苏教必修2立体几何初步初步教案学案立体几何第10课时作业
- 格式:docx
- 大小:47.60 KB
- 文档页数:2
1.2.2 第7课时异面直线学习目标:1.理解异面直线的概念、画法,培养空间想象能力;2.会用反证法和异面直线的判定定理证明两直线异面;3.掌握异面直线所成角的概念及异面直线垂直的概念,能求出一些较特殊的异面直线所成的角;4.体会空间问题化归为平面问题求解的策略.学习重点:异面直线的判定、异面直线所成角的寻求及其计算.学习难点:异面直线概念的理解.学习过程:一、课前准备:自学课本P25~271.异面直线的定义:.2.异面直线的画法(平面衬托法):3.异面直线判定定理:.符号表示:.证明方法:.4.异面直线所成的角:①定义:.②范围:.③异面直线互相垂直:.5.正方体ABCD-A1B1C1D1中,E、F分别是AA1、AB的中点,判断下列各对线段所在直线的位置关系.如果异面,求出所成的角:①AB与CC1 ;②A1B1与DC;③A1C与D1B;④DC与BD1 ;⑤D1E与CF.6.下列命题中,正确的是.①垂直于同一条直线的两条直线平行②有三个角是直角的四边形是矩形③a∥b,a⊥l b⊥l④两条异面直线既不平行也不相交,无法成角7.在正方体ABCD-A1B1C1D1中,与BD1成异面直线的棱有_________条.二、合作探究:例1.已知异面直线a与b所成的角为50°,P为空间一定点,则过点P且与a、b所成的角都是30°的直线有且仅有条.变式训练:已知异面直线a与b所成的角为60° (80°),P为空间一定点,则过点P且与a、b所成的角都是60°的直线有且仅有条.例2.在正方体ABCD-A1B1C1D1中,求:AA1与C1D1所成的角;AA1与B1C所成的角;B1C与BD所成的角.c b O a Q N P M 例3.空间四边形ABCD 中,AD=1 ,BC=3,BD=213,AC=23,且AD ⊥BC . 求:异面直线AC 和BD 所成的角.变式训练:正四面体ABCD 中,E 是BC 的中点,⑴求证直线AE 与BD 异面; ⑵求直线AE 与BD 所成角的余弦值.例4.如图,已知不共面的直线c b a ,,相交于O 点,M ,P 是直线a 上的两点,N ,Q 分别是c b ,上的一点.求证:MN 和PQ 是异面直线.三、课堂练习:课本第27页练习第1~6题.四、回顾小结:1.证两直线异面的方法有 ;2.求两条异面直线所成的角的步骤:作—证—算—答.五、课外作业:课本P27习题1.2:第5~12题 课课练六、自我测试:1.若a ,b 是异面直线, b, c 是异面直线, 则a ,c 的位置关系是 .2.分别和两条异面直线都相交的两条直线的位置关系是 .3.下列命题中,正确的是 .①平行移动两条异面直线中的任何一条,它们所成的角不变; ②过空间四边形ABCD 的顶点A 引CD 的平行线段AE, 则∠BAE 是异面直线AB 与CD 所成的角;③四边相等,且四个角也相等的四边形是正方形; ④两条异面直线所成的角指的是过空间任一点与两条异面直线分别平行的两条相交直线所成的锐角或直角;⑤过两条异面直线中一条上的一点作与另一条平行的直线,这两条相交直线所成的锐角或直角就是两条异面直线所成的角.4.空间四边形ABCD 中,AB,BC,CD 的中点分别是P,Q,R ,且PQ=2 ,QR=5,PR=3 ,那么异面直线AC 和BD 所成的角是 .5.在空间四边形ABCD 中,AB=CD=8,M,N 分别是BC,AD 的中点,如异面直线AB 与CD 成60° 角,求MN 的长.§1.2.3 第8课时直线与平面平行(1)学习目标:1.理解直线与平面平行的定义,了解直线与平面的位置关系,能够正确画出直线与平面各种位置关系的图形;2.理解并掌握直线与平面平行的判定定理.学习重点:直线与平面平行的判定定理的应用.学习难点:直线与平面平行的判定定理的反证法证明.学习过程:一、课前准备:自学课本P28~30线面平行判定定理:.判定定理的符号表示:.3.下面命题正确的是.①直线在平面外,则直线与平面相交或平行;②若直线l上有无数个点不在平面α内, 则l∥α;③若l∥α,则l与平面α内有任意一条直线都平行;④如果两条平行直线中的一条与一个平面平行, 那么另一条直线也与这个平面平行;⑤若直线l与平面α平行, 则l与平面α内的任意一条直线都没有公共点.4.