 所以BE ⊥平面APE ,又AP ⊂平面APE ,所以BE ⊥AP .(2)取AE 的中点O ,连接PO ,由于△APE 为正三角形,则PO ⊥AE , 又平面APE ⊥平面ABCE ,平面APE ∩平面ABCE =AE ,PO ⊂平面EAP , 所以PO ⊥平面ABCE ,PO =√3,BE =2√3, 取AB 的中点G ,则OG ∥BE ,由(1)得BE ⊥AE ,所以OG ⊥AE ,以点O 为原点,分别以OA ,OG ,OP 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O - xyz ,则O (0,0,0),A (1,0,0),B (-1,2√3,0),P (0,0,√3),E (-1,0,0), 则EA ⃗⃗⃗⃗⃗ =(2,0,0),EB ⃗⃗⃗⃗⃗ =(0,2√3,0),PB ⃗⃗⃗⃗⃗ =(-1,2√3,-√3),EP ⃗⃗⃗⃗ =(1,0,√3), 假设存在点F ,使平面AEF 与平面AEP 的夹角为45°, 设PF⃗⃗⃗⃗ =λPB ⃗⃗⃗⃗⃗ =(-λ,2√3λ,-√3λ),λ∈[0,1], 则EF ⃗⃗⃗⃗ =EP ⃗⃗⃗⃗ +PF ⃗⃗⃗⃗ =(1,0,√3)+(-λ,2√3λ,-√3λ)=(1-λ,2√3λ,√3−√3λ), 设平面AEF 的法向量为m =(x ,y ,z ),由{EF ⃗⃗⃗⃗·m =0EA ⃗⃗⃗⃗⃗ ·m =0得{(1−λ)x +2√3λy +(√3,-√3λ)z =02x =0, 取z =2λ,得m =(0,λ-1,2λ);由(1)知EB⃗⃗⃗⃗⃗ 为平面AEP 的一个法向量, 于是,cos 45°=|cos 〈m ,EB ⃗⃗⃗⃗⃗ 〉|=|m·EB ⃗⃗⃗⃗⃗||m |·|EB ⃗⃗⃗⃗⃗|=2√3|λ−1|2√3·√5λ2−2λ+1=√22,解得λ=13或λ=-1(舍去),所以存在点F ,且当点F 为线段PB 的靠近点P 的三等分点时,平面AEF 与平面AEP 的夹角为45°.[巩固训练3]解析:(1)证明:取AB 的中点E ,连接SE ,CE ,∵SA =SB ,∴SE ⊥AB , ∵BC ⊥AC ,∴三角形ACB 为直角三角形,∴BE =EC , 又BS =SC ,∴△SEC ≌△SEB ,∴∠SEB =∠SEC =90°, ∴SE ⊥EC ,又SE ⊥AB ,AB∩CE =E ,∴SE ⊥平面ABC . 又SE ⊂平面SAB ,∴平面SAB ⊥平面ABC .(2)以E 为坐标原点,平行AC 的直线为x 轴,平行BC 的直线为y 轴,ES 为z 轴建立空间直角坐标系,如图,不妨设SA =SB =SC =2,SC ⊥SA ,则AC =2√2,BC =SC =2知EC =2√3,SE =1,则A (-√2,1,0),B (√2,-1,0),C (√2,1,0),E (0,0,0),S (0,0,1), ∴AB⃗⃗⃗⃗⃗ =(2√2,-2,0),SA ⃗⃗⃗⃗ =(-√2,1,-1), 设D (x ,y ,z ),CD ⃗⃗⃗⃗⃗ =λCS⃗⃗⃗⃗ (0≤λ≤1),则(x -√2,y -1,z )=λ(-√2,-1,1), ∴D (√2−√2λ,1-λ,λ),BD⃗⃗⃗⃗⃗ =(-√2λ,2-λ,λ). 设平面SAB 的一个法向量为n =(x 1,y 1,z 1),则{n ·AB⃗⃗⃗⃗⃗ =2√2x 1−2y 1=0n ·SA ⃗⃗⃗⃗ =−√2x 1+y 1−z 1=0,取x 1=1,得n =(1,√2,0),sin 60°=|n·BD ⃗⃗⃗⃗⃗⃗ ||n ||BD ⃗⃗⃗⃗⃗⃗ |,则√2−2√2λ|√3√2λ2+(2−λ)2+λ2=√32, 得λ2+7λ+1=0,又∵0≤λ≤1,方程无解,∴不存在点D ,使直线BD 与平面SAB 所成的角为60°.。
可编辑修改精选全文完整版立体几何—空间中的动点问题专题综述空间中的动点问题是指在一定的约束条件下,点的位置发生变化,在变化过程中找出规律,将动点问题转化为“定点”问题、将空间问题转化为平面问题、将立体几何的问题转化为解析几何的问题等,目的是把问题回归到最本质的定义、定理或现有的结论中去.立体几何中考查动点问题,往往题目难度较大,渗透化归与转化思想,对学生的逻辑推理能力要求较高.一般考查动点轨迹、动点的存在性、定值、范围、最值等问题,除了利用化动为定、空间问题平面化等方法,在几何体中由动点的变化过程推理出结果以外,也可以通过建系,坐标法构建函数,求得结果.专题探究探究1:坐标法解决动点问题建立空间直角坐标系,使几何元素的关系数量化,借助空间向量求解,省去中间繁琐的推理过程.解题步骤与空间向量解决立体几何问题一致,建立适当的空间直角坐标系由动点的位置关系,如在棱上或面内,转化为向量的关系,用参数表示动点的坐标通过空间向量的坐标运算表示出待求的量若求最值或取值范围,转化为函数问题,但要注意自变量的取值范围.一般坐标法用于解决动点的存在性问题、求最值、求范围问题.说明:对于求最值、范围问题,也可以直接通过几何体中的某个变量,构建函数,求最值或范围.(2022湖北省宜昌市模拟) (多选)在正方体1111ABCD A B C D -中,点为线段1AD 上一动点,则( ) A. 对任意的点,都有1B D CQ ⊥ B. 三棱锥1B B CQ -的体积为定值 C. 当为1AD 中点时,异面直线1B Q 与所成的角最小D. 当为1AD 中点时,直线1B Q 与平面11BCC B 所成的角最大【审题视点】以正方体为载体考查定点的定值、最值问题,正方体便于建立空间直角坐标系,可选择用坐标法解决.【思维引导】选项,可以用几何知识证明;选项,设出点坐标,用坐标表示出异面直线成角的余弦值或线面角的正弦值,求最值,得出点位置.【规范解析】解:对于:连接,1.CD因为在正方体1111ABCD A B C D -中, 1B D ⊥平面1ACD ,CQ ⊂平面1ACD , 1B D CQ ⊥,故正确; 对于:平面11//ADD A 平面11BCC B ,平面11ADD A 与平面11BCC B 的距离为正方体棱长,1123111326B B CQ Q BCB V V a a a --==⨯⋅=,为定值,故正确;对于:以为坐标原点,直线分别轴,建立空间直角坐标系如下图:设正方体1111ABCD A B C D -的棱长为2, ()[](),0,20,2Q x x x -∈,则1(2,2,2)B , ()2,2,0B , (0,2,0)C , 因此()12,2,B Q x x =---, ()2,0,0BC =-, 设异面直线1B Q 与所成的角为θ,则当时,,当时,当时,故当与1D 重合时,异面直线1B Q 与所成的角最小,故不正确;对于: ()12,2,B Q x x =---, 又是平面11BCC B 的一个法向量,设直线1B Q 与平面11BCC B 所成的角为α,则,所以当1x =时,sin α取得最大值63,而0,2πα⎡⎤∈⎢⎥⎣⎦, 因此α取得最大值,即当为1AD 中点时,直线1B Q 与平面11BCC B 所成的角最大, 故正确. 故选.ABD用一个参数表示动点的坐标,并求出参数范围,即为函数定义域转化为函数求最值,求出当函数取最值时的x 的值【探究总结】典例1是一道典型的研究动点问题的多选题,难度中等,但能够反映出坐标法研究最值范围问题的思路.建系设坐标,写出参数范围 根据向量运算构造函数求最值.(2021安徽省蚌埠市联考) 已知圆柱1OO 底面半径为1,高为π,是圆柱的一个轴截面,动点从点出发沿着圆柱的侧面到达点,其距离最短时在侧面留下的曲线Γ如图所示.将轴截面绕着轴1OO 逆时针旋转(0)θθπ<<后,边11B C 与曲线Γ相交于点.P(1)求曲线Γ长度; (2)当2πθ=时,求点1C 到平面的距离;(3)证明:不存在(0)θθπ<<,使得二面角D AB P --的大小为.4π探究2:化动为定点的位置在变化的过程中,有些量或位置关系是不变的,比如点到平面的距离不变,从而使几何体的体积不变;动点与另外一定点的连线与某条直线始终垂直,与某个平面始终平行.在证明体积为定值、证明位置关系时,要动中寻定,将动态的问题静态化:将动点转化为定点,寻找动直线所在的确定平面,从而解决问题.答题思路:1.动点到平面的距离为定值:证明平面,动点到平面的距离即为定点到平面的距离;2.为动点,为定点,证明:证明所在平面与垂直;3.为动点,为定点,证明平面:证明所在平面与平面平行.(2021湖南省四校联考) 在正三棱柱中,,,分别为的中点,P 是线段DF 上的一点.有下列三个结论:①平面;②;③三棱锥的体积时定值,其中所有正确结论的编号是 A. ①②B. ①③C. ②③D. ①②③【审题视点】求证关于动直线的线面平行或线线垂直,三棱锥的体积为定值问题,要化动为定.【思维引导】证明动直线所在平面与已知平面平行;证明定直线与动直线所在平面垂直;寻找过点与平面平行的直线,即得出点到平面的距离.【规范解析】解:如图,对于①,在正三棱柱中,,分别为的中点,平面平面,由平面,得平面,故①正确;对于②,在正三棱柱中,平面平面,平面平面平面,,平面平面,故②正确;对于③,平面平面,平面到平面的距离为定值,而有为定值,故是定值,线面平行,转化为面面平行异面直线垂直,转化为线面垂直体积的定值问题,转化点到平面的距离是定值,即通过线面平行或面面平行,得出动点到平面距离为定值故③正确.故选D .【探究总结】立体几何证明中经常出现,求证关于动直线的线面平行与线线垂直问题,其思路是转化为证明动直线所在的定平面与其他平面或直线的位置关系.关键是分析动点,动线或动面间的联系,在移动变化的同时寻求规律.(2021云南省曲靖市联考) 如图所示的几何体中,111ABC A B C -为直三棱柱,四边形为平行四边形,2CD AD =,60ADC ∠=︒,1.AA AC =(1)证明:,1C ,1B 四点共面,且11A C DC ⊥;(2)若1AD =,点是上一点,求四棱锥的体积,并判断点到平面11ADC B 的距离是否为定值?请说明理由.探究3: 巧用极端位置由于点位置连续变化,使研究的图形发生连续的变化,利用点的位置变化“极端”位置,避开抽象及复杂的运算,得到结论.常见题型:1.定值问题:几何体中存在动点,但所求结果是确定的,即随着动点位置的改变不会影响所求的量,故可以考虑动点在极端位置的情况,优化解题过程.2.范围问题:几何体中存在动点,结果会随着动点位置改变而改变,当动点从一侧极端位置移动到令一个极端位置的过程中,所求量在增大、或减小、或先增后减、或先减后增,通过求出极端位置处的值,及最值,从而得出范围;3.探究问题:探究满足条件的点是否存在,也可以转化为求出范围,从而得出结论.(2021湖南省株洲市模拟) 在正四面体中, 为棱的中点, 为直线上的动点,则平面与平面夹角的正弦值的取值范围是 .【审题视点】本例可用极端位置法分析,也可以建系,用坐标法解决.【思维引导】借助极端位置分析,不难看出经过和底边中线的平面与平面垂直,点在移动的过程中,存在一个位置使平面与经过和底边中线的平面平行,即平面平面,此时两平面所成角为,角最大;当点移动到无穷远时,平面平面,此时两平面所成角最小.【规范解析】解:由下左图 设为的中心,为的中点, 则在正四面体中平面, 为中点,为的中点,,故平面连接,并延长交于点, 连接,并延长交于点, 则过点的平面交直线于点. 则平面平面 即平面与平面的夹角的正弦值为1,点从取最值的位置处移动至直线的无穷远处的过程中, 平面与平面的夹角逐渐减小,即当点在无穷远处时,看作, 如下右图 故平面与平面的夹角即为平面与平面的夹角,求出其正弦值为. 综上可知:面与面的夹角的正弦值的取值范围为.【探究总结】借助极端位置解决典例3中的问题,首先利用几何知识,明确点在移动的过程中 ,所求量的变化情况,若在极端位置处取“最值”,问题就简化为求出极端位置处的值.(2021浙江省杭州市高三模拟)高为1的正三棱锥的底面边长为,二面角与二面角A PB C --之和记为,则在从小到大的变化过程中,的变化情况是( )A .一直增大B .一直减小C .先增大后减小D .先减小后增大专题升华结合几何知识,两平面成角的变化过程,即动点从一个极端位置变化到另一极端位置时,夹角大小的增减情况在极端位置处取“最值”,直接求出点该处时的夹角的正弦值,即为范围区间的一个端点几何体中研究动点问题往往难度较大,开放性强,技巧性高.总体思路是:用几何知识,经过逻辑推理,证明位置关系或求出表示出所求量;或者建立空间直角坐标系,将几何问题代数化,用空间向量研究动点问题,省去了繁杂的推理环节,但计算量较大.解决动点问题的策略不局限与上述方法,常用的的方法还有:运用条件直接推算,借助条件将几何体还原到长方体中去;构造函数,数形结合;还将空间问题转化为平面几何解决,如化折为直、利用解析几何的知识解决. 但只要我们熟练掌握这些基本方法,并灵活加以应用,不仅能化繁为简,化难为易,而且还可以得到简捷巧妙的解法.【答案详解】 变式训练1【解答】解:(1)在侧面展开图中为的长,其中AB AD π==,∴曲线Γ的长为2;π(2)当2πθ=时,建立如图所示的空间直角坐标系,则有()0,1,0A -、()0,1,0B 、1,0,2P π⎛⎫- ⎪⎝⎭、()11,0,C π-, 、(1,1,)2AP π=-、1(1,0,)OC π=-设平面的法向量为(,,)n x y z =,则2002n AB y n AP x y z π⎧⋅==⎪⎨⋅=-++=⎪⎩, 取2z =得(,0,2)n π=,所以点1C 到平面的距离为12||||4OC n d n ππ⋅==+; (3)假设存在满足要求的(0)θθπ<<, 在(2)的坐标系中,()sin ,cos ,P θθθ-,,设平面的法向量为111(,,)m x y z =,则111120sin (cos 1)0y x y z θθθ=⎧⎨-+++=⎩,取11x =得sin (1,0,)m θθ=,又平面的法向量为(1,0,0)k =,由二面角D AB P --的大小为4π, 则|cos ⟨,m k ⟩2212|sin .21sin θθθθ==⇒=+ sin (0)2πθθθ<<<,0θπ∴<<时,均有sin θθ<,与上式矛盾.所以不存在(0)θθπ<<使得二面角D AB P --的大小为.4π 变式训练2【解答】(1)证明:因为111ABC A B C -为直三棱柱, 所以,且,又四边形为平行四边形,//BC AD ,且BC AD =,,且,四边形为平行四边形,,1B 四点共面;,又1AA ⊥平面,AC ⊂平面,,四边形11A ACC 为正方形,连接1AC 交1A C 于,,在ADC ∆中,2CD AD =,,由余弦定理得,,所以,AD AC ⊥,又1AA ⊥平面ABCD ,AD ⊂平面ABCD ,1AA AD ⊥,,1AA ⊂平面11A ACC ,,AD ⊥平面11A ACC ,1AC ⊂平面11A ACC ,所以,又,平面,1A C ⊥平面, 1DC ⊂平面,(2)解:由(1)知:1A C ⊥平面,在Rt DAC 中,由已知得3AC =,,四棱锥的体积,//BC AD ,点到平面的距离为定值,即为点到平面的距离变式训练3【解析】解:设二面角为,二面角A PB C --为,当时,正三棱锥趋向于变为正三棱柱,;当时,正三棱锥趋向变为平面,.当正三棱锥为正四面体时,且,,故.当从小变大时,要经过从变为小于的角,然后变为的过程, 故只有选项符合.故选:.静夜思[ 唐] 李白原文译文对照床前明月光,疑是地上霜。
2021年高考数学考试大纲解读专题05立体几何理(三)立体几何初步1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理. • 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在同一条直线上的三点,有且只有一个平面.• 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. • 公理4:平行于同一条直线的两条直线互相平行.• 定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. (2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.• 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.• 如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.• 如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.• 如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.• 如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行. • 如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.• 垂直于同一个平面的两条直线平行.• 如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(十六)空间向量与立体几何1.空间向量及其运算(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.2.空间向量的应用(1)理解直线的方向向量与平面的法向量.(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.(3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.与xx年考纲相比没什么变化,而且这部分内容作为高考的必考内容,在xx年的高考中预计仍会以“一小一大或两小一大”的格局呈现,在选择题或填空题中,考查空间几何体三视图的识别,空间几何体的体积或表面积的计算,空间线面位置关系的判定等,难度中等;在解答题中主要考查空间线面位置关系中的平行或垂直的证明,空间几何体表面积或体积的计算,空间角或空间距离的计算等,难度中等.考向一空间几何体的三视图和直观图样题1 (xx年高考新课标Ⅰ卷)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12C.14 D.16【答案】B样题2 (xx年高考北京卷)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A.3 B.2C.2 D.2【答案】B样题3 (xx新课标全国Ⅱ理科)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.B.C.D.【答案】B考向二球的组合体样题4 (xx新课标全国Ⅲ理科)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.B.C.D.【答案】B【解析】绘制圆柱的轴截面如图所示:由题意可得:,结合勾股定理,底面半径,由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h⎛⎫==⨯⨯=⎪⎪⎝⎭,故选B.【名师点睛】(1)求解空间几何体体积的关键是确定几何体的元素以及线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.样题5 (xx江苏)如图,在圆柱内有一个球,该球与圆柱的上、下底面及母线均相切.记圆柱的体积为,球的体积为,则的值是 .【答案】考向三空间线面的位置关系样题6 已知α,β是平面,m、n是直线,给出下列命题:①若m⊥α,m⊂β,则α⊥β;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③如果m⊂α,n⊄α,m,n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β.其中命题正确的是__________.【答案】①④【解析】①是平面与平面垂直的判定定理,所以①正确;②中,m,n不一定是相交直线,不符合两个平面平行的判定定理,所以②不正确;③中,还可能n∥α,所以③不正确;④中,由于n∥m,n⊄α,m⊂α,则n∥α,同理n∥β,所以④正确.故填①④.样题7 (xx新课标全国Ⅰ理科)如图,在四棱锥P−ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A−PB−C的余弦值.考向四 空间角和距离样题8 (xx 年高考新课标Ⅱ卷)已知直三棱柱中,,,,则异面直线与所成角的余弦值为 A . B . C .D .【答案】C【解析】如图所示,补成直四棱柱, 则所求角为21111,2,21221cos603,5BC D BC BD C D AB ∠==+-⨯⨯⨯︒===易得,因此111210cos 55BC BC D C D ∠===,故选C .样题9 (xx年高考新课标Ⅲ卷) a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)【答案】②③【解析】设.由题意,是以AC为轴,BC为底面半径的圆锥的母线,由,又AC⊥圆锥底面,所以在底面内可以过点B,作,交底面圆于点D,如图所示,连接DE,则DE⊥BD,,连接AD,等腰中,,当直线AB与a成60°角时,,故,又在中,,过点B作BF∥DE,交圆C于点F,连接AF,由圆的对称性可知,为等边三角形,,即AB与b成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC⊥直线a,则直线与所成角的最大值为90°,④错误.故正确的是②③.。