下列四个命题中,正确的是.①直线与平面没有公共点,则直线与平面平行;②直线上有两点到平面的距离相等,则直线与平面平行;③直线与平面内的任一条直线不相交,则直线与平面平行;④直线与平面内无数条直线不相交,则直线与平面平行.5.过直线外一点,与该直线平行的直线有_________条;过直线外一点,与该直线垂直的直线有_________条;过直线外一点,与该直线平行的平面有_________个;过平面外一点,与该平面平行的直线有_________条.二、合作探究:例1.如图,在△ABC所在平面外有一点P,M,N分别是PC和AC上的点,过MN作平面平行于BC,画出这个平面与其他各面的交线,并说明理由.例2.已知正方形ABCD所在的平面和正方形ABEF所在的平面相交与AB,M,N分别是AC,BF 上的点且AM=FN. 求证:MN//平面BCE.例3.已知E,F,G,H分别是四面体的棱AD,CD,BD,BC的中点,求证:AH∥平面EFG.三、课堂练习:课本第31页练习第1、3题.四、回顾小结:1.注意:直线在平面外包含直线与平面相交、平行两种情形;2.直线与平面平行的判定定理,可以简记为“线线平行则线面平行”;3.判定定理使用时,三个条件缺一不可.五、课外作业:课本P36习题1.2:第3题课课练六、自我测试:1.如果a∥α,b∥α,那么a,b的位置关系是.2.直线a∥b,b⊂α,则a与α的位置关系是.3.过两条异面直线中的一条可作个平面与另一条平行.4.P是两条异面直线a、b外的一点,过点P可作个平面与a、b都平行.5.已知正方体ABCD-A1B1C1D1中,E,F分别是AA1,CC1的中点.求证:平面BDF∥平面B1D1E.6.已知:AB,BC,CD是不在同一平面内的三条线段,E,F,G分别为AB,BC,CD的中点.求证:AC∥平面EFG,BD∥平面EFG.AC。
第二课时圆柱、圆锥、圆台、球【学习导航】知识网络学习要求1.初步理解圆柱、圆锥、圆台和球的概念。
掌握它们的生成规律。
2.了解圆柱、圆锥、圆台和球中一些常用名称的含义。
3.了解一些复杂几何体的组成情况,学会分析并掌握它们由哪些简单几何体组合而成。
4.结合日常生活中的一些具体实例,体会客观世界中事物与事物之间内在联系的辨证唯物主义观点,初步学会用类比的思想分析问题和解决问题.【课堂互动】自学评价1.圆柱的定义:母线底面轴听课随笔2.圆锥的定义:3.圆台的定义:4.球的定义:5.旋转面的定义:6.旋转体的定义:7.圆柱、圆锥、圆台和球的画法。
【精典范例】例1:给出下列命题:甲:圆柱两底面圆周上任意两点的连线是圆柱的母线乙:圆台的任意两条母线必相交丙:球面作为旋转面,只有一条旋转轴,没有母线。
其中正确的命题的有 ( A )A .0 B. 1 C. 2 D. 3例2:如图,将直角梯形ABCD 绕AB 边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?。
【解】见书9页例1例3:指出图中的几何体是由哪些简单几何体构成的?。
甲乙【解】见书9页例2思维点拨:如何解答一个复杂几何体的组成情况,主要是将原几何体分割成柱、锥、台和球后再解答。
如:以正六边行的一边所在直线为轴旋转一周,所得几何体由哪些简单几何体组成的?解:是由一个圆柱,两个圆台挖去两个圆锥所得几何体。
追踪训练1. 指出下列几何体分别由哪些简单几何体构成?答:略2. 如图,将平行四边形ABCD绕AB边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?D CA B答:圆锥和圆柱3.充满气的车轮内胎可以通过什么图形旋转生成? 答:圆【师生互动】听课随笔。
第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。
教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。
根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
让学生学会学习听课随笔第10课时直线与平面垂直学习要求1.掌握直线与平面的位置关系.2.掌握直线和平面平行的判定与性质定理..3.应用直线和平面平行的判定和性质定理证明两条直线平行等有关问题.【课堂互动】自学评价1. 直线和平面垂直的定义:符号表示:垂线:垂面:垂足:思考:在平面中,过一点有且仅有一条直线与已知直线垂直,那么在空间。
(1)过一点有几条直线与已知平面垂直?答:(2)过一点有几条平面与已知直线垂直?答:2.定理:过一点有且只有一条直线与已知平面垂直,过一点有且只有一个平面与已知直线垂直3.点到平面的距离:4.直线与平面垂直的判定定理:符号表示5.直线和平面垂直的性质定理:已知:求证:证明:见书346.直线和平面的距离:【精典范例】例1:.求证: 如果两条平行直线中的一条垂直于一个平面, 那么另一条直线也垂直于这个平面.证明:见书34例1思维点拔:要证线面垂直,只要证明直线与平面内的两条相交直线垂直,或利用定义进行证明。
Rt△ABC所在平面外一点S,且SA=SB=SC(1)求证:点S在斜边中点D的连线SD⊥面ABC(2)若直角边BA=BC,求证:BD⊥面SAC追踪训练如图, 已知PA⊥α, PB⊥β, 垂足分别为A、B, 且α∩β= l , 求证: AB⊥l .Pα听课随笔证明:略例2.已知直线l // 平面α, 求证: 直线l各点到平面α的距离相等.证明:见书34例2例3.已知正方体ABCD-A1B1C1D1 .(1)求证: A1C⊥B1D1 ;(2)若M、N分别为B1D1与C1D上的点, 且MN⊥B1D1 , MN⊥C1D , 求证: MN//A1C .1分析:(1)可先证B 1D 1⊥面A 1CC 1,从而证出结论.(2)可证MN 和A 1C 都垂直于面BDC 1, 从而利用性质证出结论点评:要证线线平行均可利用线面垂直的性质。
追踪训练1.已知直线l,m,n 与平面α,指出下列命题是否正确,并说明理由:(1)若l ⊥α,则l 与α相交;(2)若m Ìα,n Ìα,l ⊥m,l ⊥n ,则l ⊥α;(3)若l//m,m ⊥α,n ⊥α,则l//m2.某空间图形的三视图如图所示,试画出它的直观图,并指出其中的线面垂直关系.3.在△ABC 中,∠B=90°,SA ⊥面ABC ,AM ⊥SC ,AN ⊥SB 垂足分别为N 、M ,求证:AN ⊥BC ,MN ⊥SC听课随笔略证:BC ⊥面SAB ÞBC ⊥AN 再证AN ⊥面SBC Þ AN ⊥SC AM ⊥SC Þ SC ⊥面ANM Þ MN ⊥SC B A N M C S。
第1章 立体几何初步 第九课时 1.2.3 直线与平面的位置关系(1)【教学目标】1.了解直线与平面的位置关系及图形语言和符号语言; 2.了解直线与平面平行的定义;3.理解和掌握直线与平面平行的判定定理和性质定理并初步用; 4.进一步培养学生的观察发现能力和空间想象能力。
【教学重点】直线与平面平行的判定定理,性质定理及应用。
【教学难点】直线与平面平行的性质定理的发现和理解。
【过程方法】1.通过师生之间、学生之间的互相交流,促使学生的共同学习;2.通过直观感知、操作演示归纳出直线和平面的三种位置关系的概念,明确数学概念的严谨性和科学性;3.通过两个定理解决有关问题,使学生感受到化归的数学思想,培养学生科学地分析问题、解决问题的能力。
【教学过程】 一、引入新课观察下图正方体1111D C B A ABCD ,回答下列问题: (1)棱11B A (或11D C )所在直线与平面AC 有几个公共点; (2)对角线C A 1(或棱1AA )所在直线与平面AC 有几个公共点;(3)棱AD 所在直线与平面AC 有几个公共点。
二、讲授新课1.直线与平面的位置关系如果一 条直线a 和一 个平面α没有公共点,则称直线a 与平面α平行。
如果一 条直线a 和一 个平面α有且只有一个公共点,则称直线a 与平面α相交。
A BC DA 1B 1D 1C 1如果一 条直线a 和一 个平面α有无数个公共点,则称直线a 在平面α内。
我们把直线与平面相交或平行的情况称为直线在平面外,用符号表示为α⊄a 。
2.直线与平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线与这个平面平行。
用符号表示: α⇒⎪⎭⎪⎬⎫α⊂α⊄//a b //a b a 。
三、例题选讲例1.如图,已知E ,F 分别是三棱锥A-BCD 的侧棱AB ,AD 的中点,求证:EF//平面BCD 。