专题05 平面解析几何1.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .6【答案】C【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .2.【2021年新高考2卷】抛物线22(0)y px p =>的焦点到直线1y x =+的距离为2,则p =( ) A .1 B .2 C .22 D .4【答案】B【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【解析】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,其到直线10x y -+=的距离:012211pd -+==+,解得:2p =(6p =-舍去).故选:B. 3.【2022年新高考1卷】已知O 为坐标原点,点在抛物线上,过点的直线交C 于P ,Q 两点,则( )A .C 的准线为B .直线AB 与C 相切 C .D .【答案】BCD【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C、D.【解析】将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;,所以直线的方程为,联立,可得,解得,故B正确;设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,所以,直线的斜率存在,设其方程为,,联立,得,所以,所以或,,又,,所以,故C正确;因为,,所以,而,故D正确.故选:BCD 4.【2022年新高考2卷】已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则()A.直线的斜率为B.C.D.【答案】ACD【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.【解析】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,代入抛物线可得,则,则直线的斜率为,A 正确;对于B ,由斜率为可得直线的方程为,联立抛物线方程得,设,则,则,代入抛物线得,解得,则,则,B 错误;对于C ,由抛物线定义知:,C 正确;对于D ,,则为钝角, 又,则为钝角,又,则,D 正确.故选:ACD.5.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =【答案】ACD【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【解析】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y +=,即240x y +-=,圆心M 到直线AB 的距离为2252541111545512+⨯-==>+,所以,点P 到直线AB 的距离的最小值为115425-<,最大值为1154105+<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,()()22052534BM =-+-4MP =,由勾股定理可得2232BP BM MP =-=CD 选项正确.故选:ACD.【点睛】结论点睛:若直线l 与半径为r 的圆C 相离,圆心C 到直线l 的距离为d ,则圆C 上一点P 到直线l 的距离的取值范围是[],d r d r -+.6.【2021年新高考2卷】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切 【答案】ABD【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解. 【解析】圆心()0,0C 到直线l的距离2d =若点(),A a b 在圆C 上,则222a b r +=,所以2d r =,则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以2d r =,则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以2d r =,则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以2d r ,直线l 与圆C 相切,故D 正确.故选:ABD.7.【2020年新高考1卷(山东卷)】已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则CC .若mn <0,则C是双曲线,其渐近线方程为y = D .若m =0,n >0,则C 是两条直线 【答案】ACD【分析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【解析】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n +=, 因为0m n >>,所以11m n<, 即曲线C 表示焦点在y 轴上的椭圆,故A 正确;对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线C 表示圆心在原点,半径为nn的圆,故B 不正确; 对于C ,若0mn <,则221mx ny +=可化为22111x y m n +=,此时曲线C 表示双曲线, 由220mx ny +=可得my x n=±-,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=, ny n=±,此时曲线C 表示平行于x 轴的两条直线,故D 正确; 故选:ACD.【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养. 8.【2022年新高考1卷】写出与圆和都相切的一条直线的方程________________. 【答案】或或【分析】先判断两圆位置关系,分情况讨论即可. 【解析】圆的圆心为,半径为,圆的圆心为,半径为,两圆圆心距为,等于两圆半径之和,故两圆外切,如图,当切线为l时,因为,所以,设方程为O到l的距离,解得,所以l的方程为,当切线为m时,设直线方程为,其中,,由题意,解得,当切线为n时,易知切线方程为,故答案为:或或.9.【2022年新高考1卷】已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.【答案】13【分析】利用离心率得到椭圆的方程为,根据离心率得到直线的斜率,进而利用直线的垂直关系得到直线的斜率,写出直线的方程:,代入椭圆方程,整理化简得到:,利用弦长公式求得,得,根据对称性将的周长转化为的周长,利用椭圆的定义得到周长为.【解析】∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为,直线的方程:,代入椭圆方程,整理化简得到:,判别式,∴,∴,得,∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.故答案为:13.10.【2022年新高考2卷】设点,若直线关于对称的直线与圆有公共点,则a的取值范围是________.【答案】【分析】首先求出点关于对称点的坐标,即可得到直线的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【解析】解:关于对称的点的坐标为,在直线上,所以所在直线即为直线,所以直线为,即;圆,圆心,半径,依题意圆心到直线的距离,即,解得,即;故答案为:11.【2022年新高考2卷】已知直线l 与椭圆在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且,则l 的方程为___________.【答案】【分析】令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解; 【解析】解:令的中点为,因为,所以,设,,则,,所以,即所以,即,设直线,,,令得,令得,即,,所以, 即,解得或(舍去),又,即,解得或(舍去),所以直线,即;故答案为:12.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【解析】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p ,代入抛物线方程求得P 的纵坐标为p ±,不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =,(6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.【点睛】利用向量数量积处理垂直关系是本题关键.13.【2021年新高考2卷】若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.【答案】y =【分析】根据离心率得出2c a =,结合222+=a b c 得出,a b 关系,即可求出双曲线的渐近线方程.【解析】由题可知,离心率2ce a==,即2c a =,又22224a b c a +==,即223b a =,则ba=故此双曲线的渐近线方程为y =.故答案为:y =.14.【2020年新高考1卷(山东卷)C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 【答案】163【分析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F , 又∵直线AB 过焦点F 且斜率为3,∴直线AB 的方程为:3(1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x == ,所以212116||1||13|3|33AB k x x =+-=+⋅-=解法二:10036640∆=-=>,设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示. 12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题. 15.【2022年新高考1卷】已知点在双曲线上,直线l 交C 于P ,Q 两点,直线的斜率之和为0.(1)求l 的斜率; (2)若,求的面积.【答案】(1);(2).【分析】(1)由点在双曲线上可求出,易知直线l的斜率存在,设,,再根据,即可解出l的斜率;(2)根据直线的斜率之和为0可知直线的倾斜角互补,再根据即可求出直线的斜率,再分别联立直线与双曲线方程求出点的坐标,即可得到直线的方程以及的长,由点到直线的距离公式求出点到直线的距离,即可得出的面积.【解析】(1)因为点在双曲线上,所以,解得,即双曲线易知直线l的斜率存在,设,,联立可得,,所以,,.所以由可得,,即,即,所以,化简得,,即,所以或,当时,直线过点,与题意不符,舍去,故.(2)不妨设直线的倾斜角为,因为,所以,因为,所以,即,即,解得,于是,直线,直线,联立可得,,因为方程有一个根为,所以,,同理可得,,.所以,,点到直线的距离,故的面积为.16.【2022年新高考2卷】已知双曲线的右焦点为,渐近线方程为.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:①M在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1);(2)见解析【分析】(1)利用焦点坐标求得的值,利用渐近线方程求得的关系,进而利用的平方关系求得的值,得到双曲线的方程;(2)先分析得到直线的斜率存在且不为零,设直线AB的斜率为k,M(x0,y0),由③|AM|=| BM|等价分析得到;由直线和的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ的斜率,由②等价转化为,由①在直线上等价于,然后选择两个作为已知条件一个作为结论,进行证明即可.【解析】(1)右焦点为,∴,∵渐近线方程为,∴,∴,∴,∴,∴.∴C的方程为:;(2)由已知得直线的斜率存在且不为零,直线的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线的斜率存在且不为零;若选①③推②,则为线段的中点,假若直线的斜率不存在,则由双曲线的对称性可知在轴上,即为焦点,此时由对称性可知、关于轴对称,与从而,已知不符;总之,直线的斜率存在且不为零.设直线的斜率为,直线方程为,则条件①在上,等价于;两渐近线的方程合并为,联立消去y并化简整理得:设,线段中点为,则,设,则条件③等价于,移项并利用平方差公式整理得:,,即,即;由题意知直线的斜率为, 直线的斜率为,∴由,∴,所以直线的斜率,直线,即,代入双曲线的方程,即中,得:,解得的横坐标:,同理:,∴∴, ∴条件②等价于,综上所述:条件①在上,等价于;条件②等价于;条件③等价于;选①②推③:由①②解得:,∴③成立;选①③推②:由①③解得:,,∴,∴②成立;选②③推①:由②③解得:,,∴,∴,∴①成立.17.【2021年新高考1卷】在平面直角坐标系xOy 中,已知点()117,0F -、()21217,02F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0. 【分析】(1) 利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)方法一:设出点的坐标和直线方程,联立直线方程与曲线C 的方程,结合韦达定理求得直线的斜率,最后化简计算可得12k k +的值. 【解析】(1) 因为12122217MF MF F F -=<=,所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b -=>>,则22a =,可得1a =,2174b a =-=,所以,轨迹C 的方程为()221116y x x -=≥.(2)[方法一] 【最优解】:直线方程与双曲线方程联立,如图所示,设1(,)2T n ,设直线AB 的方程为112211(),,(2,(),)y n k x A x y B x y -=-.联立1221()2116y n k x y x ⎧-=-⎪⎪⎨⎪-=⎪⎩,化简得22221111211(16)(2)1604k x k k n x k n k n -+---+-=.则22211112122211111624,1616k n k n k k n x x x x k k +-+-+==--.故12,11||)||)22TA x TB x --.则222111221(12)(1)11||||(1)()()2216n k TA TB k x x k ++⋅=+--=-.设PQ 的方程为21()2y n k x -=-,同理22222(12)(1)||||16n k TP TQ k ++⋅=-. 因为TA TB TP TQ ⋅=⋅,所以22122212111616k k k k ++=--,化简得22121717111616k k +=+--,所以22121616k k -=-,即2212k k =.因为11k k ≠,所以120k k +=.[方法二] :参数方程法设1(,)2T m .设直线AB 的倾斜角为1θ,则其参数方程为111cos 2sin x t y m t θθ⎧=+⎪⎨⎪=+⎩,联立直线方程与曲线C 的方程2216160(1)x y x --≥=,可得222221111cos 116(cos )(sin 2sin )1604t m t t mt θθθθ+-++-=+,整理得22221111(16cos sin )(16cos 2sin )(12)0t m t m θθθθ-+--+=.设12,TA t TB t ==,由根与系数的关系得2212222111(12)12||||16cos sin 117cos t m m TA TB t θθθ-++⋅===--⋅.设直线PQ 的倾斜角为2θ,34,TP t TQ t ==,同理可得2342212||||117cos m T T t P Q t θ+⋅==-⋅ 由||||||||TA TB TP TQ ⋅=⋅,得2212cos cos θθ=.因为12θθ≠,所以12s o o s c c θθ=-.由题意分析知12θθπ+=.所以12tan tan 0θθ+=, 故直线AB 的斜率与直线PQ 的斜率之和为0. [方法三]:利用圆幂定理因为TA TB TP TQ ⋅=⋅,由圆幂定理知A ,B ,P ,Q 四点共圆.设1(,)2T t ,直线AB 的方程为11()2y t k x -=-,直线PQ 的方程为21()2y t k x -=-,则二次曲线1212()()022k kk x y t k x y t --+--+=. 又由22116y x -=,得过A ,B ,P ,Q 四点的二次曲线系方程为:221212()()(1)0(0)2216k k y k x y t k x y t x λμλ--+--++--=≠,整理可得:[]2212121212()()()()16k x y k k xy t k k k k k x μμλλλλ++--+++-12(2)02y k k t m λ++-+=,其中21212()42k k t m t k k λμ⎡⎤=+-+-⎢⎥⎣⎦. 由于A ,B ,P ,Q 四点共圆,则xy 项的系数为0,即120k k +=.【整体点评】(2)方法一:直线方程与二次曲线的方程联立,结合韦达定理处理圆锥曲线问题是最经典的方法,它体现了解析几何的特征,是该题的通性通法,也是最优解; 方法二:参数方程的使用充分利用了参数的几何意义,要求解题过程中对参数有深刻的理解,并能够灵活的应用到题目中.方法三:圆幂定理的应用更多的提现了几何的思想,二次曲线系的应用使得计算更为简单.18.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =【答案】(1)2213x y +=;(2)证明见解析.【分析】(1)由离心率公式可得a =2b ,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证MN充分性:设直线():,0MN y kx b kb =+<,由直线与圆相切得221b k =+,联立直线与椭圆方=1k =±,即可得解.【解析】(1)由题意,椭圆半焦距c =c e a ==,所以a = 又2221b a c =-=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y --=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x -+=,所以1212324x x x x +=⋅=,所以MN 所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b -+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++-=, 所以2121222633,1313kb b x x x x k k -+=-⋅=++,所以MN ==()22310k -=,所以1k =±, 所以1k b =⎧⎪⎨=⎪⎩或1k b =-⎧⎪⎨=⎪⎩:MN y x=y x =-,所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN = 【点睛】关键点点睛:解决本题的关键是直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.19.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b a b +=>>过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【答案】(1)22163x y +=;(2)详见解析.【分析】(1)由题意得到关于,,a b c 的方程组,求解方程组即可确定椭圆方程.(2)方法一:设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到,m k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置. 【解析】(1)由题意可得:22222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)[方法一]:通性通法 设点()()1122,,,M x y N x y ,若直线MN 斜率存在时,设直线MN 的方程为:y kx m =+, 代入椭圆方程消去y 并整理得:()222124260kxkmx m +++-=,可得122412km x x k +=-+,21222612m x x k -=+,因为AM AN ⊥,所以·0AM AN =,即()()()()121222110x x y y --+--=, 根据1122,kx m y kx m y =+=+,代入整理可得:()()()()22121212140x x km k x x km ++--++-+=,所以()()()22222264121401212m km k km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,因为(2,1)A 不在直线MN 上,所以210k m +-≠,故23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭()1k ≠,所以直线过定点直线过定点21,33P ⎛⎫- ⎪⎝⎭.当直线MN 的斜率不存在时,可得()11,N x y -, 由·0AM AN =得:()()()()111122110x x y y --+---=, 得()1221210x y -+-=,结合2211163x y +=可得:2113840x x -+=, 解得:123x =或22x =(舍).此时直线MN 过点21,33P ⎛⎫- ⎪⎝⎭. 令Q 为AP 的中点,即41,33Q ⎛⎫⎪⎝⎭,若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故12DQ AP =, 若D 与P 重合,则12DQ AP =,故存在点41,33Q ⎛⎫⎪⎝⎭,使得DQ 为定值. [方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为22(2)(1)163x y +++=,设直线MN 的方程为4mx ny .将直线MN 方程与椭圆方程联立得224240x x y y +++=,即22()2()0x mx ny x y mx ny y +++++=,化简得22(2)()(1)0n y m n xy m x +++++=,即2(2)()(1)0y y n m n m x x ⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.设()()1122,,,M x y N x y ,因为AM AN ⊥则1212AM AN y y k k x x ⋅=⋅112m n +==-+,即3m n =--. 代入直线MN 方程中得()340n y x x ---=.则在新坐标系下直线MN 过定点44,33⎛⎫-- ⎪⎝⎭,则在原坐标系下直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 的中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP =.[方法三]:建立曲线系 A 点处的切线方程为21163x y ⨯⨯+=,即30x y +-=.设直线MA 的方程为11210k x y k --+=,直线MB 的方程为22210k x y k --+=,直线MN 的方程为0kx y m -+=.由题意得121k k .则过A ,M ,N 三点的二次曲线系方程用椭圆及直线,MA MB 可表示为()()22112212121063x y k x y k k x y k λ⎛⎫+-+--+--+= ⎪⎝⎭(其中λ为系数). 用直线MN 及点A 处的切线可表示为()(3)0kx y m x y μ-+⋅+-=(其中μ为系数).即()()22112212121()(3)63x y k x y k k x y k kx y m x y λμ⎛⎫+-+--+--+=-++- ⎪⎝⎭. 对比xy 项、x 项及y 项系数得()()()121212(1),4(3),21(3).k k k k k m k k k m λμλμλμ⎧+=-⎪++=-⎨⎪+-=+⎩①②③将①代入②③,消去,λμ并化简得3210m k ++=,即2133m k =--.故直线MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭,直线MN 过定点21,33P ⎛⎫- ⎪⎝⎭.又AD MN ⊥,D 在以AP 为直径的圆上.AP 中点41,33⎛⎫⎪⎝⎭即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在41,33Q ⎛⎫ ⎪⎝⎭,使得1||||2DQ AP ==.[方法四]:设()()1122,,,M x y N x y .若直线MN 的斜率不存在,则()()1111,,,M x y N x y -. 因为AM AN ⊥,则0AM AN ⋅=,即()1221210x y -+-=.由2211163x y +=,解得123x =或12x =(舍).所以直线MN 的方程为23x =.若直线MN 的斜率存在,设直线MN 的方程为y kx m =+,则()()()222122()6120x kx m k x x x x ++-=+--=.令2x =,则()()1222(21)(21)2212k m k m x x k +-++--=+.又()()221221262y m y y y y y k k -⎛⎫⎛⎫+-=+-- ⎪ ⎪⎝⎭⎝⎭,令1y =,则()()122(21)(21)1112k m k m y y k +--+---=+.因为AM AN ⊥,所以()()()()12122211AM AN x x y y ⋅=--+--2(21)(231)12k m k m k +-++=+0=,即21m k =-+或2133m k =--.当21m k =-+时,直线MN 的方程为21(2)1y kx k k x =-+=-+.所以直线MN 恒过(2,1)A ,不合题意;当2133m k =--时,直线MN 的方程为21213333y kx k k x ⎛⎫=--=-- ⎪⎝⎭,所以直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭.综上,直线MN 恒过21,33P ⎛⎫- ⎪⎝⎭,所以||3AP =又因为AD MN ⊥,即AD AP ⊥,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为41,33Q ⎛⎫ ⎪⎝⎭,则1||||2DQ AP =.