3.直线与平面平行的性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。
第1章立体几何初步1.1空间几何体1.1.1 棱柱、棱锥和棱台(教师用书独具)●三维目标1.知识与技能(1)了解棱柱、棱锥、棱台的概念.(2) 认识棱柱、棱锥、棱台的结构特征.(3) 能根据几何结构特征对现实生活中的简单物体进行描述.2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出棱柱、棱锥、棱台的几何结构特征.(2)让学生在观察、讨论、归纳、概括中获取知识.3.情感、态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力和抽象概括能力.●重点难点重点:棱柱、棱锥和棱台及多面体的概念和画法.难点:棱柱、棱锥、棱台的结构特征的概括.重难点突破:以学生熟知的现实世界中几何体为切入点,教师通过提供丰富的实物模型引导学生对观察到的实物进行分类,考虑到棱柱、棱锥、棱台的结构特征的概括既是本节教学的重点又是本节教学的难点,教师可利用采用多媒体辅助教学法,利用多媒体演示,让学生通过观察比较,从而发现规律,概括出几何体的结构特征,突破难点.(教师用书独具)●教学建议本节内容是立体几何的入门教学,是义务教育阶段“空间与图形”课程的延续与提高,通过本节内容的学习可帮助学生逐步形成空间想象能力.由于本节知识具有概念多,感知性强等特点,教学时建议采用启导法和多媒体辅助教学法.引导学生从熟悉的物体入手,利用实物模型、计算机软件观察大量空间图形,多角度、多层次地揭示空间图形的本质.按照从整体到局部、由具体到抽象的原则,让学生认识棱柱、棱锥、棱台的几何结构特征,进而通过空间图形,培养和发展学生的空间想象能力.●教学流程创设问题情境,引出问题:棱柱、棱锥和棱台分别具有怎样的结构特征?⇒引导学生观察棱柱、棱锥和棱台的相关图片得出空间几何体的定义.⇒通过引导学生回答所提问题掌握棱柱、棱锥、棱台的结构特征.⇒通过例3及其变式训练,引导学生掌握棱柱、棱锥、棱台的画法,进—步认知三种几何体.⇒通过例2及其互动探究,引导学生应用概念判别几何体,加深对棱柱结构特征的认识.⇒通过例1及其变式训练,使学生掌握棱柱、棱锥和棱台的概念及结构特征.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.(见学生用书第1页)【问题导思】 1.仔细观察下面的几何体,如果把它们看作是由一个平面图形平移而形成的,它们分别是由什么平面图形平移而成的?【提示】 (1)是由三角形平移而成的;(2)是由矩形平移而成的;(3)是由五边形平移而成的.2.上述几何体中,除了平移前后的平面,其余各面都是什么四边形? 【提示】 平行四边形. 1.棱柱的定义、表示及相关概念(1)分类:底面为三角形、四边形、五边形……的棱柱分别为三棱柱、四棱柱、五棱柱…… (2)共同特征:两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形.1.如图,棱柱的一个底面收缩为一点时,可得到怎样的图形?【提示】2.用一个平行于棱锥底面的平面去截棱锥,得到两个什么几何体?【提示】棱锥和棱台.1.棱锥(1)定义:当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.(2)相关概念及表示:图1-1-1该四棱锥可记作S-ABCD.(3)棱锥的共同特征:底面是多边形,侧面是有一个公共顶点的三角形.2.棱台(1)定义:棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分.(2)相关名称及表示图1-1-2记作:棱台ABCD-A′B′C′D′由若干个平面多边形围成的几何体叫做多面体.(见学生用书第2页)根据下列关于空间几何体的描述,说出几何体的名称:(1)由6个平行四边形围成的几何体;(2)由7个面围成,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形;(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点.【思路探究】【自主解答】(1)这是一个上、下底面是平行四边形,四个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥,其中六边形面是底面,其余的三角形面是侧面.(3)这是一个三棱台,其中相似的两个三角形面是底面,其余三个梯形面是侧面.根据形成几何体的结构特征的描述,结合棱柱、棱锥、棱台的定义进行判断,注意判断时要充分发挥空间想象能力,必要时做几何模型,通过演示进行准确判断.下列说法中正确的有________.①一个棱柱至少有五个面②用一个平面去截棱锥,底面和截面之间的部分叫棱台③棱台的侧面是等腰梯形④棱柱的侧面是平行四边形.【解析】因为棱柱有两个底面,因此棱柱的面数由侧面个数决定,而侧面个数与底面多边形的边数相等,故面数最少的棱柱为三棱柱,有五个面,①正确;②中的截面与底面不一定平行,故②不正确;由于棱台是由棱锥截来的,而棱锥的所有侧棱不一定相等,所以棱台的侧棱不一定都相等,即不一定是等腰梯形,③不正确;由棱柱的定义知④正确,故填①④.【答案】①④图1-1-3如图1-1-3所示,已知长方体ABCD-A1B1C1D1.(1)这个长方体是棱柱吗?如果是,是几棱柱?为什么?(2)用平面BCFE把这个长方体分成两部分后,各部分形成的几何体是棱柱吗?如果是,是几棱柱?并指出底面.如果不是,请说明理由.【思路探究】根据棱柱的定义或棱柱的结构特征进行判断.【自主解答】是棱柱,并且是四棱柱.因为它可以看成由四边形ADD1A1沿AB方向平移至四边形BCC1B1形成的几何体,符合棱柱的定义.(2)截面BCFE右边的部分是三棱柱BEB1-CFC1,其中△BEB1与△CFC1是底面.截面BCFE 左边的部分是四棱柱ABEA1-DCFD1,其中四边形ABEA1和四边形DCFD1是底面.1.解答本题的关键是正确掌握棱柱的几何特征,本题易出现认为所分两部分的几何体,一个是棱柱,一个是棱台的错误.2.在利用几何体的概念进行判断时,要紧扣定义,注意几何体间的联系与区别,不要认为底面就是上下位置,如此题,底面也可放在前后位置.用一个平面去截本例中的长方体,能截出三棱锥吗?【解】可以截出三棱锥,如图所示,三棱锥D1-ACD便符合题意.画一个三棱柱和一个四棱台.【思路探究】(2)画一个四棱锥→画四棱台【自主解答】①画三棱柱可分以下三步完成:第一步:画上底面——画一个三角形;第二步:画侧棱——从三角形的每一个顶点画平行且相等的线段;第三步:画下底面——顺次连结这些线段的另一个端点(如图所示).②画四棱台可分以下三步完成:第一步:画一个四棱锥;第二步:在它的一条侧棱上取一点,然后从这点开始,顺次在各个侧面内画出与底面对应边平行的线段;第三步:将多余的线段擦去(如图所示).1.在画立体图形时,被遮挡的线画成虚线,可以增加立体感.2.由于棱台的侧棱延长线交于一点,因此画棱台时,要先画棱锥,再截得棱台.画一个六面体(1)使它是一个四棱柱;(2)使它是五棱锥.【解】如图(1)(2)所示.(见学生用书第3页)棱柱、棱锥、棱台的概念理解不清致误如图1-1-4甲、乙、丙是不是棱柱、棱锥、棱台?为什么?甲乙丙图1-1-4【错解】图甲有两个面ABC和A2B2C2平行,其余各面都是平行四边形,所以甲图的几何体是棱柱;图乙因一面ABCD是四边形,其余各面都是三角形,所以图乙的几何体是棱锥;图丙是棱台.【错因分析】上述解答过程都运用了“以偏概全”的思想,都是根据相应概念的某一结论去判断几何体,判断的依据不充分.【防范措施】判断一个几何体是否为棱柱、棱锥、棱台,应按照几何体的定义,抓住几何体的本质特征,严防“以偏概全”.【正解】图甲这个几何体不是棱柱.这是因为虽然上、下面平行,但是四边形ABB1A1与四边形A1B1B2A2不在一个平面内.所以多边形ABB1B2A2A1不是一个平面图形,它更不是一个平行四边形,因此这个几何体不是一个棱柱;图乙中的六个三角形没有一个公共点,故不是棱锥,只是一个多面体;图丙也不是棱台,因为侧棱的延长线不能相交于同一点.1.在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱台、三棱锥为例).2.根据几何体的结构特点判定几何体的类型,首先要熟练掌握各几何体的概念,把握好各类几何体的特点,其次要有一定的空间想象能力.