所以存在定点Q ,使得||DQ 为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法; 方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为4mx ny ,再通过与椭圆方程联立,构建齐次式,由韦达定理求出,m n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线:MN y kx m =+,再利用过点,,A M N 的曲线系,根据比较对应项系数可求出,m k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解()()1222--x x 以及()()1211y y --的计算.20.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)2211612x y +=;(2)18.【分析】(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)首先利用几何关系找到三角形面积最大时点N 的位置,然后联立直线方程与椭圆方程,结合判别式确定点N 到直线AM 的距离即可求得三角形面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y .当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=,解得b 2=12.所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=, 化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离, 利用平行线之间的距离公式可得:12514d ==+由两点之间距离公式可得||AM =.所以△AMN 的面积的最大值:1182⨯=.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.【】专题05 平面解析几何1.【2021年新高考1卷】已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( )A .13B .12C .9D .62.【2021年新高考2卷】抛物线22(0)y px p =>的焦点到直线1y x =+的距离为2,则p =( ) A .1B .2C .22D .43.【2022年新高考1卷】已知O 为坐标原点,点在抛物线上,过点的直线交C 于P ,Q 两点,则( )A .C 的准线为B .直线AB 与C 相切 C .D .4.【2022年新高考2卷】已知O 为坐标原点,过抛物线焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点,若,则( ) A .直线的斜率为B .C .D .5.【2021年新高考1卷】已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10 B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,32PB =D .当PBA ∠最大时,32PB =6.【2021年新高考2卷】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切7.【2020年新高考1卷(山东卷)】已知曲线22:1C mx ny +=.( ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C nC .若mn <0,则C 是双曲线,其渐近线方程为my x n=±- D .若m =0,n >0,则C 是两条直线 8.【2022年新高考1卷】写出与圆和都相切的一条直线的方程________________. 9.【2022年新高考1卷】已知椭圆,C 的上顶点为A ,两个焦点为,,离心率为.过且垂直于的直线与C 交于D ,E 两点,,则的周长是________________. 10.【2022年新高考2卷】设点,若直线关于对称的直线与圆有公共点,则a 的取值范围是________.11.【2022年新高考2卷】已知直线l 与椭圆在第一象限交于A ,B 两点,l 与x轴,y 轴分别交于M ,N 两点,且,则l 的方程为___________.12.【2021年新高考1卷】已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.13.【2021年新高考2卷】若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.14.【2020年新高考1卷(山东卷)】斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________. 15.【2022年新高考1卷】已知点在双曲线上,直线l 交C 于P ,Q 两点,直线的斜率之和为0.(1)求l 的斜率; (2)若,求的面积.16.【2022年新高考2卷】已知双曲线的右焦点为,渐近线方程为.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点在C 上,且.过P 且斜率为的直线与过Q 且斜率为的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立: ①M 在上;②;③.注:若选择不同的组合分别解答,则按第一个解答计分.17.【2021年新高考1卷】在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程; (2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.18.【2021年新高考2卷】已知椭圆C 的方程为22221(0)x y a b a b +=>>,右焦点为F ,(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =19.【2020年新高考1卷(山东卷)】已知椭圆C :22221(0)x y a b a b +=>>过点()2,1A . (1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.20.【2020年新高考2卷(海南卷)】已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 , (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【】三年专题05 立体几何(选择题、填空题)(理科专用)1.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()()A.B.C.D.【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.棱台上底面积,下底面积,∴.故选:C.2.【2022年新高考1卷】已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()A.B.C.D.【答案】C【解析】【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】 ∵ 球的体积为,所以球的半径,设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为, 又时,,时,,所以正四棱锥的体积的最小值为, 所以该正四棱锥体积的取值范围是.故选:C.3.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为( ) A .B .C .D .【答案】A 【解析】 【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积. 【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.故选:A .4.【2021年甲卷理科】2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45AC B ∠'''=︒,。
专题五人民当家作主一、选择题(本大题共16小题,每小题3分,共48分)1.(2022·湖南长郡等十五校联考)中共中央办公厅、国务院办公厅、中央军委办公厅印发的《“十四五”退役军人服务和保障规划》对“十四五”时期做好退役军人工作作出安排,部署了强化思想政治引领、深化安置制度改革、全面促进就业创业、健全抚恤优待保障制度、充分发挥双拥工作政治优势等八个方面的重要任务。
党和国家之所以高度重视退役军人工作,是因为()①退役军人为国防和军队建设作出了重要贡献,是现代化建设的重要力量②这是新发展阶段更好为经济社会发展服务、为国防和军队建设服务的需要③我国是人民民主专政的社会主义国家,专政是实现人民民主的重要保证④做好该项工作能够保障退役军人的基本民主权利,有利于维护社会稳定A.①②B.①③C.②④D.③④2.(2022·广东六校联考)选举人大代表,是人民代表大会制度的基础,是人民当家作主的重要体现。
要把民主选举、民主协商、民主决策、民主管理、民主监督各个环节贯通起来,不断发展全过程人民民主,更好保证人民当家作主。
关于全过程人民民主,下列理解正确的是() ①全过程人民民主强调了“人民”,必须坚持人民至上②全过程人民民主重在“过程”,过程性是其本质特征③全过程人民民主是全链条、全方位、全民的真实民主④人大制度是实现我国全过程人民民主的重要制度载体A.①②B.①④C.②③D.③④3.(2022·湖南师大附中一模)基层立法联系点是发展全过程人民民主的生动实践。
截至2022年1月,全国人大常委会基层立法联系点已先后就132部法律草案等征求基层群众意见,获得建议11 360余条,其中2 300余条意见建议被不同程度采纳吸收。
这表明()①基层立法联系点有利于国家在立法全过程中体现公民的意志②基层立法联系点打通了国家立法机关直接联系基层人民群众的渠道③基层立法联系点是创新群众参与民主立法的有效形式④立法全过程中公民的积极参与坚持了个人利益与国家利益相结合的原则A.①②B.②③C.①④D.③④4.为适应我国家庭教育的新形势,发扬中华民族重视家庭教育的优良传统,引导全社会注重家庭、家教和家风,培养德智体美劳全面发展的社会主义建设者和接班人,十三届全国人大常委会经过数次征求意见、讨论修改,于2021年10月23日审议通过了《中华人民共和国家庭教育促进法》。
专题五 立体几何1.下列命题中,假命题的个数为( )①与三角形两边平行的平面平行于这个三角形的第三边;②与三角形两边垂直的直线垂直于第三边;③与三角形三顶点等距离的平面平行于这个三角形所在平面.A .0个B .1个C .2个D .3个2.在斜二测画法中,边长为a 的正方形的直观图的面积为( )A .a 2 B.22a 2 C.12a 2 D.24a 2 3.设两个平面α,β,直线l ,下列三个条件:①l ⊥α;②l ∥β;③α⊥β.若以其中两个作为前提,另一个作为结论,则可构成三个命题,这三个命题中正确命题的个数为( )A .3个B .2个C .1个D .0个4.在矩形ABCD 中,AB =1,BC =2,P A ⊥平面ABCD ,P A =1,则PC 与平面ABCD 所成的角是( )A .30°B .45°C .60°D .90°5.直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°6.如图K5-1,在矩形ABCD 中,AB =4,BC =3,E 是CD 的中点,沿AE 将△ADE 折起,使二面角D -AE -B 为60°,则四棱锥D -ABCE 的体积是( )图K5-1 A.9 3913 B.273913 C.91313 D.2713137.已知矩形ABCD 的边AB =a ,BC =2,P A ⊥平面ABCD ,P A =2,现有以下五个数据:①a =12;②a =1;③a =3;④a =2;⑤a =4.当在BC 边存在点Q ,使得PQ ⊥QD 时,则可以取________.8.如图K5-2,已知ABCD -A 1B 1C 1D 1是底面边长为1的正四棱柱,O 1是A 1C 1和B 1D 1的交点.(1)设AB 1与底面A 1B 1C 1D 1所成的角的大小为α,二面角A -B 1D 1-A 1的大小为β.求证:tan β=2tan α;(2)若点C 到平面AB 1D 1的距离为43,求正四棱柱ABCD -A 1B 1C 1D 1的高.图K5-29.(2014年广东深圳一模)如图5-3所示,平面ABCD⊥平面BCEF,且四边形ABCD为矩形,四边形BCEF为直角梯形,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.(1)求证:AF∥平面CDE;(2)求平面ADE与平面BCEF所成锐二面角的余弦值;(3)求直线EF与平面ADE所成角的余弦值.图5-3专题五 立体几何1.B 2.D 3.C 4.A 5.C 6.A7.①② 解析:作图,显然由PQ ⊥QD ,得AQ ⊥QD ,设BQ =x ,CQ =2-x ,在Rt △AQD 中,AQ 2+QD 2=AD 2,a 2+x 2+a 2+()2-x 2=22,化简,得x 2-2x +a 2=0,方程有解,∴Δ=4-4a 2≥0,-1≤a ≤1.故选①②.8.(1)证明:如图D106,连接AO 1,AA 1⊥底面A 1B 1C 1D 1于A 1,∴AB 1与底面A 1B 1C 1D 1所成的角为∠AB 1A 1,即∠AB 1A 1=α.∵AB 1=AD 1,O 1为B 1D 1中点,∴AO 1⊥B 1D 1.又A 1O 1⊥B 1D 1,∴∠AO 1A 1是二面角A -B 1D 1-A 1的平面角,即∠AO 1A 1=β.∴tan α=AA 1A 1B 1=h ,tan β=AA 1A 1O 1=2h =2tan α. 即tan β=2tan α.图D106 图D107(2)建立如图D107空间直角坐标系,有A (0,0,h ),B 1(1,0,0),D 1(0,1,0),C (1,1,h ), ∴AB 1→=(1,0,-h ),AD 1→=(0,1,-h ),AC →=(1,1,0).设平面AB 1D 1的一个法向量为n =(x ,y ,z ),∵ ⎭⎪⎬⎪⎫n ⊥AB 1→,n ⊥AD 1→⇔⎩⎪⎨⎪⎧n ·AB 1→=0,n ·AD 1→=0,取z =1,得n =(h ,h,1). ∴点C 到平面AB 1D 1的距离为d =|n ·AC →||n |=h +h +0h 2+h 2+1=43,则h =2. 9.解:方法一:(1)取CE 中点为G ,连接DG ,FG .∵BF ∥CG 且BF =CG ,∴四边形BFGC 为平行四边形,∴BC ∥FG 且BC =FG .∵四边形ABCD 为矩形,∴BC ∥AD 且BC =AD .∴FG ∥AD 且FG =AD .∴四边形AFGD 为平行四边形,则AF ∥DG .∵DG ⊂平面CDE ,AF ⊄平面CDE ,∴AF ∥平面CDE .(2)如图D108,过点E 作CB 的平行线交BF 的延长线于P ,连接FP ,EP ,AP , ∵EP ∥BC ∥AD ,∴A ,P ,E ,D 四点共面.∵四边形BCEF 为直角梯形,四边形ABCD 为矩形,∴EP ⊥CD ,EP ⊥CE ,又∵CD ∩CE =C ,∴EP ⊥平面CDE ,∴EP ⊥DE .又∵平面ADE ∩平面BCEF =EP ,∴∠DEC 为平面ADE 与平面BCEF 所成锐二面角的平面角. ∵DC =CE =4,∴cos ∠DEC =CE DE =22. 即平面ADE 与平面BCEF 所成锐二面角的余弦值为22.图D108 图D109(3)如图D109,过点F 作FH ⊥AP 于H ,连接EH ,∵根据(2)知A ,P ,E ,D 四点共面,EP ∥BC ∥AD ,∴BC ⊥BF ,BC ⊥AB .又∵AB ∩BF =B ,∴BC ⊥平面ABP .∴BC ⊥FH ,则FH ⊥EP .又∵FH ⊥AP ,∴FH ⊥平面ADE .∴直线EF 与平面ADE 所成角为∠HEF .∵DC =CE =4,BC =BF =2,∴FH =FP sin45°=2,EF =FP 2+EP 2=2 2,HE = 6.∴cos ∠HEF =HE EF =62 2=32. 即直线EF 与平面ADE 所成角的余弦值为32. 方法二:(1)∵四边形BCEF 为直角梯形,四边形ABCD 为矩形,∴BC ⊥CE ,BC ⊥CD .又∵平面ABCD ⊥平面BCEF ,且平面ABCD ∩平面BCEF =BC ,∴DC ⊥平面BCEF .以C 为原点,CB 所在直线为x 轴,CE 所在直线为y 轴,CD 所在直线为z 轴建立如图D110所示的空间直角坐标系.图D110根据题意,可得, A (2,0,4),B (2,0,0),C (0,0,0),D (0,0,4),E (0,4,0),F (2,2,0),则AF →=(0,2,-4),CB →=(2,0,0).∵BC ⊥CD ,BC ⊥CE, ∴CB →为平面CDE 的一个法向量.又∵AF →·CB →=0×2+2×0+(-4)×0=0,∴AF ∥平面CDE .(2)设平面ADE 的一个法向量为n 1→=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧AD →·n 1→=0,DE →·n 1→=0. ∵AD →=(-2,0,0),DE →=(0,4,-4),∴⎩⎪⎨⎪⎧-2x 1=0,4y 1-4z 1=0,取z 1=1,得n 1→=(0,1,1). ∵DC ⊥平面BCEF ,∴平面BCEF 的一个法向量为CD →=(0,0,4).设平面ADE 与平面BCEF 所成锐二面角的大小为α,则cos α=⎪⎪⎪⎪⎪⎪CD →·n 1→|CD →|·|n 1→|=44×2=22. 因此,平面ADE 与平面BCEF 所成锐二面角的余弦值为22. (3)根据(2)知平面ADE 的一个法向量为n 1→=(0,1,1).∵EF →=(2,-2,0),∴cos 〈EF →,n 1→〉=EF →·n 1→|EF →|·|n 1→|=-22 2×2=-12. 设直线EF 与平面ADE 所成角为θ,则cos θ=|sin 〈EF →,n 1→〉|=32. 因此,直线EF 与平面ADE 所成角的余弦值为32.。
专题13 立体几何中的位置关系及截面问题【高考真题】1.(2022·全国乙理) 在正方体1111ABCD A B C D -中,E ,F 分别为, AB BC 的中点,则( ) A .平面1B EF ⊥平面1BDD B .平面1B EF ⊥平面1A BDC .平面1//B EF 平面1A ACD .平面1//B EF 平面11A C D1.答案 A 解析 在正方体1111ABCD A B C D -中,AC BD ⊥且1DD ⊥平面ABCD ,又EF ⊂平面ABCD , 所以1EF DD ⊥,因为,E F 分别为,AB BC 的中点,所以EF AC ,所以EF BD ⊥,又1BD DD D =,所以EF ⊥平面1BDD ,又EF ⊂平面1B EF ,所以平面1B EF ⊥平面1BDD ,故A 正确;如图,以点D 为原点,建立空间直角坐标系,设2AB =,则()()()()()()()112,2,2,2,1,0,1,2,0,2,2,0,2,0,2,2,0,0,0,2,0B E F B A A C ,()10,2,2C ,则()()11,1,0,0,1,2EF EB =-=,()()12,2,0,2,0,2DB DA ==,()()()1110,0,2,2,2,0,2,2,0,AA AC A C ==-=- 设平面1B EF 的法向量为()111,,m x y z =,则有11111020m EF x y m EB y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,可取()2,2,1m =-,同理可得平面1A BD 的法向量为()11,1,1n =--,平面1A AC 的法向量为()21,1,0n =,平面11A C D 的法向量为()31,1,1n =-,则122110m n ⋅=-+=≠,所以平面1B EF 与平面1A BD 不垂直,故B 错误;因为m 与2n 不平行,所以平面1B EF 与平面1A AC 不平行,故C 错误;因为m 与2n 不平行,所以平面1B EF 与平面11A C D 不平行,故D 错误,故选A .【知识总结】1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a ⊄α,b ⊂α,a ∥b ⇒a ∥α.(2)线面平行的性质定理:a ∥α,a ⊂β,α∩β=b ⇒a ∥b .(3)面面平行的判定定理:a ⊂β,b ⊂β,a ∩b =P ,a ∥α,b ∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.平行问题的转化利用线线平行、线面平行、面面平行的相互转化解决平行关系的判定问题时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而应用性质定理时,其顺序正好相反.在实际的解题过程中,判定定理和性质定理一般要相互结合,灵活运用.平行关系的基础是线线平行,证明线线平行常用的方法:一是利用平行公理,即证两直线同时和第三条直线平行;二是利用平行四边形进行平行转换:三是利用三角形的中位线定理证线线平行;四是利用线段的比例关系证明线线平行;五是利用线面平行、面面平行的性质定理进行平行转换.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.垂直问题的转化在空间垂直关系中,线面垂直是核心,已知线面垂直,既可为证明线线垂直提供依据,又可为利用判定定理证明面面垂直作好铺垫.应用面面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,从而把面面垂直问题转化为线面垂直问题,进而可转化为线线垂直问题.垂直关系的基础是线线垂直,证明线线垂直常用的方法:一是利用等腰三角形底边中线即高线的性质;二是利用勾股定理;三是利用线面垂直的性质:即要证两线垂直,只需证明一线垂直于另一线所在的平面即可,l⊥α,a⊂α⇒l⊥a.3.确定截面的主要依据用一个平面去截几何体,此平面与几何体的交集叫做这个几何体的截面,利用平面的性质确定截面形状是解决截面问题的关键.(1)平面的四个公理及推论.(2)直线和平面平行的判定和性质.(3)两个平面平行的性质.(4)球的截面的性质.【题型突破】题型一简单位置关系的判断1.(2020·浙江)已知空间中不过同一点的三条直线m,n,l,则“m,n,l在同一平面”是“m,n,l两两相交”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件1.答案B解析依题意m,n,l是空间中不过同一点的三条直线,当m,n,l在同一平面时,可能有m∥n∥l,故不能得出m,n,l两两相交.当m,n,l两两相交时,设m∩n=A,m∩l=B,n∩l=C,则m,n确定一个平面α,而B∈m⊂α,C∈n⊂α,所以直线BC即l⊂α,所以m,n,l在同一平面.综上所述,“m,n,l在同一平面”是“m,n,l两两相交”的必要不充分条件.故选B.2.(2019·全国Ⅱ)设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面2.答案B解析若α∥β,则α内有无数条直线与β平行,反之则不成立;若α,β平行于同一条直线,则α与β可以平行也可以相交;若α,β垂直于同一个平面,则α与β可以平行也可以相交,故A,C,D中条件均不是α∥β的充要条件.根据平面与平面平行的判定定理知,若一个平面内有两条相交直线与另一个平面平行,则两平面平行,反之也成立.因此,B中条件是α∥β的充要条件.故选B.3.已知α,β表示两个不同平面,a,b表示两条不同直线,对于下列两个命题:①若b⊂α,a⊄α,则“a∥b”是“a∥α”的充分不必要条件;②若a⊂α,b⊂α,则“α∥β”是“a∥β且b∥β”的充要条件.