(见学生用书第3页)1.四棱柱共有______个顶点,________个面,________条棱.【答案】8 6 122.三棱锥是________面体.【解析】因为三棱锥有四个面,故三棱锥是四面体.【答案】四3.如图1-1-5所示的几何体中,________是棱柱,________是棱锥,________是棱台.图1-1-5【解析】由棱柱、棱锥和棱台的定义知,①③④符合棱柱的定义,⑥符合棱锥的定义,②是一个三棱柱被截去了一段,⑤符合棱台的定义.故①③④是棱柱,⑥是棱锥,⑤是棱台.【答案】①③④⑥⑤4.如图1-1-6,已知△ABC.(1)如果认为△ABC是水平放置的三角形,试以它为底画一个三棱柱;(2)如果认为△ABC是竖直放置的三角形,试以它为底再画一个三棱柱.图1-1-6【解】(1)如图①所示.(2)如图②所示.(见学生用书第79页)一、填空题1.正方体是________棱柱,是________面体.【解析】因为正方体的底面是正方形,故正方体是四棱柱,六面体.【答案】四六2.下面图形所表示的几何体中,不是棱锥的为________.图1-1-7【解析】结合棱锥的定义可知①不符合其定义,故填①.【答案】①图1-1-83.如图1-1-8,棱柱ABCD-A1B1C1D1可以由矩形________平移得到.(填序号)①ABCD;②A1B1C1D1;③A1B1BA;④A1BCD1【解析】结合棱柱的定义可知,棱柱ABCD-A1B1C1D1可由矩形ABCD或A1B1BA或A1B1C1D1平移得到.【答案】①②③4.(2013·辽宁实验中学检测)下列判断正确的是________.(填序号)(1)棱柱中只能有两个面可以互相平行(2)底面是正方形的直四棱柱是正四棱柱(3)底面是正六边形的棱台是正六棱台(4)底面是正方形的四棱锥是正四棱锥【解析】(1)不正确,如正方体有三对对面相互平行.(2)正确.(3)(4)不正确.其中正四棱锥除了底面是正方形外,还要求顶点在底面的射影是底面的中心,同样(3)也如此.【答案】(2)5.下面描述中,是棱柱的结构特征的有________.①有一对面互相平行②侧面都是四边形③每相邻两个侧面的公共边都互相平行④所有侧棱都交于一点【解析】由棱柱的定义知①②③是它的结构特征,④不是棱柱的结构特征,因为棱柱的侧棱均平行.【答案】①②③6.(2013·内蒙古检测)下列说法正确的有________.①有两个面平行,其余各面都是四边形的几何体叫棱柱.②有两个面平行,其余各面都是平行四边形的几何体叫棱柱.③有一个面是多边形,其余各面都是三角形的几何体叫棱锥.④棱台各侧棱的延长线交于一点.【解析】结合棱柱、棱锥和棱台的定义可知,④正确.【答案】④7.给出下列几个命题:①棱柱的侧面都是平行四边形;②棱锥的侧面为三角形,且所有侧面都有一个公共顶点;③多面体至少有四个面;④将一个正方形沿不同方向平移得到的几何体都是正方体.其中真命题是________【解析】①②均为真命题;对于③,一个图形要成为空间几何体,则它至少需有4个顶点,3个顶点只能构成平面图形,当有4个顶点时,可围成4个面,所以一个多面体至少应有4个面,而且这样的面必是三角形,故③也是真命题;对于④,当正方形沿与其所在平面垂直的方向平移,且平移的长度恰好等于正方形的边长时,得到的几何体才是正方体,故④不正确.故填①②③.【答案】①②③8.一个棱锥的各条棱都相等,那么这个棱锥一定不是________棱锥.(从“三”、“四”、“五”、“六”中选).【解析】若满足条件的棱锥是六棱锥,则它的六个侧面都是正三角形,侧面的顶角都是60°,其和为360°,则顶点在底面内,与棱锥的定义相矛盾.【答案】六二、解答题9.判断如图1-1-9所示的几何体是不是棱台,并说明理由.图1-1-9【解】(1)侧棱延长后不交于一点,故不是棱台.(2)上、下底面不平行,故不是棱台.(3)由棱台的定义可知,是棱台.10.如图1-1-10,在透明塑料制成的长方体ABCD—A1B1C1D1容器中灌进一些水,将容器底面一边BC置于地面上,再将容器倾斜,随着倾斜程度的不同,水的形状形成如下图(1)(2)(3)三种形状.(阴影部分)请你说出这三种形状分别是什么名称,并指出其底面.图1-1-10【解】(1)是四棱柱,底面是四边形EFGH和四边形ABCD;(2)是四棱柱,底面是四边形ABFE和四边形DCGH;(3)是三棱柱,底面是△EBF和△HCG.