判断正确的是()A.①②都是真命题B.①是真命题,②是假命题C.①是假命题,②是真命题D.①②都是假命题3.答案B解析若b⊂α,a⊄α,a∥b,则由线面平行的判定定理可得a∥α,反过来,若b⊂α,a⊄α,a∥α,则a,b可能平行或异面,则b⊂α,a⊄α,“a∥b”是“a∥α”的充分不必要条件,①是真命题;若a⊂α,b⊂α,α∥β,则由面面平行的性质可得a∥β,b∥β,反过来,若a⊂α,b⊂α,a∥β,b∥β,则α,β可能平行或相交,则a⊂α,b⊂α,则“α∥β”是“a∥β,b∥β”的充分不必要条件,②是假命题,选项B 正确.4.已知α,β是空间两个不同的平面,m,n是空间两条不同的直线,则给出的下列说法正确的是()①m∥α,n∥β,且m∥n,则α∥β;②m∥α,n∥β,且m⊥n,则α⊥β;③m⊥α,n⊥β,且m∥n,则α∥β;④m⊥α,n⊥β,且m⊥n,则α⊥β.A.①②③B.①③④C.②④D.③④4.答案D解析对于①,当m∥α,n∥β,且m∥n时,有α∥β或α,β相交,所以①错误;对于②,当m∥α,n∥β,且m⊥n时,有α⊥β或α∥β或α,β相交且不垂直,所以②错误;对于③,当m⊥α,n⊥β,且m∥n时,得出m⊥β,所以α∥β,③正确;对于④,当m⊥α,n⊥β,且m⊥n时,α⊥β成立,所以④正确.综上知,正确的命题序号是③④.故选D.5.已知m,n是两条不同的直线,α,β是两个不同的平面,给出四个命题:①若α∩β=m,n⊂α,n⊥m,则α⊥β;②若m⊥α,m⊥β,则α∥β;③若m⊥α,n⊥β,m⊥n,则α⊥β;④若m∥α,n∥β,m∥n,则α∥β.其中正确的命题是()A.①②B.②③C.①④D.③④5.答案B解析两个平面斜交时也会出现一个平面内的直线垂直于两个平面的交线的情况,①不正确;垂直于同一条直线的两个平面平行,②正确;当两个平面与两条互相垂直的直线分别垂直时,它们所成的二面角为直二面角,故③正确;当两个平面相交时,分别与两个平面平行的直线也平行,故④不正确.6.(2020·全国Ⅱ)设有下列四个命题:①两两相交且不过同一点的三条直线必在同一平面内;②过空间中任意三点有且仅有一个平面;③若空间两条直线不相交,则这两条直线平行;④若直线l⊂平面α,直线m⊥平面α,则m⊥l.则上述命题中所有真命题的序号是________.(填写所有正确命题的序号)6.答案①④解析①是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知①为真命题;②是假命题,因为空间三点在一条直线上时,有无数个平面过这三个点;③是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;④是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.从而①④为真命题.7.(2019·北京)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:________.7.答案若m∥α且l⊥α,则l⊥m(或若l⊥m,l⊥α,则m∥α)解析已知l,m是平面α外的两条不同直线,由①l⊥m与②m∥α,不能推出③l⊥α,因为l可以与α平行,也可以相交不垂直;由①l⊥m与③l⊥α能推出②m∥α;由②m∥α与③l⊥α可以推出①l⊥m.故正确的命题是②③⇒①或①③⇒②.8.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________.8.答案①或③解析由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.9.(多选)已知m,n为两条不重合的直线,α,β为两个不重合的平面,则() A.若m∥α,n∥β,α∥β,则m∥n B.若m⊥α,n⊥β,α⊥β,则m⊥nC.若m∥n,m⊥α,n⊥β,则α∥βD.若m∥n,n⊥α,α⊥β,则m∥β9.答案BC解析由m,n为两条不重合的直线,α,β为两个不重合的平面,知:对于A,若m∥α,n∥β,α∥β,则m与n相交、平行或异面,故错误;对于B,若m⊥α,n⊥β,α⊥β,则由线面垂直、面面垂直的性质定理得m⊥n,故正确;对于C,若m∥n,m⊥α,n⊥β,则由线面垂直的性质定理和面面平行的判定定理得α∥β,故正确;对于D,若m∥n,n⊥α,α⊥β,则m∥β或m⊂β,故错误.故选BC.10.将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是______.(填序号)10.答案①③解析由线面垂直的性质定理可知①是真命题,且垂直于同一直线的两平面平行也是真命题,故①是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以②是假命题,不是“可换命题”;由公理4可知③是真命题,且平行于同一平面的两平面平行也是真命题,故③是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故④是假命题,故④不是“可换命题”.题型二较难位置关系的判断(1)11.(2019·全国Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M 是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线11.答案B解析如图,取CD的中点O,连接ON,EO,因为△ECD为正三角形,所以EO⊥CD,又平面ECD⊥平面ABCD,平面ECD∩平面ABCD=CD,所以EO⊥平面ABCD.设正方形ABCD的边长为2,则EO=3,ON=1,所以EN2=EO2+ON2=4,得EN=2.过M作CD的垂线,垂足为P,连接BP,则MP=32,CP=32,所以BM2=MP2+BP2=⎝⎛⎭⎫322+⎝⎛⎭⎫322+22=7,得BM=7,所以BM≠EN.连接BD,BE,因为四边形ABCD为正方形,所以N为BD的中点,即EN,MB均在平面BDE内,所以直线BM,EN是相交直线.12.(多选)在正方体ABCD-A1B1C1D1中,下列直线或平面与平面ACD1平行的是()A.直线A1B B.直线BB1C.平面A1DC1D.平面A1BC112.答案AD 解析如图,由A1B∥D1C,且A1B⊄平面ACD1,D1C⊂平面ACD1,故直线A1B与平面ACD1平行,故A正确;直线BB1∥DD1,DD1与平面ACD1相交,故直线BB1与平面ACD1相交,故B错误;显然平面A1DC1与平面ACD1相交,故C错误;由A1B∥D1C,AC∥A1C1,且A1B∩A1C1=A1,AC∩D1C=C,故平面A1BC1与平面ACD1平行,故D正确.故选AD.13.(2017·全国Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()13.答案A解析A项,作如图①所示的辅助线,其中D为BC的中点,则QD∥AB.∵QD∩平面MNQ=Q,∴QD与平面MNQ相交,∴直线AB与平面MNQ相交.B项,作如图②所示的辅助线,则AB ∥CD,CD∥MQ,∴AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB∥平面MNQ.C项,作如图③所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,∴AB ∥平面MNQ.D项,作如图④所示的辅助线,则AB∥CD,CD∥NQ,∴AB∥NQ,又AB⊄平面MNQ,NQ⊂平面MNQ,∴AB∥平面MNQ.故选A.14.已知点E,F分别是正方体ABCD-A1B1C1D1的棱AB,AA1的中点,点M,N分别是线段D1E与C1F上的点,则满足与平面ABCD平行的直线MN有()A.0条B.1条C.2条D.无数条14.答案D解析如图所示,作平面KSHG∥平面ABCD,C1F,D1E交平面KSHG于点N,M,连接MN,由面面平行的性质得MN∥平面ABCD,由于平面KSHG有无数多个,所以平行于平面ABCD 的MN有无数多条,故选D.15.如图所示,在正方体ABCD—A1B1C1D1中,点O,M,N分别是线段BD,DD1,D1C1的中点,则直线OM与AC,MN的位置关系是()A.与AC,MN均垂直B.与AC垂直,与MN不垂直C.与AC不垂直,与MN垂直D.与AC,MN均不垂直15.答案A解析因为DD1⊥平面ABCD,所以AC⊥DD1,又因为AC⊥BD,DD1∩BD=D,所以AC ⊥平面BDD1B1,因为OM⊂平面BDD1B1,所以OM⊥AC.设正方体的棱长为2,则OM=1+2=3,MN=1+1=2,ON=1+4=5,所以OM2+MN2=ON2,所以OM⊥MN.故选A.16.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC 上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.16.答案①②③解析由题意知P A⊥平面ABC,∴P A⊥BC.又AC⊥BC,且P A∩AC =A,P A,AC⊂平面P AC,∴BC⊥平面P AC,∴BC⊥AF.∵AF⊥PC,且BC∩PC=C,BC,PC⊂平面PBC,∴AF ⊥平面PBC,∴AF⊥PB,又AE⊥PB,AE∩AF=A,AE,AF⊂平面AEF,∴PB⊥平面AEF,∴PB⊥EF.故①②③正确.17.如图,AB是圆锥SO的底面圆O的直径,D是圆O上异于A,B的任意一点,以AO为直径的圆与AD的另一个交点为C,P为SD的中点.现给出以下结论:①△SAC为直角三角形;②平面SAD⊥平面SBD;③平面P AB必与圆锥SO的某条母线平行.其中正确结论的序号是________(写出所有正确结论的序号).17.答案①③解析如图,连接OC,∵SO⊥底面圆O,∴SO⊥AC,C在以AO为直径的圆上,∴AC ⊥OC,∵OC∩SO=O,∴AC⊥平面SOC,AC⊥SC,即△SAC为直角三角形,故①正确;假设平面SAD ⊥平面SBD,在平面SAD中过点A作AH⊥SD交SD于点H,则AH⊥平面SBD,∴AH⊥BD,又BD ⊥AD,∴BD⊥平面SAD,又CO∥BD,∴CO⊥平面SAD,∴CO⊥SC,又在△SOC中,SO⊥OC,在一个三角形内不可能有两个直角,故平面SAD⊥平面SBD不成立,故②错误;连接DO并延长交圆O 于点E,连接PO,SE,∵P为SD的中点,O为ED的中点,∴OP是△SDE的中位线,∴PO∥SE,即SE∥平面P AB,即平面P AB必与圆锥SO的母线SE平行.故③正确.故正确是①③.18.如图所示,直线P A垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O 的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面P AC的距离等于线段BC的长.其中正确的是()A.①②B.①②③C.①D.②③18.答案B解析对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∵AC∩P A =A,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM ∥P A,∵P A⊂平面P AC,OM⊄平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离,故①②③都正确.19.(多选)已知四棱台ABCD-A1B1C1D1的上、下底面均为正方形,其中AB=22,A1B1=2,AA1=BB 1=CC 1=2,则下列叙述中正确的是( )A .该四棱台的高为3B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π19.答案 AD 解析 由棱台的性质,画出切割前的四棱锥,如图所示.由于AB =22,A 1B 1=2,可知△SA 1B 1与△SAB 的相似比为1∶2,则SA =2AA 1=4,AO =2,则SO =23,则OO 1=3,故该四棱台的高为3,A 正确;因为SA =SC =AC =4,则AA 1与CC 1的夹角为60°,不垂直,B 错误;该四棱台的表面积为S =S 上底+S 下底+S 侧=2+8+4×(2+22)2×142=10+67,C 错误;由于上、下底面都是正方形,则四棱台外接球的球心在OO 1上,在平面B 1BOO 1中,由于OO 1=3,B 1O 1=1,则OB 1=2=OB ,即点O 到点B 与点B 1的距离相等,则四棱台外接球的半径r =OB =2,故该四棱台外接球的表面积为16π,D 正确.故选AD .20.(多选)如图,在以下四个正方体中,直线AB 与平面CDE 垂直的是( )20.答案 BD 解析 在A 中,AB 与CE 的夹角为45°,所以直线AB 与平面CDE 不垂直,故不符合题意;在B 中,AB ⊥CE ,AB ⊥DE ,CE ∩DE =E ,所以AB ⊥平面CDE ,故符合题意;在C 中,AB 与EC 的夹角为60°,所以直线AB 与平面CDE 不垂直,故不符合题意;在D 中,AB ⊥DE ,AB ⊥CE ,DE ∩CE =E ,所以AB ⊥平面CDE ,故符合题意.故选BD .题型三 较难位置关系的判断(2)21.将正方体的纸盒展开如图,直线AB ,CD 在原正方体的位置关系是( )A .平行B .垂直C .相交成60°角D .异面且成60°角21.答案 D 解析 如图,直线AB ,CD 异面.因为CE ∥AB ,所以∠ECD 即为异面直线AB ,CD 所成的角,因为△CDE为等边三角形,故∠ECD=60°.22.如图是一个正方体的平面展开图.在这个正方体中,①BM与ED是异面直线;②CN与BE平行;③CN与BM成60°角;④DM与BN垂直.以上四个命题中,正确命题的序号是________.22.答案①②③④解析由题意画出该正方体的图形如图所示,连接BE,BN,显然①②正确;对于③,连接AN,易得AN∥BM,∠ANC=60°,所以CN与BM成60°角,所以③正确;对于④,易知DM⊥平面BCN,所以DM⊥BN正确.23.如图是正四面体(各面均为正三角形)的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中:①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.23.答案②③④解析把正四面体的平面展开图还原,如图所示,GH与EF为异面直线,BD与MN为异面直线,GH与MN成60°角,DE⊥MN.24.如图是一几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为P A,PD的中点,在此几何体中,给出下面4个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面P AD.其中正确的有()A.1个B.2个C.3个D.4个24.答案B解析将展开图还原为几何体(如图),因为E,F分别为P A,PD的中点,所以EF∥AD∥BC,即直线BE与CF共面,①错;因为B∉平面P AD,E∈平面P AD,E∉AF,所以BE与AF是异面直线,②正确;因为EF∥AD∥BC,EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,③正确;平面P AD与平面BCE不一定垂直,④错.故选B.25.如图,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF及EF把这个正方形折成一个空间图形,使B,C,D三点重合,重合后的点记为H,那么,在这个空间图形中必有()A.AG⊥平面EFH B.AH⊥平面EFH C.HF⊥平面AEF D.HG⊥平面AEF25.答案B解析根据折叠前、后AH⊥HE,AH⊥HF不变,得AH⊥平面EFH,B正确;∵过A只有一条直线与平面EFH垂直,∴A不正确;∵AG⊥EF,EF⊥GH,AG∩GH=G,∴EF⊥平面HAG,又EF⊂平面AEF,∴平面HAG⊥AEF,过H作直线垂直于平面AEF,一定在平面HAG内,∴C不正确;由条件证不出HG⊥平面AEF,∴D不正确.故选B.26.(多选)如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,翻折△ABD和△ACD,使得平面ABD⊥平面ACD.下列结论正确的是()A.BD⊥AC B.△BAC是等边三角形C.三棱锥D-ABC是正三棱锥D.平面ADC⊥平面ABC26.答案ABC解析由题意易知,BD⊥平面ADC,又AC⊂平面ADC,故BD⊥AC,A中结论正确;设等腰直角三角形ABC的腰为a,则BC=2a,由A知BD⊥平面ADC,CD⊂平面ADC,∴BD⊥CD,又BD=CD=22a,∴由勾股定理得BC=2×22a=a,∴AB=AC=BC,则△BAC是等边三角形,B中结论正确;易知DA=DB=DC,又由B可知C中结论正确,D中结论错误.27.如图,在直角梯形ABCD中,BC⊥DC,AE⊥DC,且E为CD的中点,M,N分别是AD,BE的中点,将△ADE沿AE折起,则下列说法正确的是________.(写出所有正确说法的序号)①不论D折至何位置(不在平面ABC内),都有MN∥平面DEC;②不论D折至何位置(不在平面ABC内),都有MN⊥AE;③不论D折至何位置(不在平面ABC内),都有MN∥AB;④在折起过程中,一定存在某个位置,使EC⊥AD.27.答案①②④解析由已知,在未折叠的原梯形中,AB∥DE,BE∥AD,所以四边形ABED为平行四边形,所以BE=AD,折叠后如图所示.①过点M作MP∥DE,交AE于点P,连接NP.因为M,N分别是AD,BE的中点,所以点P为AE的中点,故NP∥EC.又MP∩NP=P,DE∩CE=E,所以平面MNP∥平面DEC,故MN∥平面DEC,①正确;②由已知,AE⊥ED,AE⊥EC,所以AE⊥MP,AE⊥NP,又MP∩NP=P,所以AE⊥平面MNP,又MN⊂平面MNP,所以MN⊥AE,②正确;③假设MN∥AB,则MN与AB确定平面MNBA,从而BE⊂平面MNBA,AD⊂平面MNBA,与BE和AD 是异面直线矛盾,③错误;④当EC⊥ED时,EC⊥AD.因为EC⊥EA,EC⊥ED,EA∩ED=E,所以EC⊥平面AED,AD⊂平面AED,所以EC⊥AD,④正确.28.如图所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A,D分别是BF,CE上的点,AD∥BC,且AB=DE=2BC=2AF(如图1).将四边形ADEF沿AD折起,连接AC,CF,BE,BF,CE(如图2),在折起的过程中,下列说法错误的是()A.AC∥平面BEF B.B,C,E,F四点不可能共面C.若EF⊥CF,则平面ADEF⊥平面ABCD D.平面BCE与平面BEF可能垂直28.答案D解析A选项,连接BD,交AC于点O,取BE的中点M,连接OM,FM,则四边形AOMF 是平行四边形,所以AO∥FM,因为FM⊂平面BEF,AC⊄平面BEF,所以AC∥平面BEF;B选项,若B,C,E,F四点共面,因为BC∥AD,所以BC∥平面ADEF,又BC⊂平面BCEF,平面BCEF∩平面ADEF=EF,所以可推出BC∥EF,又BC∥AD,所以AD∥EF,矛盾;C选项,连接FD,在平面ADEF内,由勾股定理可得EF⊥FD,又EF⊥CF,FD∩CF=F,所以EF⊥平面CDF,所以EF⊥CD,又CD⊥AD,EF与AD相交,所以CD⊥平面ADEF,所以平面ADEF⊥平面ABCD;D选项,延长AF至G,使AF=FG,连接BG,EG,可得平面BCE⊥平面ABF,且平面BCE∩平面ABF=BG,过F作FN⊥BG于N,则FN⊥平面BCE,若平面BCE⊥平面BEF,则过F作直线与平面BCE垂直,其垂足在BE上,矛盾.29.如图,已知棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别是线段AB,AD,AA1的中点,又P,Q分别在线段A1B1,A1D1上,且A1P=A1Q=x(0<x<1).设平面MEF∩平面MPQ=l,现有下列结论:①l∥平面ABCD;②l⊥AC;③直线l与平面BCC1B1不垂直;④当x变化时,l不是定直线.其中成立的结论是________.(写出所有成立结论的序号)29.答案①②③解析连接BD,B1D1,∵A1P=A1Q=x,∴PQ∥B1D1∥BD∥EF,易证PQ∥平面MEF,又平面MEF∩平面MPQ=l,∴PQ∥l,l∥EF,∴l∥平面ABCD,故①成立;又EF⊥AC,∴l⊥AC,故②成立;∵l∥EF∥BD,∴易知直线l与平面BCC1B1不垂直,故③成立;当x变化时,l是过点M且与直线EF平行的定直线,故④不成立.30.(多选)如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个结论正确的是()A.三棱锥A-D1PC的体积不变B.A1P∥平面ACD1C.DP⊥BC1D.平面PDB1⊥平面ACD130.答案ABD解析对于A,连接AD1,CD1,AC,D1P,如图,由题意知AD1∥BC1,AD1⊂平面AD1C,BC1⊄平面AD1C,从而BC1∥平面AD1C,故BC1上任意一点到平面AD1C的距离均相等,所以以P为顶点,平面AD1C 为底面的三棱锥A-D1PC的体积不变,故A正确;对于B,连接A1B,A1C1,A1P,则A1C1∥AC,易知A1C1∥平面AD1C,由A知,BC1∥平面AD1C,又A1C1∩BC1=C1,所以平面BA1C1∥平面ACD1,又A1P⊂平面A1C1B,所以A1P∥平面ACD1,故B正确;对于C,由于DC⊥平面BCC1B1,所以DC ⊥BC1,若DP⊥BC1,则BC1⊥平面DCP,BC1⊥PC,则P为中点,与P为动点矛盾,故C错误;对于D,连接DB1,PD,由DB1⊥AC且DB1⊥AD1,可得DB1⊥平面ACD1,从而由面面垂直的判定定理知平面PDB1⊥平面ACD1,故D正确.题型四截面问题31.如图,在正方体ABCD-A1B1C1D1中,E,F,G分别在AB,BC,DD1上,则作过E,F,G三点的截面图形为()A.四边形B.三角形C.五边形D.六边形31.答案C解析作法:①在底面AC内,过E,F作直线EF,分别与DA,DC的延长线交于L,M.②在侧面A1D内,连接LG交AA1于K.③在侧面D1C内,连接GM交CC1于H.④连接KE,FH.则五边形EFHGK即为所求的截面.32.如图,在正方体ABCD-A1B1C1D1中,点E,F分别是棱B1B,B1C1的中点,点G是棱C1C的中点,则过线段AG 且平行于平面A 1EF 的截面图形为( )A .矩形B .三角形C .正方形D .等腰梯形32.答案 D 解析 取BC 的中点H ,连接AH ,GH ,AD 1,D 1G ,由题意得GH ∥EF ,AH ∥A 1F ,又GH ⊄平面A 1EF ,EF ⊂平面A 1EF ,∴GH ∥平面A 1EF ,同理AH ∥平面A 1EF ,又GH ∩AH =H ,GH ,AH ⊂平面AHGD 1,∴平面AHGD 1∥平面A 1EF ,故过线段AG 且与平面A 1EF 平行的截面图形为四边形AHGD 1,显然为等腰梯形.33.(2018·全国Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .334B .233C .324D .3233.答案 A 解析 如图所示,在正方体ABCD -A 1B 1C 1D 1中,平面AB 1D 1与棱A 1A ,A 1B 1,A 1D 1所成的角都相等,又正方体的其余棱都分别与A 1A ,A 1B 1,A 1D 1平行,故正方体ABCD -A 1B 1C 1D 1的每条棱所在直线与平面AB 1D 1所成的角都相等.取棱AB ,BB 1,B 1C 1,C 1D 1,DD 1,AD 的中点E ,F ,G ,H ,M ,N ,则正六边形EFGHMN 所在平面与平面AB 1D 1平行且面积最大,此截面面积为S 正六边形EFGHMN=6×12×22×22sin 60°=334.故选A . 34.如图,在三棱锥O -ABC 中,三条棱OA ,OB ,OC 两两垂直,且OA >OB >OC ,分别经过三条棱OA ,OB ,OC 作一个截面平分三棱锥的体积,截面面积依次为S 1,S 2,S 3,则S 1,S 2,S 3的大小关系为________.34.答案 S 3<S 2<S 1 解析 由题意知OA ,OB ,OC 两两垂直,可将其放置在以O 为顶点的长方体中,设三边OA ,OB ,OC 分别为a ,b ,c ,且a >b >c ,利用等体积法易得S 1=14a b 2+c 2,S 2=14b a 2+c 2,S 3=14c a 2+b 2,∴S 21-S 22=116(a 2b 2+a 2c 2)-116(b 2a 2+b 2c 2)=116c 2(a 2-b 2),又a >b ,∴S 21-S 22>0,即S 1>S 2,同理,平方后作差可得,S 2>S 3,∴S 3<S 2<S 1. 35.(2016·全国Ⅰ)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )A .32B .22C .33D .1335.答案 A 解析 如图所示,设平面CB 1D 1∩平面ABCD =m 1,∵α∥平面CB 1D 1,则m 1∥m ,又∵平面ABCD ∥平面A 1B 1C 1D 1,平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥m 1,∴B 1D 1∥m ,同理可得CD 1∥n .故m ,n 所成角的大小与B 1D 1,CD 1所成角的大小相等,即∠CD 1B 1的大小.而B 1C =B 1D 1=CD 1(均为面对角线),因此∠CD 1B 1=π3,得sin ∠CD 1B 1=32,故选A . 36.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1D 1,A 1B 1的中点,过直线BD 的平面α∥平面AMN ,则平面α截该正方体所得截面的面积为( )A .2B .98C .3D .6236.答案 B 解析 如图,分别取C 1D 1,B 1C 1的中点P ,Q ,连接PQ ,B 1D 1,DP ,BQ ,NP ,易知MN∥B 1D 1∥BD ,AD ∥NP ,AD =NP ,所以四边形ANPD 为平行四边形,所以AN ∥DP .又BD 和DP 为平面DBQP 内的两条相交直线,AN ,MN 为平面AMN 内的两条相交直线,所以平面DBQP ∥平面AMN ,四边形DBQP 的面积即所求.因为PQ ∥DB ,所以四边形DBQP 为梯形,PQ =12BD =22,梯形的高h =12+⎝⎛⎭⎫122-⎝⎛⎭⎫242=324,所以四边形DBQP 的面积为12(PQ +BD )h =98.37.在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于点D ,E ,F ,H .D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为________.37.答案 452 解析 如图,取AC 的中点G ,连接SG ,BG .易知SG ⊥AC ,BG ⊥AC ,SG ∩BG =G ,SG , BG ⊂平面SGB ,故AC ⊥平面SGB ,所以AC ⊥SB .因为SB ∥平面DEFH ,SB ⊂平面SAB ,平面SAB ∩平面DEFH =HD ,则SB ∥HD .同理SB ∥FE .又D ,E 分别为AB ,BC 的中点,则H ,F 也为AS ,SC 的中点,从而得HF 12AC DE ,所以四边形DEFH 为平行四边形.又AC ⊥SB ,SB ∥HD ,DE ∥AC ,所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =⎝⎛⎭⎫12AC ·⎝⎛⎭⎫12SB =452.38.在四面体ABCD 中,截面PQMN 是正方形,则在下列结论中,错误的是( )A .AC ⊥BDB .AC ∥截面PQMNC .AC =BD D .异面直线PM 与BD 所成的角为45°38.答案 C 解析 因为截面PQMN 是正方形,所以MN ∥QP ,又PQ ⊂平面ABC ,MN ⊄平面ABC ,则MN ∥平面ABC ,由线面平行的性质知MN ∥AC ,又MN ⊂平面PQMN ,AC ⊄平面PQMN ,则AC ∥截面PQMN ,同理可得MQ ∥BD ,又MN ⊥QM ,则AC ⊥BD ,故A ,B 正确.又因为BD ∥MQ ,所以异面直线PM 与BD 所成的角等于PM 与QM 所成的角,即为45°,故D 正确.39.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P ,Q 分别是AA 1,A 1D 1,CC 1,BC 的中点,给出以下 四个结论:①A 1C ⊥MN ;②A 1C ∥平面MNPQ ;③A 1C 与PM 相交;④NC 与PM 异面.其中不正确的结论是( )∥=∥=A .①B .②C .③D .④39.答案 B 解析 作出过M ,N ,P ,Q 四点的截面交C 1D 1于点S ,交AB 于点R ,如图中的六边形MNSPQR ,显然点A 1,C 分别位于这个平面的两侧,故A 1C 与平面MNPQ 一定相交,不可能平行,故结论②不正确.40.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,点P 是棱AD 上一点,且AP =a 3,过B 1、D 1,P 的 平面交底面ABCD 于PQ ,Q 在直线CD 上,则PQ =________.40.答案223a 解析 ∵平面A 1B 1C 1D 1∥平面ABCD ,而平面B 1D 1P ∩平面ABCD =PQ ,平面B 1D 1P ∩ 平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥PQ .又∵B 1D 1∥BD ,∴BD ∥PQ ,设PQ ∩AB =M ,∵AB ∥CD ,∴△APM ∽△DPQ .∴PM PQ=AP PD =12,即PQ =2PM .又知△APM ∽△ADB ,∴PM BD =AP AD =13,∴PM =13BD ,又BD =2a ,∴PQ =223a .。
全国通用2020_2022三年高考数学真题分项汇编:05 立体几何(选择题、填空题)(文科专用)1.【2022年全国甲卷】如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8 B.12 C.16 D.20【答案】B【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,×2×2=12.则该直四棱柱的体积V=2+42故选:B.2.【2022年全国甲卷】在长方体ABCD−A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B 所成的角均为30°,则()A.AB=2AD B.AB与平面AB1C1D所成的角为30°C.AC=CB1D.B1D与平面BB1C1C所成的角为45°【答案】D【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出. 【详解】 如图所示:不妨设AB =a,AD =b,AA 1=c ,依题以及长方体的结构特征可知,B 1D 与平面ABCD 所成角为∠B 1DB ,B 1D 与平面AA 1B 1B 所成角为∠DB 1A ,所以sin30∘=cB 1D=b B 1D,即b =c ,B 1D =2c =√a 2+b 2+c 2,解得a =√2c .对于A ,AB =a ,AD =b ,AB =√2AD ,A 错误;对于B ,过B 作BE ⊥AB 1于E ,易知BE ⊥平面AB 1C 1D ,所以AB 与平面AB 1C 1D 所成角为∠BAE ,因为tan ∠BAE =c a=√22,所以∠BAE ≠30∘,B 错误;对于C ,AC =√a 2+b 2=√3c ,CB 1=√b 2+c 2=√2c ,AC ≠CB 1,C 错误; 对于D ,B 1D 与平面BB 1C 1C 所成角为∠DB 1C ,sin ∠DB 1C =CDB 1D=a2c =√22,而0<∠DB 1C<90∘,所以∠DB 1C =45∘.D 正确. 故选:D .3.【2022年全国甲卷】甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若S 甲S 乙=2,则V 甲V 乙=( )A .√5B .2√2C .√10D .5√104【答案】C 【解析】 【分析】设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,根据圆锥的侧面积公式可得r 1=2r 2,再结合圆心角之和可将r 1,r 2分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解. 【详解】解:设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,则S 甲S 乙=πr 1l πr 2l =r1r 2=2, 所以r 1=2r 2, 又2πr 1l +2πr 2l=2π,则r 1+r 2l=1,所以r 1=23l,r 2=13l ,所以甲圆锥的高ℎ1=√l 2−49l 2=√53l ,乙圆锥的高ℎ2=√l 2−19l 2=2√23l , 所以V 甲V 乙=13πr 12ℎ113πr 22ℎ2=49l 2×√53l 19l ×2√23l =√10.故选:C.4.【2022年全国乙卷】在正方体ABCD −A 1B 1C 1D 1中,E ,F 分别为AB,BC 的中点,则( ) A .平面B 1EF ⊥平面BDD 1 B .平面B 1EF ⊥平面A 1BD C .平面B 1EF//平面A 1AC D .平面B 1EF//平面A 1C 1D【答案】A 【解析】 【分析】证明EF ⊥平面BDD 1,即可判断A ;如图,以点D 为原点,建立空间直角坐标系,设AB =2,分别求出平面B 1EF ,A 1BD ,A 1C 1D 的法向量,根据法向量的位置关系,即可判断BCD. 【详解】解:在正方体ABCD −A 1B 1C 1D 1中, AC ⊥BD 且DD 1⊥平面ABCD , 又EF ⊂平面ABCD ,所以EF ⊥DD 1, 因为E,F 分别为AB,BC 的中点, 所以EF ∥AC ,所以EF ⊥BD , 又BD ∩DD 1=D , 所以EF ⊥平面BDD 1, 又EF ⊂平面B 1EF ,所以平面B 1EF ⊥平面BDD 1,故A 正确; 对于选项B ,如图所示,设11A BB E M =,EF BD N =,则MN 为平面1B EF 与平面1A BD 的交线,在BMN △内,作BP MN ⊥于点P ,在EMN △内,作GP MN ⊥,交EN 于点G ,连结BG ,则BPG ∠或其补角为平面1B EF 与平面1A BD 所成二面角的平面角,由勾股定理可知:222PB PN BN +=,222PG PN GN +=, 底面正方形ABCD 中,,E F 为中点,则EF BD ⊥, 由勾股定理可得222NB NG BG +=,从而有:()()2222222NB NG PB PN PG PN BG +=+++=, 据此可得222PB PG BG +≠,即90BPG ∠≠, 据此可得平面1B EF ⊥平面1A BD 不成立,选项B 错误; 对于选项C ,取11A B 的中点H ,则1AHB E ,由于AH 与平面1A AC 相交,故平面1B EF 平面1A AC 不成立,选项C 错误;对于选项D ,取AD 的中点M ,很明显四边形11A B FM 为平行四边形,则11A MB F ,由于1A M 与平面11AC D 相交,故平面1B EF 平面11AC D 不成立,选项D 错误;故选:A.5.【2022年全国乙卷】已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A.13B.12C.√33D.√22【答案】C【解析】【分析】先证明当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为2r2,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,设四边形ABCD对角线夹角为α,则S ABCD=12⋅AC⋅BD⋅sinα≤12⋅AC⋅BD≤12⋅2r⋅2r=2r2(当且仅当四边形ABCD为正方形时等号成立)即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为2r2又r2+ℎ2=1则V O−ABCD=13⋅2r2⋅ℎ=√23√r2⋅r2⋅2ℎ2≤√23√(r2+r2+2ℎ23)3=4√327当且仅当r2=2ℎ2即ℎ=√33时等号成立,故选:C6.【2021年甲卷文科】在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A EFG后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A .B .C .D .【答案】D 【解析】 【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断. 【详解】由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D7.【2021年乙卷文科】在正方体1111ABCD A B C D 中,P 为11B D 的中点,则直线PB 与1AD 所成的角为( )A .π2B .π3C .π4D .π6【答案】D 【解析】 【分析】平移直线1AD 至1BC ,将直线PB 与1AD 所成的角转化为PB 与1BC 所成的角,解三角形即可. 【详解】如图,连接11,,BC PC PB ,因为1AD ∥1BC , 所以1PBC ∠或其补角为直线PB 与1AD 所成的角,因为1BB ⊥平面1111D C B A ,所以11BB PC ⊥,又111PC B D ⊥,1111BB B D B ⋂=, 所以1PC ⊥平面1PBB ,所以1PC PB ⊥, 设正方体棱长为2,则111112BC PC D B === 1111sin 2PC PBC BC ∠==,所以16PBC π∠=. 故选:D8.【2021年甲卷文科】已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________. 【答案】39π 【解析】 【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案. 【详解】∵216303V h ππ=⋅=∴52h =∴132 l==∴136392S rlπππ==⨯⨯=侧.故答案为:39π.9.【2021年乙卷文科】以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).【答案】③④(答案不唯一)【解析】【分析】由题意结合所给的图形确定一组三视图的组合即可.【详解】选择侧视图为③,俯视图为④,如图所示,长方体1111ABCD A B C D -中,12,1AB BC BB ===,,E F 分别为棱11,B C BC 的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥E ADF -. 故答案为:③④. 【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.。
微专题16 立体几何经典题型精练典型例题例1.(2022·全国·高三专题练习)如图所示,三棱柱111ABC A B C -中,所有棱长均为2,1160BAC BAA CAA ∠=∠=∠=︒,P ,Q 分别在AB ,11A C 上(不包括两端),1AP AQ =.(1)求证://PQ 平面11BCC B ;(2)设PQ 与平面ABC 所成角为θ,求sin θ的取值范围. 【解析】(1)作//PD AC ,交BC 于点D ,设()10,2AQ AP t ==∈,则2BP t =-,∵//PD AC ,∴PD BP AC AB =,即2222PD tPD t -=⇒=-, ∵1PD//QC 且1PD=QC ,连接1DC ,所以四边形1C QPD 为平行四边形,∴1//PQ C D , ∵PQ ⊄平面11BCC B ,且1C D ⊂平面11BCC B , ∴//PQ 平面11BCC B .(2)取AC 中点M ,连接1A M 、BM 、1A B ,∵112AM AC ==,12AA =,160A AM ∠=︒, 根据余弦定理得:22211112cos604122132A M AA AM AA AM =+-⋅⋅︒=+-⨯⨯⨯=,∴1A M =1A M AC ⊥,∵ABC 是等边三角形,∴BM AC ⊥, ∵1A M BM M ⋂=,∴AC ⊥平面1A BM ,AC ⊂平面ABC∴平面ABC ⊥平面1A BM ,在1A BM △中,1AM BM ==12A B =, 作1A H BM ⊥,交BM 于点H ,因为平面ABC 平面1A BM BM =, 所以1A H ⊥平面ABC ,则1A BM S ===△,∴1A H = ∵1//AQ 平面ABC ,所以点Q 到平面ABC距离1h A H == 11QP QA A A AP =++,()2211QP QA A A AP =++2211114222t t QA A A A A AP QA AP =+++⋅+⋅+⋅21112422222222t t t t t ⎛⎫⎛⎫=++⨯⨯⨯+⨯⨯⨯-+⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭24t =+,∴QPsin θ==, ∵()0,2t ∈(2,+,∴sin θ∈⎝⎭.例2.(2022·全国·高三专题练习)如图,在直三棱柱111ABC A B C -中,AC BC ⊥,1AC BC AA ==,D 为11A B 的中点,G 为1AA 的中点,E 为1C D 的中点,3BF AF =,点P 为线段1BC 上的动点(不包括线段1BC 的端点).(1)若//EP 平面CFG ,请确定点P 的位置;(2)求直线CP 与平面CFG 所成角的正弦值的最大值. 【解析】 如图,连接BD ,∵12BB AG =,12B D AF =,∴1Rt FAG Rt DB B ∽△△, ∴1BDB AFG ∠=∠,∵11//AB A B ,∴1BDB ABD ∠=∠, ∴AFG ABD ∠=∠.∴//GF BD ,∵GF ⊂平面CFG ,BD ⊄平面CFG ,∴//BD 平面CFG , 若//EP 平面CFG ,又由EP ,BD ⊂平面1BDC , 平面CFG 与平面1BC D 相交,必有//EP BD , 又∵1DE EC =,∴P 为1BC 的中点;(2)因为AC ,BC ,1CC 两两垂直,我们可以以C 为坐标原点,向量CA ,CB ,1CC 方向分别为x ,y ,z 轴的正方向建立如图所示空间直角坐标系,不妨设4AC =,可得各点坐标如下:()0,0,0C ,()4,0,0A ,()0,4,0B ,()10,0,4C ,()4,0,2G ,()3,1,0F . 设1B B C P λ=(01λ<<),有()()0,4,40,4,4BP λλλ=-=-, 又由CP CB BP =+,有()()()0,4,00,4,40,44,4CP λλλλ=+-=-, 设平面CFG 的法向量为(),,m x y z =,由()3,1,0CF =,()4,0,2CG =,有30420m CF x y m CG x z ⎧⋅=+=⎨⋅=+=⎩, 取1x =,3y =-,2z =-,可得平面CFG 的一个法向量为()1,3,2m =--, 设直线CP 与平面CFG 所成的角为θ, 由()3448412CP m λλλ⋅=---=-,(4CP =14m =有sin 14CP m CP mθ⋅===⋅设()332t t λ=+-<<-,有sinθ,sin θ==, 由二次函数的性质可知,当11026t=-时,135t =-,132355λ=-=时,sin θ=.例3.(2022·辽宁·大连市一0三中学高三开学考试)如图,在四棱锥P ABCD -中,2BC =,//AD BC ,E 为棱P A 的中点,//BE 平面PCD .(1)求AD 的长;(2)若PB AB BC ===,平面PAB ⊥平面PBC ,求二面角B PC D --的大小的取值范围. 【解析】 (1)如图所示:过E 作//EM AD ,交PD 于点M ,连接CM , 因为//BE 平面PCD .BE ⊂平面BCME , 平面PCD 平面BCME =MC , 所以//BE MC ,又因为//,//EM AD AD BC , 所以//BC EM ,所以四边形BCME 是平行四边形, 所以BC EM =,又因为12EM AD =, 所以24AD BC ==.(2)因为PB AB BC ==,E 为棱P A 的中点, 所以AP BE ⊥,且4ABE π∠=,所以AB BP ⊥,又因为平面PAB ⊥平面PBC ,平面PAB ⋂平面PBC =BP , 所以AB ⊥平面PBC ,又因为BC ⊂平面PBC , 所以AB BC ⊥,则以点B 为原点,分别以BA ,BC 所在直线为x ,y 轴,以经过点B 且垂直与平面ABCD 的直线为z 轴建立空间直角坐标系,如图所示:则()()()0,2,0,2,4,0,2,2,0C D CD =,由题意设()()220,,,4,2,2,0P a b a b a b +=∈-≠,则()0,2,CP a b =-,设平面CDP 的一个法向量为(),,m x y z =, 则00CD m CP m ⎧⋅=⎪⎨⋅=⎪⎩,即()22020x y a y bz +=⎧⎨-+=⎩,令y b =,得2,z a x b =-=-,则(),,2m b b a =--, 易知平面BCP 的一个法向量为()1,0,0n =,则2cos ,2m n m n m nb ⋅===⋅, 因为()2,2a ∈-,所以cos ,m n ⎛∈ ⎝⎭,所以二面角B PC D --的大小的取值范围是3,24ππ⎛⎫ ⎪⎝⎭. 例4.(2022·全国·高三专题练习)如图,三棱柱111ABC A B C -的底面是边长为4的正三角形,侧面11ACC A ⊥底面ABC ,且侧面11ACC A 为菱形,160A AC ∠=.(1)求二面角1A AB C 所成角θ的正弦值.(2),M N 分别是棱11A C ,11B C 的中点,又2AP BP =.求经过,,M N P 三点的平面截三棱柱111ABC A B C -的截面的周长.【解析】(1)O 为AC 的中点,连接1OA ,侧面11ACC A 为菱形,160A AC ∠=︒, ∴△1A AC 为正三角形,1A O AC ∴⊥,侧面11ACC A ⊥底面ABC ,侧面11ACC A 底面ABC AC =,1A O ⊂侧面11ACC A ,1A O ∴⊥底面ABC ,底面ABC 为正三角形,O 为AC 的中点,BO AC ∴⊥,以O 为坐标原点,分别以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系.底面ABC 是边长为4的正三角形,(0O ∴,0,0),(0A ,2-,0),B ,(0C ,2,0),1A ,∴(23,2,0)AB=,1AA=,(2,0)BC =-,设平面1A AB 的一个法向量为(,,)n x y z =,由100n AB n AA ⎧⋅=⎪⎨⋅=⎪⎩得2020y y ⎧+=⎪⎨+=⎪⎩,令y =11x z =⎧⎨=⎩,∴(1,3,1)n =-,又易知1OA =为平面ABC 的一个法向量.∴11123cos cos ,23OA n OAn OA nθ⋅=〈〉===⨯sin θ== 所以二面角1A AB C 所成角θ. (2)连接MN ,MA ,NB ,M ,N 分别是棱11A C ,11B C 的中点,11//MN A B ∴, 又因为11//A B AB ,//MN AB ∴,∴经过M ,N ,P 三点的平面截三棱柱111ABC A B C -的截面即为平面MNBA , 其中11112,422MN A B AB AB ====,在△1AA M 中,因为三棱柱111ABC A B C -的底面是边长为4的正三角形,侧面11ACC A 为菱形,160A AC ∠=︒,由余弦定理得AM = 取AB 的中点H ,连接MH ,∴四边形MNBH 为平行四边形,MH BN ∴=, 又因为侧面11ACC A 为菱形,1ACA ∴∆,△11CAC 为两个全等的等边三角形, 连接MC ,11CH MC AC ∴⊥,又因为11//AC AC ,MC AC ∴⊥, 又因为侧面11ACC A ⊥底面ABC ,且侧面11ACC A 底面ABC AC =,MC ∴⊥平面ABC , 又CH ⊆平面ABC ,MC HC ∴⊥,又因为∴MC CH ==∴MH =即BN MH ==6l =+.过关测试1.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -.(1)若正方体的棱长为1,求点A 到平面1A BD 的距离;(2)在一个棱长为10的密封正方体盒子中,放一个半径为1的小球,任意摇动盒子,求小球在盒子中不能达到的空间的体积;(3)在空间里,是否存在一个正方体,它的定点1111A B C D A B C D 、、、、、、、到某个平面的距离恰好为0、1、2、3、4、5、6、7,若存在,求出正方体的棱长,若不存在,说明理由.【答案】(2)()3761043cm π-(3)【解析】 【分析】(1)利用等体法:11A A BD A ABD V V --=即可求解.(2)求出小球在正方体的8个顶点以及12条棱处不能到达的空间,利用球的体积公式以及柱体体积公式即可求解.(3)设平面α为符合题意的平面,α过点C ,延长1111,,D C A B AB 分别交平面α于点,,E F G ,由题意可得1111::::::1:2:3:4:5:6:7C E BG B F DC D E AG A F =,设正方体的棱长为4a ,根据11C ECF C EC F V V --=,求出点1C 到平面α的距离,进而得出正方体的棱长. (1)正方体的棱长为1,设点A 到平面1A BD 的距离为h , 由11A A BD A ABD V V --=, 则111133A BDABDS h S AA ⋅=⋅,即11111113232⨯=⨯⨯⨯⨯,解得h .(2)在正方体的8个顶点处的单位立方体空间内,小球不能到达的空间为:331448118833ππ⎡⎤⎛⎫-⨯=- ⎪⎢⎥⎝⎭⎣⎦, 除此之外,以正方体的棱为一条棱的12个118⨯⨯的正四棱柱空间内, 小球不能到达的空间共()21121181896244ππ⎡⎤⨯⨯-⨯⨯=-⎢⎥⎣⎦,其它空间小球均能到达,故小球不能到达的空间体积为:4768962410433πππ-+-=- (3cm )(3)设平面α为符合题意的平面,α过点C , 延长1111,,D C A B AB 分别交平面α于点,,E F G ,由图可知,点1111,,,,,,,C C B B D D A A与平面α的距离分别应为0、1、2、3、4、5、6、7,因为11,,,D E A F DC AG 互相平行,所以它们与平面α所成角相等, 故由比例关系得1111::::::1:2:3:4:5:6:7C E BG B F DC D E AG A F =. 设正方体的棱长为4a ,则11,2,3C E a BG a B F a ===,用几何方法可解得EF =,,EC CF ==,故2ECFS=,由1CC ⊥平面1111D C B A ,知1CC 为四面体1C EC F -的底面1EC F 上的高, 所以由11C ECF C EC F V V --=,算得点1C 到平面α的距离,121EC FECFSCC d S⋅===, 实际上已知1d =1=,从而可得a =所以正方体的棱长为4a =.2.(2022·山东烟台·一模)如图,在四棱锥V -ABCD 中,底面ABCD 为矩形,24AB BC ==,E 为CD 的中点,且△VBC 为等边三角形.(1)若VB ⊥AE ,求证:AE ⊥VE;(2)若二面角A -BC -V的大小为30,求直线AV 与平面VCD 所成角的正弦值. 【答案】(1)证明见解析 【解析】 【分析】(1)先证明线面垂直,再证明线线垂直即可;(2)建立空间直角坐标系,以向量的方法去求直线AV 与平面VCD 所成角的正弦值.(1)因为E 为CD 的中点,所以2AD DE ==,所以△ADE 为等腰直角三角形,所以45AED ∠=.同理,45BEC ∠=.所以AE ⊥BE .又因为VB ⊥AE ,且VB BE B ⋂=,VB ⊂面VBE ,BE ⊂面VBE ,所以AE ⊥面VBE .因为VE ⊂面VBE ,所以AE ⊥VE .(2)取BC 中点O ,AD 中点G 、连接OG ,VO ,则OG ⊥BC .又△VBC 为等边三角形,所以VO ⊥BC ,所以∠GOV 为二面角A -BC -V 的平面角.所以30GOV ∠=以OB ,GO 方向分别作为x ,y 轴正方向,建立空间直角坐标系O -xyz .于是A (1,-4,0),C (-1,0,0),D (-1,-4,0),30,2V ⎛- ⎝⎭, ()0,4,0DC =,31,2CV ⎛=- ⎝⎭,51,2AV ⎛=- ⎝⎭. 令(),,n x y z =为平面VCD 的一个法向量,则00n DC n CV ⎧⋅=⎨⋅=⎩,即40302y x y z =⎧⎪⎨-=⎪⎩,令z =2,得()3,0,2n =-. 设直线AV 与平面VCD 所成的角为α,则sin cos ,AV n α=237nAV AV n ==⋅⋅=⨯ 故直线AV 与平面VCD . 3.(2022·陕西·一模(理))如图,已知直三棱柱111ABC A B C -,O ,M ,N 分别为线段BC ,1AA ,1BB 的中点,P 为线段1AC 上的动点,116AA =,8AC =.(1)若12AO BC =,试证1C N CM ⊥; (2)在(1)的条件下,当6AB =时,试确定动点P 的位置,使线段MP 与平面11BB C C 所成角的正弦值最大.【答案】(1)证明见解析(2)P 为1AC 的中点时,sin θ取得最大值35. 【解析】【分析】(1)先证AB ⊥平面11ACC A ,得AB CM ⊥,结合已知条件得出CM MN ⊥,根据11AMC A MC ≅△△及勾股定理的逆定理,得出1CM C M ⊥,进而得出CM ⊥平面1C MN ,即证1C N CM ⊥.(2)建立空间直角坐标系,求出相关平面的法向量和直线的方向向量,再由向量的夹角公式可求出线面角,在利用二次函数的性质即可求解该问题.(1)在ABC 中,∵O 为BC 中点且12AO BC =, ∴AB AC ⊥.∵平面ABC ⊥平面11ACC A 交线为AC ,∴AB ⊥平面11ACC A ,∴AB CM ⊥.∵M ,N 分别为1AA ,1BB 的中点,∴MN AB ∥.∴CM MN ⊥.在直角AMC 和直角11MA C △中,∵18AM A M ==,118AC AC ==,∴11AMC A MC ≅△△,∴1CM C M ===∴22221112812816CM C M CC +=+==,∴11,CM C M MN C M M ⊥=.∴CM ⊥平面1C MN ,1C N ⊂平面1C MN ,∴1CM C N ⊥.(2)∵1AA ⊥平面ABC ,由(1)得AB ,AC ,1AA 三线两两垂直,以A 为原点,以AB ,AC ,1AA 为x ,y ,z 轴建立空间直角坐标系如图,则()0,0,0A ,()6,0,0B ,()0,8,0C ,()10,8,16C ,()0,0,8M ,()16,0,16B ,∴()6,8,0BC =-,()10,0,16BB =.设平面11BB C C 的一个法向量为(),,n x y z =,则680160x y z -+=⎧⎨=⎩, 令4x =得3y =,()4,3,0n =,设(),,P x y z ,()101AP mAC m =≤≤,则()(),,0,8,16x y z m =,∴()0,8,16P m m ,()0,8,168MP m m =-,设直线MP 与平面11BB C C 所成的角为θ,则564s in n MPn MP θ==⋅=若0m =,sin 0θ=此时点P 与A 重合,若0m ≠,令()11t t m=≥,则35sin θ≤=.当2t =,即12m =,P 为1AC 的中点时,sin θ取得最大值35. 4.(2022·安徽·芜湖一中一模(理))如图所示,已知矩形ABCD 和矩形ADEF 所在的平面互相垂直,222AD AF AB ===,M ,N 分别是对角线BD ,AE 上异于端点的动点,且BM AN =.(1)求证:直线//MN 平面CDE ;(2)当MN 的长最小时,求二面角A MN D --的余弦值.【答案】(1)证明见解析 (2)79- 【解析】【分析】(1)利用线面平行的判定定理即可证得;(2)建立空间直角坐标系,利用两点之间距离公式求出MN 的长最小时,各点的坐标,再利用空间向量求面面角,即可得解.(1)过N 作//NN AD '与ED 交于N '点,过M 作//MM AD '与CD 交于M '点,连接M N ''. 由BM AN =,易知NN MM '='.又////NN AD MM '',则四边形MNN M ''为平行四边形,所以//MN N M ''∵MN ⊄平面CDE ,M N ''⊂平面CDE , ∴//MN 平面CDE .(2)由平面ABCD ⊥平面ADEF ,平面ABCD 平面ADEF AD =,又AF ⊂平面ADEF ,AF AD ⊥,AF ∴⊥平面ABCD .以A 为原点,分别以,,AB AD AF 为,,x y z 轴建立空间直角坐标系,过M 点作MG AD ⊥,垂足为G ,连接NG ,易知NG AD ⊥,设AG a =(02a <<)可得2,,02a M a -⎛⎫ ⎪⎝⎭,20,,a a N ⎛⎫ ⎪⎝⎭,∴MN ==, 可知当1a =时,MN此时1,1,02M ⎛⎫ ⎪⎝⎭,10,1,2N ⎛⎫ ⎪⎝⎭,又()0,0,0A ,()0,2,0D , ∴1,1,02AM ⎛⎫= ⎪⎝⎭,11,0,22MN ⎛⎫=- ⎪⎝⎭,1,1,02DM ⎛⎫=-- ⎪⎝⎭设平面AMN 的法向量为()111,,m x y z =,由00m AM m MN ⎧⋅=⎨⋅=⎩可得111110211022x y x z ⎧+=⎪⎪⎨⎪-+=⎪⎩,令12x =,可得()2,1,2m =- 设平面MND 的法向量为()222,,n x y z =,由00n DM n MN ⎧⋅=⎨⋅=⎩可得222210211022x y x z ⎧-=⎪⎪⎨⎪-+=⎪⎩,令22x =,可得()2,1,2n = ∴7cos ,9m nm n m n ⋅==⋅,易知二面角A MN D --为钝二面角,则二面角A MN D --的余弦值为79-. 5.(2022·天津·一模)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,其中AD BC ∥,3AD =,2AB BC ==,PA ⊥平面ABCD ,且3PA =,点M 在棱PD 上,点N 为BC 中点.(1)证明:若2DM MP =,直线//MN 平面PAB ;(2)求二面角C PD N --的正弦值;(3)是否存在点M ,使NM 与平面PCD 所成角的正弦值为6若存在求出PM PD 值;若不存在,说明理由.【答案】(1)证明见解析(3)存在,13PM PD =或1PM PD = 【解析】【分析】 (1)利用面面平行证明线面平行;(2)利用坐标法求二面角余弦值与正弦值;(3)设PM PD λ=,可表示点M 与MN ,再根据线面夹角求得λ的值.(1)如图所示,在线段AD 上取一点Q ,使13AQ AD =,连接MQ ,NQ ,2DM MP =,//QM AP ∴, 又3AD =,2AB BC ==,//AQ BN ∴,四边形ABNQ 为平行四边形,//NQ AB ∴,又NQ MQ Q =,AB AP A =,所以平面//MNQ 平面PAB ,MN ⊂平面MNQ ,//MN ∴平面PAB ;(2)如图所示,以点A 为坐标原点,以AB 为x 轴,AD 为y 轴,AP 为z 轴建立空间直角坐标系, 则()2,0,0B ,()2,2,0C ,()0,3,0D ,()0,0,3P ,又N 是BC 中点,则()2,1,0N ,所以()0,3,3PD =-,()2,1,0CD =-,()2,2,0DN =-,设平面PCD 的法向量()1111,,n x y z =,则11111133020PD n y z CD n x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令11x =,则()11,2,2n =, 设平面PND 的法向量()2222=,,n x y z ,则222222330220PD n y z DN n x y ⎧⋅=-=⎪⎨⋅=-=⎪⎩,令21x =,则()21,1,1n =,所以122cos ,1nn =+ 则二面角C PD N -- (3)存在,13PM PD =或1PM PD = 假设存在点M ,设PM PD λ=,即PM PD λ=,[]0,1λ∈, 由(2)得()0,3,0D ,()0,0,3P ,()2,1,0N ,且平面PCD 的法向量()11,2,2n =,则()0,3,3PD =-,()0,3,3PM λλ=-,则()0,3,33M λλ-,()2,13,33MN λλ=--,12sin cos ,1MN n θ===+ 解得13λ=或1λ=, 故存在点M ,此时13PM PD =或1PM PD =. 6.(2022·全国·高三专题练习)如图,四棱锥P —ABCD 的底面ABCD 是边长为2的正方形,P A =PB =3.(1)证明:∠P AD =∠PBC ;(2)当直线P A 与平面PCD 所成角的正弦值最大时,求此时二面角P —AB —C 的大小.【答案】(1)证明见解析 (2)4π 【解析】【分析】(1)根据直线与平面位置关系,把问题转化为全等三角形问题即可证明;(2)用等面积法建立二面角与线面角关系,当线面角满足正弦最大时,即可求二面角大小.(1)证明:分别取AB ,CD 的中点E ,F ,连接PE ,EF ,PF , 因为PA PB =,所以PE AB ⊥,又因为AB CD ,所以CD PE ⊥,又因为CD EF ⊥,PE EF E ⋂=,所以CD ⊥平面PEF ,因为PF ⊂平面PEF ,所以CD PF ⊥,在PCD 中,因为PF 垂直平分CD ,所以PC PD =,又因为PA PB =,AD BC =,所以PAD PBC ≅,从而可得PAD PBC ∠=∠;(2)解:由(1)知,PEF ∠是二面角P AB C 的平面角,设PEF α∠=,(0,)απ∈, 在PEF 中,2222cos 12PF PE EF PE EF αα=+-⋅⋅=-,过点E 作EG PF ⊥于G ,则222sin ()PE EF EG PF α⋅⋅== 因为CD ⊥平面PEF ,CD ⊂平面PCD ,所以平面PCD ⊥平面PEF ,又因为平面PCD 平面PEF PF =,EG PF ⊥,EG ⊂平面PEF ,所以EG ⊥平面PCD ,因为AB 平面PCD ,所以点A 到平面PCD 的距离等于点E 到平面PCD 的距离,即为EG ,设直线PA 与平面PCD 所成角为θ,所以1sin 3EG EG PA θ==,令3t α=-,(3t ∈-3+, 则2228(3)16()4t EG t t t--==-+, 当且仅当1t =,即4πα=时,EG 有最大值2, 此时直线PA 与平面PCD 所成角为θ的正弦值1sin 3EG EG PA θ==最大, 所以当直线PA 与平面PCD 所成角的正弦值最大时,二面角P AB C 的大小为4π. 7.(2022·贵州贵阳·高三期末(理))如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面,ABCD AF PB ⊥,F 为垂足.(1)当点E 在线段BC 上移动时,判断AEF 是否为直角三角形,并说明理由;(2)若2,PA AB EF ==∥PC ,且PB 与平面PAE 所成角为30,求二面角C PE D --的大小.【答案】(1)AEF 是直角三角形,理由见解析(2)30【解析】【分析】(1)利用线面垂直的判定定理证明AF ⊥平面PBC ,即可得结论; (2)建立空间直角坐标系,先根据PB 与平面PAE 所成角为30,可求得BC 的长,再根据空间向量的夹角公式即可求得答案.(1) AEF 是直角三角形.PA ⊥平面ABCD ,PA BC ∴⊥, 又底面ABCD 是矩形, AB BC ∴⊥,且PA AB A =, BC ∴⊥平面PAB ,又AF ⊂平面PAB , BC AF ∴⊥,又AF PB ⊥,且PB BC B ⋂=, AF ∴⊥平面PBC ,又EF ⊂平面PBC , AF EF ∴⊥,即90AFE ∠=, ∴当点E 在线段BC 上移动时,AEF 是直角三角形.(2)因为2PA AB ==,则F 为PB 的中点,因为//EF BC , 所以点E 是BC 的中点.PA ⊥平面ABCD ,且平面ABCD 是矩形,所以建立如图所示空间直角坐标系,设BE a =,则2BC a =,所以()()()()()()()0,0,0,0,2,0,0,0,2,,2,0,2,0,0,2,2,0,0,1,1A B P E a D a C a F ; 则()()()0,2,2,,2,2,0,0,2PB PE a AP =-=-=,设平面PAE 的法向量为()000,,=m x y z ,则由00m AP m PE ⎧⋅=⎨⋅=⎩,即000020220z ax y z =⎧⎨+-=⎩ , 令01x =,则00,02a y z =-=,所以1,,02a m ⎛⎫=- ⎪⎝⎭;依题意得PB 与平面PAE 所成角为30,所以1sin 302||m PB m PB ︒⋅==‖,即12=,解得2a =, 所以,()()()2,2,0,4,0,0,4,2,0E D C则()()()4,2,2,2,2,2,4,0,2PC PE PD =-=-=-, 设平面PDE 的法向量为()111,,n x y z =,由00n PD n PE ⎧⋅=⎨⋅=⎩即111114202220x z xy z -=⎧⎨+-=⎩ ,令11x =,则111,2y z ==,所以()1,1,2n =,由(1)知AF ⊥平面PCE ,即()0,1,1AF =是平面PCE 的一个法向量,则cos ,||||6n AF n AF n AF ⋅〈〉===由图可判断二面角C PE D --为锐角, 所以二面角C PE D --的大小为30.8.(2022·全国·高三专题练习)如图,四边形ABCD 中,π2ADC ∠=,24AD CD ==,AE EC =,沿对角线AC 将△ACD 翻折成△ACD ',使得BE CD '⊥.(1)证明:BD BC '=;(2)若ABD '△为等边三角形,求二面角D AB C '--的余弦值. 【答案】(1)证明过程见解析;【解析】 【分析】(1)作出辅助线,证明线面垂直,进而证明出CD BF '⊥,由三线合一得出结论;(2)作辅助线,找到D HG '∠为二面角D AB C '--的平面角,再使用勾股定理及余弦定理求出边长,最终用余弦定理求出二面角的余弦值. (1)取CD '中点F ,连接EF ,BF ,因为AE EC =,所以EF 是ACD '△的中位线,故EF ∥AD ', 因为π2ADC ∠=,所以EF CD '⊥, 又因为BE CD '⊥,BE EF E =,所以CD '⊥平面BEF ,因为BF ⊂平面BEF ,所以CD BF '⊥,由三线合一得:BD BC '=(2)因为ABD '△为等边三角性,所以4AB BD AD ''===,由第一问可知:4BD BC '==,从而4AB BC ==,由三线合一得:BE AC ⊥,取AB 的中点H ,过点H 作HG ⊥AB 交AC 于点G ,连接,D H D G '',从而D H AB '⊥,故D HG '∠为二面角D AB C '--的平面角,由勾股定理得:AC =,从而12AE AC ==cos AE EAB AB ∠==,由2AH =可得:cos AH AG EAB ==∠,由勾股定理得:HG ==因为cos AD D AC AC ''∠==AGD '中,由余弦定理得:22264162cos 162455D G D A AG D A AG D AC ''''=+-⋅⋅∠=+-⨯=,故D G '=又D H '==D HG '中,由余弦定理得:(222222cos 2D H HG D G D HG D H HG +-''+-'=='⋅ 故二面角D AB C '--9.(2022·江苏泰州·高三期末)如图,在三棱锥P ABC -中,2,4,AB PB BC PA PC AC ======(1)平面PAC ⊥平面ABC ;(2)点D 是棱BC 上一点,BD BC λ=,且二面角B PA D --与二面角C PA D --的大小相等,求实数λ的值. 【答案】(1)证明见解析 (2)25【解析】 【分析】(1)作辅助线PO AC ⊥ ,垂足为O ,接着证明PO BO ⊥,根据面面垂直的判定定理可证明结论;(2)建立空间直角坐标系,求出相关点的坐标,进而求得相关向量的坐标,分别求出平面ABP , APD 的法向量,根据题意,利用向量的夹角公式列出相应的等式,解得答案. (1)证明:如图,作PO AC ⊥ ,垂足为O ,因为PA PC AC ===O 是AC 的中点,且3PO =,由22222216AB AC BC +=+==,可知AB AC ⊥ ,所以BO ==, 则2227916BO PO PB +=+== ,故PO BO ⊥, 又0BOAC =,且,BO AC ⊂平面ABC ,故PO ⊥平面ABC ,而PO ⊂平面P AC , 所以平面PAC ⊥平面ABC . (2)如图,以O 为坐标原点,过点O 作和AB 平行的直线作为x 轴,以OC,OP 分别为y ,z 轴建立空间直角坐标系,则(0,(2,(0,0,3)A B C P ,由BD BC λ=得(2,BD λ=-,且01λ<< ,故(22,D λ-,所以(2,0,0),(0,3,3),(22,,0)AB AP AD λ===-, 设平面ABP 的法向量为(,,)m x y z = ,则20330m AB x m AP y z ⎧⋅==⎪⎨⋅=+=⎪⎩,令y =,则可取(0,3,1)m =- , 设平面APD 的法向量为(,,)n a b c =,则(22)0330n AD a b n AP b c λ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令y =6(1)22n λλ-=--, 平面CP A 的法向量可取为(1,0,0)k = ,由二面角B PA D --与二面角C PA D --的大小相等可得:6||λλ-=,解得25λ=,符合题意,故实数λ的值为25.10.(2022·江苏扬州·高三期末)如图,在三棱台ABC-A1B1C1中,底面△ABC是等腰三角形,且BC=8,AB=AC=5,O为BC的中点.侧面BCC1B1为等腰梯形,且B1C1=CC1=4,M为B1C1中点.(1)证明:平面ABC⊥平面AOM;(2)记二面角A-BC-B1的大小为θ,当θ∈[6π,2π]时,求直线BB1平面AA1C1C所成角的正弦的最大值.【答案】(1)证明见解析;(2)35.【解析】【分析】(1)利用线面垂直的判定定理及面面垂直的判定定理即证;(2)设直线BB1与平面AA1C1C所成的角为α,利用坐标法可求sinα=,然后利用导函数求最值即得.(1)∵△ABC是等腰三角形,O为BC的中点,∴BC⊥AO,∵侧面BCC1B1为等腰梯形,M为11B C的中点,∴BC ⊥MO .∵MO ∩AO =O ,MO ,AO ⊂平面AOM , ∴BC ⊥平面AOM , ∵BC ⊂平面ABC , ∴平面ABC ⊥平面AOM . (2)在平面AOM 内,作ON ⊥OA ,∵平面ABC ⊥平面AOM ,平面ABC ∩平面AOM =OA ,ON ⊂平面AOM , ∴ON ⊥平面ABC ,以OB ,OA ,ON 分别为x 轴、y 轴,z 轴,建立如图所示的空间直角坐标系. ∵MO ⊥BC ,AO ⊥BC ,∴∠AOM 为二面角1A BC B --的平面角,即∠AOM =θ,∴A (0,3,0),B (4,0,0),C (-4,0,0),M (0,θ,θ),C 1(-2,θ,θ),B 1(2,θ,θ),∴1BB =(-2,θ,θ),设平面AA 1C 1C 的法向量为n =(x ,y ,z ),其中CA =(4,3,0),1CC =(2,θ,θ), 所以100CA n CC n ⎧⋅=⎨⋅=⎩,即43020x y x y z θθ+=⎧⎪⎨+⋅+⋅=⎪⎩,则可取3,n ⎛=- ⎝, 设直线BB 1与平面AA 1C 1C 所成的角为α,则sin α=|cos <1BB ,n >|设f (θ)θ∈[6π,2π],则()0f θ'=>, ∴f (θ)在[6π,2π]上单调递增,∴f (θ)∈[-⎡-⎣∴[]20,12∈⎝⎭, ∴()max 3sin 5α=. ∴直线BB 1平面AA 1C 1C 所成角的正弦的最大值为35.11.(2022·辽宁营口·高三期末)在三棱柱111ABC A B C -中,侧面11AAC C 和侧面11AA B B 是都是边长为2的菱形,D 是1AA 中点,BC =1160CAA BAA ∠=∠=︒(1)求证:1AA ⊥平面BCD ; (2)求二面角1B AC A --的余弦值. 【答案】(1)证明见解析【解析】 【分析】(1)根据线面垂直的判定定理证明即可;(2)建立空间直角坐标系,确定相关点的坐标,再求相关向量的坐标,求出平面1AA C 和平面ABC 法向量,利用向量的夹角公式即可求解. (1)证明:因为侧面11AAC C 为菱形,且160CAA ∠=︒所以1AA C ∆为等边三角形,又因为D 是1AA 的中点,所以1CD AA ⊥同理可证:1BD AA ⊥又因为BD CD D ⋂=,,BD CD ⊂平面BCD, 所以1AA ⊥平面BCD . (2)过C 作CH BD ⊥交BD 于H ,在直角ACD ∆中,2AC =,1AD =,所以CD =BD =,又因为BC =BCD ∆为等边三角形,所以H 为BD 中点,32CH =, 由(1)可知,1AA ⊥平面OBC ,1AA ⊂平面11AA B B 所以平面11AA B B ⊥平面BCD 又因为平面11AA B B 平面BCD BD =所以CH ⊥平面11AA B B ,即 HC ,1DA ,DB 两两垂直以D 为原点,1DA ,DB ,HC 的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系D xyz -()11,0,0A ,()1,0,0A -,()B,32C ⎛⎫⎪ ⎪⎝⎭()12,0,0AA =,31,2AC ⎛⎫= ⎪ ⎪⎝⎭,()1,AB = 设()111,,m x y z =是平面1AA C 的法向量 100m AA m AC ⎧⋅=⎨⋅=⎩,即111120302x x y z =⎧⎪⎨+=⎪⎩令1y 10x =,11z =-,所以()0,3,1m =- 设()222,,n x y z =是平面ABC 的法向量00n AB n AC ⎧⋅=⎨⋅=⎩,即222220302x x y z ⎧+=⎪⎨++=⎪⎩令2y =23x =-,21z =,所以()3,3,1n =-3cos ,2m n m n m n⋅⨯<>==⨯所以二面角1B AC A --12.(2022·全国·高三专题练习(理))如图,四棱锥S ABCD -的底面是正方形,每条侧棱的P 为侧棱SD 上的点.(1)求证:AC SD ⊥;(2)若SD ⊥平面PAC ,求二面角P AC S --的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得//BE 平面PAC ?若存在,求:SC SE 的值;若不存在,试说明理由. 【答案】(1)证明见解析 (2)3π(3)当:3:2SC SE =时,//BE 平面PAC 【解析】 【分析】(1)线面垂直的判定定理及性质定理即可得证;(2)以O 为坐标原点,建立空间直角坐标系,由二面角的向量公式即得解;(3)由,[0,1]CE tCS t =∈,可得(1BE t ⎛⎫=-- ⎪ ⎪⎝⎭,再利用0BE DS ⋅=即得解 (1)连接AC ,BD 交于O ,连接SO ,由题意知SO AC ⊥,在正方形中,BD AC ⊥,又BD SO O ⋂=,,BD SO ⊆平面SBD ,AC ∴⊥平面SBD 又SD ⊆平面SBD ,所以AC SD ⊥ (2)由题知SO ⊥平面ABCD ,以O 为坐标原点,,,OB OC OS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系O xyz -, 设底面边长为a,则高SO =,则S ⎛⎫ ⎪ ⎪⎝⎭,,0,02D a ⎛⎫- ⎪ ⎪⎝⎭,,02C ⎛⎫ ⎪ ⎪⎝⎭, 又SD ⊥平面PAC ,则平面PAC的一个法向量为22DS ⎛⎫=⎪ ⎪⎝⎭, 平面SAC 的一个法向量为,0,0OD ⎛⎫=- ⎪ ⎪⎝⎭, 则21cos ,22a DS OD DS OD DS OD⋅===⋅, 又二面角P AC S --为锐角,则二面角P AC S --的大小为3π. (3)在棱SC 上存在一点E,使得//BE 平面PAC ,由(2)知平面PAC 的一个法向量22DS ⎛⎫= ⎪ ⎪⎝⎭, 又0,CS⎛⎫= ⎪ ⎪⎝⎭,,022BC a ⎛⎫=- ⎪ ⎪⎝⎭设,[0,1]CE tCS t =∈,则,(1222⎛⎫=+=+=- ⎪ ⎪⎝⎭BE BC CE BC tCS t 因为//BE 平面PAC ,所以0BE DS ⋅=,所以2213022a a t -+=,解得13t =.故当:3:2SC SE =时,//BE 平面PAC13.(2022·浙江·高三专题练习)如图,AE ⊥平面,//,//ABCD CF AE AD BC ,,1,2AD AB AB AD AE BC ⊥====.(1)求证://DE 平面BCF ;(2)若二面角E BD F --的余弦值为13,求直线FB 与平面ABCD 所成角的正切值.【答案】(1)证明见解析; (2)47. 【解析】 【分析】(1)两种方法,一是通过题意,得到平面BCF 的法向量AB ,然后结合DE ,通过计算 可得0DE AB ⋅=,从而得到//DE 平面BCF ;二是通过证明//CF AE 、//BC AD ,得到平面BCF //平面ADE ,进而推出//DE 平面BCF ;(2)通过建立空间直角坐标系,设出平面EBD 和平面BDF 的法向量,并结合题意条件,求解出CF 的长,然后根据CF ⊥平面ABCD ,求解出tan FBC ∠,即可. (1)依题意,可以建立以A 为原点,分别以AB AD AE ,,的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设()0CF h h =>,则()1,2,F h . (1)法一:证明:依题意,AE平面ABCD , //CF AE ,CF ∴⊥平面ABCD ,CF AB ∴⊥,又AB BC ∴⊥,BCCF C =,AB ∴⊥平面BCF ,(1,0,0)AB ∴=是平面BCF 的法向量,又(0,1,2)DE =-,可得0DE AB ⋅=,又因为直线DE ⊄平面BCF , 所以//DE 平面BCF . 法二://CF AE ,CF ⊄平面ADE ,AE ⊂平面ADE ,//CF ∴平面ADE .同理//BC 平面ADE ,CF BC C =,∴平面BCF //平面ADE ,又DE ⊂平面ADE , 所以//DE 平面BCF .(2)设(),,m x y z =为平面BDF 的法向量,则00BD m BF m ⎧⋅=⎨⋅=⎩即0,20,x y y hz -+=⎧⎨+=⎩ 不妨令1y =,可得21,1,m h ⎛⎫=- ⎪⎝⎭.同理可得平面BDE 的一个法向量为(2,2,1)n =由题意,有4||1cos ,3||||32m n m n m n -⋅〈〉===, 解得87h =. 87CF ∴=. CF ⊥平面ABCD ,FBC ∴∠为直线FB与平面ABCD 所成角,4tan 7CF FBC BC ∴∠==. 14.(2022·全国·高三专题练习(理))如图,在正四棱锥P ABCD -中,PA AB ==E F 、分别为PB PD 、的中点,平面AEF 与棱PC 的交点为G .(1)求异面直线AE 与PF 所成角的大小;(2)求平面AEGF 与平面ABCD 所成锐二面角的大小; (3)求点G 的位置.【答案】(1)(2)1arctan 2(3)点G 的位置为线段PC 靠近P 的三等分点. 【解析】 【分析】(1)作出辅助线,找到异面直线AE 与PF 所成的角是∠OEA (或补角),利用余弦定理求出OEA ∠= (2)作出辅助线,找到平面AEGF 与平面ABCD 所成锐二面角为OAQ ∠,经过计算得到1arctan 2OAQ ∠=;(3)证明出A 、Q 、G 三点共线,利用第二问的求出的1tan 2OAQ ∠=,和题干中的条件确定点G 的位置. (1)连接AC ,BD ,相交于点O ,因为四边形ABCD 是正方形,所以O 是正方形的中心,连接PO ,因为四棱锥P ABCD -是正四棱锥,则PO ⊥底面ABCD ,连接OE , 因为E 为PB 的中点,所以EO 是△PBD 的中位线,所以EO ∥PD , ∠OEA (或补角)即为异面直线AE 与PF 所成角的大小,因为正四棱锥P ABCD -中,PA AB ==P AB 是等边三角形,所以πsin3AE AB =⋅=4AC ,所以2AO =,因为PO BD ⊥,E 为PB 的中点,所以12OE PB ==在△AOE 中,由余弦定理得:222cos2OE AE AO OEA OE AE +-∠==⋅所以异面直线AE 与PF 所成角的大小为(2)连接EF ,与OP 相交于点Q ,则Q 为OP ,EF 的中点,因为E F 、分别为PB PD 、的中点,所以EF 是三角形PBD 的中位线,所以EF ∥BD , 因为BD ⊂平面ABCD ,EF ⊄平面ABCD ,所以EF ∥平面ABCD , 设平面AEGF 与平面ABCD 相交于直线l ,故EF ∥l ∥DB ,连接QA , 则因为AE =AF ,所以AQ ⊥EF ,又因为OA ⊥BD ,故∠QAO 即为平面AEGF 与平面ABCD 所成锐二面角,其中112OQ OP ==,2AO =,所以1tan 2OQ OAQ AO ∠==,故1arctan 2OAQ ∠=, 即平面AEGF 与平面ABCD 所成锐二面角的大小为1arctan 2(3)延长AQ ,则由两平面相交的性质可得AQ 一定过点G ,过点G 作GM ∥PO 交AC 于点M ,因为PO ⊥底面ABCD ,所以GM ⊥底面ABCD , 设GM =CM =x ,则AM =4-x ,由第二问知:1tan 2OAQ ∠=, 所以12GM AM =,即142x x =-,解得:43x =, 故42323CG GM PC OP ===,所以点G 的位置为线段PC 靠近P 的三等分点.15.(2022·山西运城·高三期末(理))在①2AE =,②AC BD ⊥,③EAB EBA ∠=∠,这三个条件中选择一个,补充在下面问题中,并给出解答如图,在五面体ABCDE 中,已知___________,AC BC ⊥,//ED AC ,且22AC BC ED ===,DC DB ==(1)求证:平面ABE ⊥与平面ABC ;(2)线段BC 上是否存在一点F ,使得平面AEF 与平面ABE ,若存在,求BFBC的值;若不存在,说明理由. 【答案】(1)证明见解析; (2)存在;34BF BC =. 【解析】 【分析】(1)若选①,取AC 中点G ,BC 中点O ,AB 中点H ,可证得四边形EDCG 为平行四边形,从而利用勾股定理和平行关系证得AC CD ⊥,由线面垂直和面面垂直判定得到平面ABC ⊥平面BCD ,利用面面垂直性质可证得DO ⊥平面ABC ;若选②,取BC 中点O ,AB 中点H ,由线面垂直和面面垂直的判定可证得平面ABC ⊥平面BCD ,利用面面垂直性质可证得DO ⊥平面ABC ;若选③,取BC 中点O ,AB 中点H ,根据长度和平行关系可证得四边形DEHO 为平行四边形,由此确定12EH AB =,得到AE BE ⊥,结合AE BE =可得2BE =,从而利用勾股定理和平行关系证得AC BD ⊥,由线面垂直和面面垂直判定得到平面ABC ⊥平面BCD ,利用面面垂直性质可证得DO ⊥平面ABC ;三个条件均可说明,,DO OH BC 两两互相垂直,则以O 为坐标原点可建立空间直角坐标系,利用面面垂直的向量证明方法可证得结论;(2)假设存在满足题意的点()()0,,011F t t -≤≤,利用二面角的向量求法可构造方程求得12t =-,由此可确定F 点位置,得到BF BC 的值.(1)若选①,取AC 中点G ,BC 中点O ,AB 中点H ,连接,,EG DO OH ,//ED AC ,12CG AC ED ==,∴四边形EDCG 为平行四边形,//EG CD ∴,EG ∴=112AG AC ==,2AE =,222AG EG AE ∴+=,AG EG ∴⊥, 又//CD EG ,AC CD ∴⊥,又AC BC ⊥,BC CD C ⋂=,,BC CD ⊂平面BCD , AC ∴⊥平面BCD ,AC ⊂平面ABC ,∴平面ABC ⊥平面BCD ,BD CD =,DO BC ∴⊥,又DO ⊂平面BCD ,平面BCD 平面ABC BC =, DO ∴⊥平面ABC ,又//OH AC ,AC BC ⊥,OH BC ∴⊥;若选②,ACBD ,AC BC ⊥,BCBD B =,,BC BD ⊂平面BCD ,AC ∴⊥平面BCD ,AC ⊂平面ABC ,∴平面ABC ⊥平面BCD ,取BC 中点O ,AB 中点H ,连接,DO OH ,BD CD =,DO BC ∴⊥,又DO ⊂平面BCD ,平面BCD 平面ABC BC =, DO ∴⊥平面ABC ,又//OH AC ,AC BC ⊥,OH BC ∴⊥;若选③,取BC 中点O ,AB 中点H ,连接,,OD OH EH ,DC BD ==DO BC ∴⊥,又2BC =,DO ∴,O H 分别为,BC AB 中点,1//2OH AC ∴,又1//2ED AC ,//OH ED ∴,∴四边形DEHO为平行四边形,EH DO ∴=AC BC ⊥,2AC BC ==,AB ∴=12EH AB ∴=,AE BE ∴⊥, EAB EBA ∠=∠,2∴==BE AE ,222BD DE BE ∴+=,BD DE ∴⊥,又//DE AC ,AC BD ∴⊥,又AC BC ⊥,BCBD B =,,BC BD ⊂平面BCD ,AC ∴⊥平面BCD ,AC ⊂平面ABC ,∴平面ABC ⊥平面BCD ,又DO BC ⊥,DO ⊂平面BCD ,平面BCD 平面ABC BC =,DO ∴⊥平面ABC ,又//OH AC ,AC BC ⊥,OH BC ∴⊥;综上所述:,,DO OH BC 两两互相垂直,则以O 为坐标原点,,,OD OH OB 为,,x y z 轴,可建立如图所示空间直角坐标系,则()2,1,0A -,()0,1,0B,(E ,()2,2,0AB ∴=-,(1,BE =-, DO ⊥平面ABC ,∴平面ABC 的一个法向量()0,0,1m =;设平面ABE 的法向量()1111,,x n y z =,则11111112200AB n x y BE n x y ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,令11x =,解得:11y =,10z =,()11,1,0n ∴, 10m n ∴⋅=,即1m n ⊥,∴平面ABE ⊥与平面ABC . (2)设在线段BC 上存在点()()0,,011F t t -≤≤,使得平面AEF 与平面ABE夹角的余弦值等于 由(1)得:(1,,EF t =-,(AE =-, 设平面AEF 的法向量()2222,,n x y z =,则2222222200AE n x y EF n x ty ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,令21y =,则212t x +=,)214t z -=,)211,1,24t t n ⎛⎫-+∴= ⎪ ⎪⎝⎭;()11,1,0n ∴121212cos ,n n n n n n ⋅∴<>===⋅,化简可得:221370t t --=,解得:12t =-或7t=(舍),10,,02F ⎛⎫∴- ⎪⎝⎭,32BF ∴=,34BF BC ∴=;综上所述:在线段BC 上存在点F ,满足34BF BC =,使得平面AEF 与平面ABE 夹角的余弦值. 16.(2022·全国·高三专题练习)如图,四棱锥P ABCD -中,PAB △是等边三角形,底面ABCD 是直角梯形,AB ∥CD,,AB AD ⊥2,AB BC ==3ABC π∠=,F ,G 分别是,PC AD 的中点.(1)求证:FG ∥平面PAB ;(2)若3PC =,求直线FG 与平面PBC 所成角的正弦值. 【答案】(1)证明见解析 【解析】 【分析】(1)作出辅助线,通过证明面面平行得到线面平行;(2)先用余弦定理求出FG 的长,用等体积法求出G 到平面PBC 的距离,从而求出直线FG 与平面PBC 所成角的正弦值. (1)证明:取BC 的中点I ,连接GI ,FI ,因为底面ABCD 是直角梯形,AB ∥CD ,G 是AD 的中点,所以//GI AB ,因为AB 平面P AB ,GI ⊄平面P AB ,所以//GI 平面P AB ,又因为F 是PC 的中点,所以FI 是△PBC 的中位线,所以//FI PB ,因为PB ⊂平面P AB ,FI ⊄平面P AB ,所以//FI 平面P AB , 因为GI FI I =,所以平面GFI //平面PAB ,而FG ⊂平面GFI ,所以//FG 平面PAB ;(2)取AB 中点O ,连接PO ,CO ,AC ,因为PAB △是等边三角形,所以2PB AB PA ===,∠PBA =60°,又因为底面ABCD 是直角梯形,AB ∥CD ,,AB AD ⊥2,AB BC ==3ABC π∠=,所以△ABC 是等边三角形,CO ⊥AB ,故四边形AOCD 是矩形,所以1CD AO ==, 由第一问可知,112FI PB ==,()3221IG CD AB =+=,60FIG PBA ∠∠==,由余弦定理得,7cos602FG ==3,PO OC PC ===∴由余弦定理得:2221cos 22PO OC PC POC PO OC +-∠==-⋅,120POC ∠∴=又,,PO AB OC AB ⊥⊥PO OC O =,∴AB ⊥平面,POC ∵AB平面ABC ,∴平面POC ⊥平面ABC ,过点P 作PH ⊥OH ,交CO 的延长线于点H ,则PH ⊥平面,ABC 3sin 602PH PO =⋅︒=,2,3,PB BC PC ===∴2221cos 28PB BC PC PBC PB BC +-∠==-⋅,故sin PBC ∠1sin 2PBCS PB BC PBC ∴=⋅⋅∠=GB ,GC ,其中()111222GBCSCD AB AD AB AG CD GD =+⋅-⋅-⋅=设G 到平面PBC 的距离设为h ,则113332h ⨯=⨯h ∴=∴直线FG 与平面PBC 所成角的正弦值为h FG =. 17.(2022·全国·高三专题练习)如图,P 为圆锥的顶点,O 是圆锥底面的圆心,AC 为底面直径,ABD △为底面圆O E 在母线PC 上,且1,AE CE EC BD ==⊥.(1)求证:平面BED ⊥平面ABD ;(2)设线段PO 上动点为M ,求直线DM 与平面ABE 所成角的正弦值的最大值. 【答案】(1)证明见解析 (2)1 【解析】 【分析】(1)设AC 交BD 于点,F 连接EF ,由PO BD ⊥,并结合EC BD ⊥可证得BD ⊥平面,AEC 由此证得EF BD ⊥,再利用三角形相似证得,EF AC ⊥从而证得EF ⊥平面,ABD 进而证得平面BED ⊥平面ABD ; (2)建立空间直角坐标系,设1)0(OM OP λλ=≤≤,。
专题五立体几何第1讲空间几何体1.圆2++12=3绕直线--1=0旋转一周所得的几何体的体积为A.36πB.12πC.4错误!π D.4π2.若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于B.2C.2错误! D.63.2022年唐山一中质检已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是A.16π B.20πC.24π D.32π4.一个平面四边形的斜二测画法的直观图是一个边长为a的正方形,则原平面四边形的面积等于a2 B.2错误!a2a2a25.已知一个圆锥的底面半径为R,高为H,在圆锥内有一个内接圆柱,当圆柱的侧面积为错误!πRH时,圆柱的母线长为6.2022年河南开封调研四面体的六条棱中,有五条棱长都等于a,则该四面体的体积的最大值为a3a3a3a37.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.其中真命题的编号是______写出所有真命题的编号.8.如图所示两组立体图形都是由相同的小正方体拼成的.1图1的正主视图与图2的________相同.2图3的________图与图4的________图不同.9.2022年高考天津卷一个几何体的三视图如图所示,则这个几何体的体积为____________.10.如图,一个倒圆锥形容器,它的轴截面是正三角形,在容器内放一个半径为r的铁球,并向容器内注水,使水面恰与铁球相切,将球取出后,容器内的水深是多少11.2022年高考陕西卷如图,在四棱锥∥α,m∥β,则下列四种位置关系中,不.一定成立的是A.AB∥m B.AC⊥mC.AB∥β D.AC⊥β3.设α、β是两个不同的平面,a、b是两条不同的直线,给出下列四个命题,其中正确的是A.若a∥α,b∥α,则a∥bB.若a∥α,b∥β,a∥b,则α∥βC.若a⊥α,b⊥β,a⊥b,则α⊥βD.若a、b在平面α内的射影互相垂直,则a⊥b4.2022年包头市质检设A,B,C,D是空间四个不同的点,在下列命题中,不.正确的是A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD⊥BCD.若AB=AC,DB=DC,则AD=BC5.如图,平面α⊥平面β,α∩β=,A,C是α内不同的两点,B,D是β内不同的两点,且A,B,C,D∉直线,M,N分别是线段AB,CD的中点.下列判断正确的是A.当|CD|=2|AB|时,M,N两点不可能重合B.M,N两点可能重合,但此时直线AC与不可能相交C .当AB 与CD 相交,直线AC 平行于时,直线BD 可以与相交D .当AB ,CD 是异面直线时,直线MN 可能与平行6.在正四面体a =错误!·错误!a 2·错误!a =错误!7.【解析】①错,必须是两个相邻的侧面.②正确.③错,反例,可以是一个斜四棱锥.④正确,对角钱两两相等,则此两条对角线组成的平行四边形为矩形,故正确答案为②④【答案】②④8.【解析】对于第一组的两个立体图形,图1的正主视图与图2的俯视图相同.对于第二组的两个立体图形,图3的正主视图与图4的正主视图不同,而侧左视图和俯视图都是相同的.【答案】1俯视图 2正视 正视9.【解析】该几何体是上面是底面边长为2的正四棱锥,下面是底面边长为1、高为2的正四棱柱的组合体,其体积为V =1×1×2+错误!×22×1=错误!【答案】错误!10.【解】 如图,由题意知,轴截面N为平面β平面AOB为平面α,此时AC与平面β不垂直.3.【解析】选选项中,平行于同一个平面的两条直线的位置关系可以是异面、平行和相交,故A错误;B选项中,平面α与β还可以相交,故B错误;经判断可知,选项D错误;选项C中,由面面垂直的判定定理可知正确.4.【解析】选D注意审题是选不正确的选项,分别判断易知D选项中当四点构成空间四面体时,只能推出AD⊥BC,二者不一定相等,如图易证得直线BC⊥平面ADE,从而AD⊥BC 5.【解析】,N重合时,四边形ACBD为平行四边形,故AC∥BD∥,此时直线AC与不可能相交,B正确,易知A,C,D均不正确.6.【解析】选C∵D、F分别为AB、CA的中点,∴DF∥BC,∴BC∥平面N⊥BC,∴MN∥BB1,而BB1⊂平面AB1,∴MN∥平面AB1【答案】MN∥平面AB18.【解析】取AC中点M,连结,AC⊥BM,所以AC⊥平面PMB,从而有AC⊥PB,①正确;AC∥DE,所以AC∥平面PDE,②正确;因为AB与DE不垂直,所以AB与平面PDE也不垂直,③不正确.【答案】①②9.【解析】命题①是两个平面平行的判定定理,正确;命题②是直线与平面平行的判定定理,正确;命题③中在α内可以作无数条直线与垂直,但α与β只是相交关系,不一定垂直,错误;命题④中直线与α垂直可推出与α内两条直线垂直,但与α内的两条直线垂直推不出直线与α垂直,所以直线与α垂直的必要不充分条件是与α内的两条直线垂直.【答案】①②10【证明】1设AC∩BD=H,连结EH在△ADC中,因为AD=CD,且DB平分∠ADC,所以H 为AC的中点.又由题设E为PC的中点,故EH∥⊂平面BDE且PA⊄平面BDE,所以PA∥平面BDE2因为PD⊥平面ABCD,AC⊂平面ABCD,所以PD⊥AC结合1易知DB⊥AC又PD∩DB=D,故AC⊥平面PBD11.【解】1因为CD∥平面PBO,CD⊂平面ABCD,且平面ABCD∩平面PBO=BO,所以BO ∥CD,又BC∥AD,所以四边形BCDO为平行四边形,则BC=DO,而AD=3BC,故点O的位置满足错误!=错误!,即在AD的错误!处且离D点比较近.2证明:因为侧面PAD⊥底面ABCD,AB⊂底面ABCD,且AB⊥交线AD,所以AB⊥平面PAD,则AB⊥PD又PA⊥PD,且PA⊂平面PAB,AB⊂平面PAB,AB∩PA=A,所以PD⊥平面PAB而PD⊂平面PCD,所以平面PAB⊥平面PCD12.【解】1如图,将侧面BB1C1C绕棱CC1旋转120°使其与侧面AA1C1C在同一平面上,点B运动到点B2的位置,连结A1B2,则A1B2就是由点B沿棱柱侧面经过棱CC1到点A1的最短路线.设棱柱的棱长为a,则B2C=AC=AA1=a∵CD∥AA1,∴D为CC1的中点.在Rt△A1AB2中,由勾股定理得A1A2+AB错误!=A1B错误!,即a2+4a2=2错误!2,解得a=2,∴S△ABC=错误!×22=错误!∴VABC-A1B1C1=S△ABC·AA1=2错误!2设A1B与AB1的交点为O,连结BB2、OD,则OD∥BB2∵BB2⊂平面ABC,OD⊄平面ABC,∴OD∥平面ABC,即在平面A1BD内存在过点D的直线与平面ABC平行.3证明:连结AD、B1D,∵Rt△A1C1D≌Rt△BCD≌Rt△ACD,∴A1D=BD=B1D=AD∴OD⊥A1B,OD⊥AB1∵A1B∩AB1=O,∴OD⊥平面A1ABB1又∵OD⊂平面A1BD,∴平面A1BD⊥平面A1ABB1。
2021年高考数学二轮复习专题五立体几何专题能力训练13空间几何体理1.下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π2.(xx浙江,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1B.+3C.+1D.+33.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π4.已知平面α截球O的球面得圆M,过圆心Μ的平面β与α的夹角为,且平面β截球O的球面得圆N.已知球Ο的半径为5,圆M的面积为9π,则圆N的半径为()A.3B.C.4D.5.在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,).若S1,S2,S3分别是三棱锥D-ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则() A.S1=S2=S3B.S2=S1,且S2≠S3C.S3=S1,且S3≠S2D.S3=S2,且S3≠S16.(xx北京,理7)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.3B.2C.2D.27.在四面体ABCD中,AB=CD=6,AC=BD=4,AD=BC=5,则四面体ABCD的外接球的表面积为.8.(xx山东,理13)由一个长方体和两个圆柱构成的几何体的三视图如图,则该几何体的体积为.9.如图,已知多面体ABCDEFG中,AB,AC,AD两两互相垂直,平面ABC∥平面DEFG,平面BEF∥平面ADGC,AB=AD=DG=2,AC=EF=1,则该多面体的体积为.10.下列三个图中,左面是一个正方体截去一个角后所得多面体的直观图.右面两个是其正视图和侧视图.(1)请按照画三视图的要求画出该多面体的俯视图(不要求叙述作图过程);(2)求该多面体的体积(尺寸如图).11.如图,在长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.思维提升训练12.(xx中原名校质检)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.9(+1)π+8B.9(+2)π+4-8C.9(+2)π+4D.9(+1)π+8-813.(xx江苏,6)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.14.(xx全国Ⅰ,理16)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O 上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形,沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D,E,F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.15.若三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=2,AB=1,AC=2,∠BAC=60°,则球O的表面积为.16.如图①,在矩形ABCD中,AB=4,BC=3,沿对角线AC把矩形折成二面角D-AC-B(如图②),并且点D在平面ABC内的射影落在AB上.(1)证明:AD⊥平面DBC;(2)若在四面体D-ABC内有一球,问:当球的体积最大时,球的半径是多少?参考答案专题能力训练13空间几何体能力突破训练1.C解析由题意可知,该几何体由同底面的一个圆柱和一个圆锥构成,圆柱的侧面积为S1=2π×2×4=16π,圆锥的侧面积为S2=2π×2=8π,圆柱的底面面积为S3=π×22=4π,故该几何体的表面积为S=S1+S2+S3=28π,故选C.2.A解析V=3+1,故选A.3.A解析由三视图可知该几何体是球截去后所得几何体,则R3=,解得R=2,所以它的表面积为4πR2+πR2=14π+3π=17π.4.B解析如图,∵OA=5,AM=3,∴OM=4.∵∠NMO=,∴ON=OM·sin=2又∵OB=5,∴NB=,故选B.5.D解析三棱锥的各顶点在xOy坐标平面上的正投影分别为A1(2,0,0),B1(2,2,0),C1(0,2,0),D1(1,1,0).显然D1点为A1C1的中点,如图(1),正投影为Rt△A1B1C1,其面积S1=2×2=2.三棱锥的各顶点在yOz坐标平面上的正投影分别为A2(0,0,0),B2(0,2,0),C2(0,2,0),D2(0,1,).显然B2,C2重合,如图(2),正投影为△A2B2D2,其面积S2=2三棱锥的各顶点在zOx坐标平面上的正投影分别为A3(2,0,0),B3(2,0,0),C3(0,0,0),D3(1,0,),由图(3)可知,正投影为△A3D3C3,其面积S3=2 综上,S2=S3,S3≠S1.故选D.图(1)图(2)图(3)6.B解析由题意可知,直观图为四棱锥A-BCDE(如图所示),最长的棱为正方体的体对角线AE==2故选B.7解析构造一个长方体,使得它的三条面对角线长分别为4,5,6,设长方体的三条边长分别为x,y,z,则x2+y2+z2=,而长方体的外接球就是四面体的外接球,所以S=4πR2=8.2+ 解析由三视图还原几何体如图所示,故该几何体的体积V=2×1×1+212×1=2+9.4解析(方法一:分割法)几何体有两对相对面互相平行,如图,过点C作CH⊥DG于H,连接EH,即把多面体分割成一个直三棱柱DEH-ABC和一个斜三棱柱BEF-CHG.由题意,知V三棱柱DEH-ABC=S△DEH×AD=2=2,V三棱柱BEF-CHG=S△BEF×DE=2=2.故所求几何体的体积为V多面体ABCDEFG=2+2=4.(方法二:补形法)因为几何体有两对相对面互相平行,如图,将多面体补成棱长为2的正方体,显然所求多面体的体积即该正方体体积的一半.又正方体的体积V正方体ABHI-DEKG=23=8,故所求几何体的体积为V多面体ABCDEFG=8=4.10.解(1)作出俯视图如图所示.(2)依题意,该多面体是由一个正方体(ABCD-A1B1C1D1)截去一个三棱锥(E-A1B1D1)得到的,所以截去的三棱锥体积A1E=1=,正方体体积=23=8,故所求多面体的体积V=8-11.解(1)交线围成的正方形EHGF如图所示.(2)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为思维提升训练12.D解析由三视图可知,该几何体是由一个四棱锥和一个圆锥拼接而成,故S=(2π×3)×3+π×32-(2)2+4=9(+1)π+8-8.故选D.13解析设球O的半径为r,则圆柱O1O2的高为2r,故,答案为14.4解析如图所示,连接OD,交BC于点G.由题意知OD⊥BC,OG=BC.设OG=x,则BC=2x,DG=5-x,三棱锥的高h=因为S△ABC=2x×3x=3x2,所以三棱锥的体积V=S△ABC·h=x2令f(x)=25x4-10x5,x,则f'(x)=100x3-50x4.令f'(x)=0,可得x=2,则f(x)在(0,2)单调递增,在单调递减,所以f(x)max=f(2)=80.所以V=4,所以三棱锥体积的最大值为415.64π解析如图,三棱锥S-ABC的所有顶点都在球O的球面上,因为AB=1,AC=2,∠BAC=60°,所以BC=,所以∠ABC=90°.所以△ABC截球O所得的圆O'的半径r=1.设OO'=x,球O的半径为R,则R2=x2+12,R2=(SA-x)2+12,所以x2+1=+1,解得x=,R2=+12,R=4.所以球O的表面积为4πR2=64π.16.(1)证明设D在平面ABC内的射影为H,则H在AB上,连接DH,如图,则DH⊥平面ABC,得DH⊥BC.又AB⊥BC,AB∩DH=H,所以BC⊥平面ADB,故AD⊥BC.又AD⊥DC,DC∩BC=C,所以AD⊥平面DBC.(2)解当球的体积最大时,易知球与三棱锥D-ABC的各面相切,设球的半径为R,球心为O,则V D-ABC=R(S△ABC+S△DBC+S△DAC+S△DAB).由已知可得S△ABC=S△ADC=6.过点D作DG⊥AC于点G,连接GH,如图,可知HG⊥AC.易得DG=,HG=,DH=,S△DAB=4在△DAB和△BCD中,因为AD=BC,AB=DC,DB=DB,所以△DAB≌△BCD,故S△DBC=,V D-ABC=6则,于是(4+)R=,所以R=。
2022年高考数学二轮复习解答题型 25 空间几何解答题型猜想一、解答题(共14题;共145分)1.(10分)如图,在四棱锥P−ABCD中,平面PCD⊥平面ABCD,AB//CD,AD=√10,CD=2AB=2,PA=PC=3√2,∠PCD=π4,E为棱PC的中点.(1)(5分)证明:BE//平面PAD.(2)(5分)若平面PBC∩平面PAD=m,求直线m与平面PDC所成角的正弦值.2.(10分)如图,在四棱锥P−ABCD中,已知PB⊥底面ABCD,BC⊥AB,AD∥BC,AB=AD= 2,CD⊥PD,异面直线PA与CD所成角等于60∘.(1)(5分)求证:平面PCD⊥平面PBD;(2)(5分)在棱PA上是否存在一点E,使得平面PAB与平面BDE所成锐二面角的切值为√5?若存在,指出点E的位置,若不存在,请说明理由.3.(10分)如图,PD垂直于梯形ABCD所在的平面,∠ADC=∠BAD=90°,F为PA中点,PD=√2,AB=AD=12CD=1,四边形PDCE为矩形,线段PC交DE于点N.(1)(5分)求平面ABC 与平面PBC 所成角的大小;(2)(5分)在线段EF 上是否存在一点Q ,使得BQ 与平面BCP 所成角的大小为π6?若存在,请求出FQ 的长;若不存在,请说明理由.4.(10分)如图,在四棱锥P −ABCD 中,PA ⊥底面ABCD ,底面ABCD 是矩形,PA =AD =2,E 为AB 的中点.(1)(5分)证明:平面PEC ⊥平面PDC ;(2)(5分)已知二面角C −PD −E 的大小为45°,求点C 到平面PDE 的距离.5.(10分)如图,四棱锥P −ABCD 的底面是直角梯形,AD ⊥CD ,AD//BC ,PD ⊥平面ABCD ,E 是PB 的中点,PC 与平面ADE 交于点F ,BC =DC =PD =2AD =2 .(1)(5分)求证:F 是PC 的中点;(2)(5分)若M 为棱PD 上一点,且直线PA 与平面EFM 所成的角的正弦值为45,求PM PD的值.6.(10分)如图所示,在四棱锥P-ABCD 中,AB//CD ,AD =AB =12CD =2,∠DAB =60°,点E ,F 分别为CD ,AP 的中点.(1)(5分)证明:PC//平面BEF ;(2)(5分)若PA ⊥PD ,且PA=PD ,面PAD ⊥面ABCD ,求二面角C-BE-F 的余弦值.7.(10分)如下图所示,在三棱锥A −BCD 中,△ABD 为等腰直角三角形,AB =AD ,△BCD 为等边三角形.(1)(5分)证明:BD ⊥AC ;(2)(5分)若直线AC 与平面ABD 所成角为π3,点E 在棱AD 上,且DE =2EA ,求二面角E −BC −D 的大小.8.(10分)如图甲,平面图形ABCDE 中,AE =ED =DB =BC =1,CB ⊥BD ,ED//AB ,∠EAB =60°,沿BD 将△BCD 折起,使点C 列F 的位置,如图乙,使BF ⊥BE ,EG ⃗⃗⃗⃗⃗ =BF ⃗⃗⃗⃗⃗ .(1)(5分)求证:平面GEBF ⊥平面AEG ;(2)(5分)点M是线段FG上的动点,当GM多长时,平面MAB与平面AEG所成的锐二面角的余弦值为√349.(10分)如图,在四棱锥P−ABCD中,已知底面ABCD为直角梯形,AB∥DC,AB⊥AD,AB= AD=2CD=2,平面PAB⊥平面ABCD,PA⊥PB,PA=PB.(1)(5分)从下列条件①、条件②中再选择一个作为已知条件,求证:EF∥平面PAB;条件①:E,F分别为棱PD,BC的中点;条件②:E,F分别为棱PC,AD的中点.为何值时,直线CM与平面PAD所成角(2)(5分)若点M在棱PD(含端点)上运动,当PMPD.的正弦值为√3310.(10分)如图,在四棱锥S−ABCD中,SA⊥平面ABCD中,四边形ABCD是正方形,点E在棱SD上,DE=2SE.(1)(5分)证明:CD⊥AE;(2)(5分)若正方形ABCD的边长为1,二面角E−AC−D的大小为45°,求四棱锥S−ABCD 的体积.11.(10分)如图,在直三棱柱ABC−A1B1C1中,已知AC=BC=4,AA1=3,AB=4√2.(1)(5分)求四棱锥A−BCC1B1的体积;(2)(5分)求直线AC1与平面ABB1A1所成的角的大小.12.(15分)如图,三棱锥P−ABC中,△ABC是边长为2的正三角形,PA=2,PD⊥底面ABC于点D,AD⊥DB,且DB=1.(1)(5分)求证:AC//平面PDB;(2)(5分)求二面角P−AB−C的余弦值;的值;若不存在,说明(3)(5分)在棱PC上是否存在点E,使得DE⊥平面PAB?若存在,求CECP理由.13.(10分)已知平行四边形ABCD,AB=2BC=4,∠ABC=60∘,点F是DC的中点.沿AF把△AFD进行翻折,使得平面FAD⊥平面ABCF.(1)(5分)求直线BD与平面ABCF所成角的正弦值;(2)(5分)点E是AB的中点,棱DC上是否存在一点M,使得FM⊥DE,若存在,求此时二面角M−EF−C的余弦值;若不存在,请说明理由.14.(10分)如图,四棱锥P−ABCD中,底面ABCD为菱形,且∠ABC=60°,侧棱PA⊥底面ABCD,PA=AB=4,M为侧棱PB上一点.(1)(5分)当M为PB中点时,求△MPD的面积;.(2)(5分)试确定点M的位置,使平面MCD与平面PCD夹角的余弦值为8√9191答案解析部分1.【答案】(1)解:如图,延长DA,CB交于点Q,连接PQ.因为AB//CD,且CD=2AB,所以B为线段QC的中点,又因为E为棱PC的中点,所以BE//PQ,而BE⊄平面PAD,PQ⊂平面PAD,故BE//平面PAD.(2)解:由(1)知直线m即直线PQ,因为BE//PQ,所以直线m与平面PDC所成角即BE与平面PDC所成角.过点P作PH⊥CD于H,则PH⊥平面ABCD,连接AH,BD,ED,则有PH⊥AH,在△PDC中,∠PCD=π4,CD=2,PC=3√2,则PD=√10,所以PH=PC⋅cos π4=3,HD=√PD2−PH2=1.在△PAH中,PA=3√2,∠PHA=π2,则AH=3,又AD=√10,所以AH⊥DH,因为DH∩AH=H,DH,AH⊂平面PDC,从而AH⊥平面PDC,因为HD=AB=1,DH//AB,所以四边形ABDH是平行四边形,因此BD//AH,则BD⊥平面PDC,所以∠BED为所求角.在△PDC中,可求得DE=√102,BE=√BD2+DE2=√462,所以sin∠BED=BDBE=3√462=3√4623,故直线m与平面PDC所成角的正弦值为3√4623.【解析】【分析】(1)延长DA,CB交于点Q,连接PQ,再利用AB//CD且CD=2AB,所以B为线段QC的中点,再利用点E为棱PC的中点,再结合中点作中位线的方法结合中位线的性质,所以BE//PQ,再利用线线平行证出线面平行,从而证出直线BE//平面PAD。
课时作业(十三) 空间向量与立体几何1.如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB=2a,F为CD的中点.(1)求证:AF∥平面BCE;(2)推断平面BCE与平面CDE的位置关系,并证明你的结论.解析:建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),C(2a,0,0),B(0,0,a),D(a,3a,0),E(a,3a,2a).由于F为CD的中点,所以F⎝⎛⎭⎪⎫32a,32a,0.(1)证明:AF→=⎝⎛⎭⎪⎫32a,32a,0,BE→=(a,3a,a),BC→=(2a,0,-a).由于AF→=12(BE→+BC→),AF⊄平面BCE,所以AF∥平面BCE.(2)平面BCE⊥平面CDE.证明如下:由于AF→=⎝⎛⎭⎪⎫32a,32a,0,CD→=(-a,3a,0),ED→=(0,0,-2a),所以AF→·CD→=0,A F→·ED→=0,所以AF→⊥CD→,AF→⊥ED→.所以AF⊥平面CDE,又AF∥平面BCE,所以平面BCE⊥平面CDE.2.(2021·广西南宁、梧州摸底联考)如图,已知四棱锥P-ABCD,底面ABCD为菱形,且∠DAB=60°,△PAB是边长为a的正三角形,且平面PAB⊥平面ABCD,已知点M是PD的中点.(1)证明:PB∥平面AMC;(2)求直线BD与平面AMC所成角的正弦值.解析:(1)证明:连接BD交AC于点O,连接OM,由于四边形ABCD为菱形,OB=OD,又M为PD的中点,所以OM∥PB.由PB⊄平面AMC,OM⊂平面AMC,所以PB∥平面ACM.(2)取AB的中点N,连接PN,ND,则∠AND=90°,分别以NB,ND,NP为x轴、y轴、z轴建立空间直角坐标系N-xyz,则B⎝⎛⎭⎪⎫a2,0,0,C⎝⎛⎭⎪⎫a,32a,0,A⎝⎛⎭⎪⎫-a2,0,0,D⎝⎛⎭⎪⎫0,32a,0,P⎝⎛⎭⎪⎫0,0,32a,M⎝⎛⎭⎪⎫0,34a,34a,则AC→=⎝⎛⎭⎪⎫32a,32a,0,AM→=⎝⎛⎭⎪⎫a2,34a,34a.设平面AMC的法向量为n=(x,y,z),则⎩⎪⎨⎪⎧32ax+32ay=0,a2x+34ay+34az=0,令y=3,则x=-1,z=-33,即n=⎝⎛⎭⎪⎫-1,3,-33.又BD→=⎝⎛⎭⎪⎫-a2,32a,0,设直线BD与n所成的角为θ,则cosθ=n·BD→|n||BD→|=23913,故直线BD与平面AMC所成角的正弦值为23913.3.(2021·河北石家庄模拟)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,AD∥BC,CD ⊥BC ,AD =2,AB =BC =3,PA =4,M 为AD 的中点,N 为PC 上一点,且PC =3PN .(1)求证:MN ∥平面PAB ; (2)求二面角P AN M 的余弦值. 解析:(1)证明:在平面PBC 内作NH ∥BC 交PB 于点H ,连接AH , 在△PBC 中,NH ∥BC ,且NH =13BC =1,AM =12AD =1.∵AD ∥BC ,∴NH ∥AM ,且NH =AM ,∴四边形AMNH 为平行四边形,∴MN ∥AH . ∵AH ⊂平面PAB ,MN ⊄平面PAB ,∴MN ∥平面PAB . (2)解:在平面ABCD 内作AE ∥CD 交BC 于E ,则AE ⊥AD .分别以AE ,AD ,AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系A -xyz ,则P (0,0,4),M (0,1,0),C (22,2,0),N ⎝⎛⎭⎪⎫223,23,83. 设平面AMN 的法向量m =(x ,y ,z ),AM →=(0,1,0),AN →=⎝ ⎛⎭⎪⎫223,23,83,则⎩⎪⎨⎪⎧y =0,223x +23y +83z =0,取m =⎝⎛⎭⎪⎫2,0,-12.设平面PAN 的法向量n =(x ,y ,z ),AP →=(0,0,4),AN →=⎝ ⎛⎭⎪⎫223,23,83,则⎩⎪⎨⎪⎧4z =0,223x +23y +83z =0,取n =(1,-2,0),则cos 〈m ,n 〉=m·n |m ||n |=269.故二面角P AN M 的余弦值为269.4.(2021·山东卷)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF 的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求∠CBP 的大小; (2)当AB =3,AD =2时,求二面角E AG C 的大小.解析:(1)由于AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP =A ,所以BE ⊥平面ABP . 又BP ⊂平面ABP ,所以BE ⊥BP . 又∠EBC =120°,所以∠CBP =30°.(2)方法一:如图,取EC 的中点H ,连接EH ,GH ,CH .由于∠EBC =120°, 所以四边形BEHC 为菱形,所以AE =GE =AC =GC =32+22=13. 取AG 的中点M ,连接EM ,CM ,EC , 则EM ⊥AG ,CM ⊥AG ,所以∠EMC 为所求二面角的平面角.又AM =1,所以EM =CM =13-1=2 3. 在△BEC 中,由于∠EBC =120°,所以二面角CEMN的正弦值为10521.(3)依题意,设AH=h(0≤h≤4),则H(0,0,h),进而可得NH→=(-1,-2,h),BE→=(-2,2,2).由已知,得|cos〈NH→,BE→〉|=|NH→·BE→||NH→||BE→|=|2h-2|h2+5×23=721,整理得10h2-21h+8=0,解得h=85,或h=12.所以,线段AH的长为85或12.6.(2021·湖北孝感联考)如图,四棱锥P-ABCD的底面为直角梯形,AD∥BC,AD=2BC=2,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E为AD的中点,△PAD为正三角形,M是棱PC上的一点(异于端点).(1)若M为PC的中点,求证:PA∥平面BME;(2)是否存在点M,使二面角MBED的大小为30°.若存在,求出点M的位置;若不存在,说明理由.解析:(1)证明:如图,连接AC交BE于点F,连接CE.由题意知BC∥AE,且BC=AE,故四边形ABCE为平行四边形,∴F为AC的中点,在△PAC中,又由M为PC的中点,得MF∥PA.又MF⊂平面BME,PA⊄平面BME,∴PA∥平面BME.(2)连接PE,则由题意知PE⊥平面ABCD.故以E为坐标原点建立如图所示空间直角坐标系E-xyz,则E(0,0,0),P(0,0,3),B(3,0,0),C(3,-1,0).设PM→=λPC→=(0<λ<1),则M(3λ,-λ,3(1-λ)).∴EM→=(3λ,-λ,3(1-λ)),EB→=(3,0,0).取平面DBE的法向量n1=(0,0,1),设平面BME的法向量n2=(x,y,z),则由⎩⎨⎧n2·EM→=0,n2·EB→=0得⎩⎨⎧3λx-λy+31-λz=0,3x=0.令y=3,得n2=⎝⎛⎭⎪⎫0,3,λ1-λ.又由⎪⎪⎪⎪⎪⎪n1·n2|n1||n2|=cos30°,得λ=34,即M⎝⎛⎭⎪⎫334,-34,34.故存在点M满足要求,且M为棱PC上靠近端点C的四等分点.。