图1-1-1111.如图1-1-11,四边形AA1B1B是边长为3的正方形,CC1=2,CC1∥AA1∥BB1,请你判断这个几何体是棱柱吗?若是棱柱,指出是几棱柱;若不是棱柱,请你试用一个平面截去一部分,使剩余部分是一个侧棱长为2的三棱柱,并指出截去的几何体的特征,在立体图中画出截面.【解】∵这个几何体的所有面中没有两个互相平行的面,∴这个几何体不是棱柱.在四边形ABB1A1中,在AA1上取点E,使AE=2;在BB1上取点F,使BF=2;连结C1E,EF,C1F,则过点C1、E、F的截面将几何体分成两部分,其中一部分是棱柱ABC-EFC1,其侧棱长为2;截去的部分是一个四棱锥C1-EA1B1F,如图.(教师用书独具)画出如图所示的几何体的表面展开图.【思路点拨】以一个面为依托,其他各面沿侧棱展开.【规范解答】表面展开图如图所示:多面体表面展开图问题的解题策略(1)绘制展开图:绘制多面体的表面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其表面展开图.(2)已知展开图:若是给出多面体的表面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的表面展开图可能是不一样的,也就是说,一个多面体可有多个表面展开图.下列四个平面图形中,每个小四边形都是正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的是________.【解析】将四个选项的平面图形折叠,看哪一个可以复原为正方体.【答案】③1.1.2 圆柱、圆锥、圆台和球(教师用书独具)●三维目标1.知识与技能(1)会用语言概述圆柱、圆锥、圆台及球的结构特征.(2)直观了解由柱、锥、台、球组成的简单组合体的结构特征.(3)能运用简单组合体的结构特征描述现实生活中的实际模型.2.过程与方法(1)让学生通过直观感知空间物体,从实物中概括出圆柱、圆锥、圆台及球的几何结构特征.(2)让学生通过直观感知空间物体,认识简单的组合体的结构特征,归纳简单组合体的基本构成形式.3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力,培养学习教学应用意识.●重点难点重点与难点:圆柱、圆锥、圆台及球的几何结构特征和简单组合体的结构特征.重难点突破:以丰富的实物模型为切入点,通过让学生观察、分析实物体,抽象概括出圆柱、圆锥、圆台及球的几何结构特征和简单组体体的结构特征,突出圆锥与圆台间的内在联系,进而在观察思考中形成旋转体的概念,突破重点的同时化解难点.(教师用书独具)●教学建议本节内容是上节知识延续与提高,通过本节内容的学习可帮助学生进一步了解空间几何体中圆柱、圆锥、圆台及球的结构特征.由于本节知识具有概念多、感知性强等特点,教学时,建议采用引导法和多媒体辅助教学法,引导学生从熟悉的物体入手,利用实物模型、计算机软件观察大量空间图形,通过整体观察,直观感知,引导学生多角度、多层次地揭示圆柱、圆锥、圆台及球的结构特征.在此基础上,再通过让学生说一说,举一举等方式,明确简单组合体的结构特征,最终达到通过空间图形培养和发展学生的空间想象能力的目的.●教学流程创设问题情境,引出问题:圆柱、圆锥、圆台及球是如何定义的?⇒通过引导学生回答所提问题理解圆柱、圆锥、圆台及球的形成过程,把握圆柱、圆锥、圆台及球的结构特征,形体旋转体的概念.⇒通过例1及其变式训练,使学生掌握旋转体的结构特征,掌握旋转体的有关概念.⇒通过例2及其变式训练,使学生掌握简单组合体的结构特征.⇒结合旋转体的结构特征及平面几何知识,完成例3及其变式训练,初步培养学生解决与立体几何知识相关运算的步骤及方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识,并进行反馈矫正.(见学生用书第4页)1.如图,将矩形ABCD绕其边AB所在的直线旋转一周得到一个什么几何体?【提示】圆柱.2.仔细观察以下三个几何体,分析它们分别是由什么平面图形旋转而成的?【提示】图(1)是直角三角形绕其一直角边旋转而成的;图(2)是直角梯形绕其垂直于底边的腰所在的直线旋转而成的;图(3)是半圆绕着它直径所在的直线旋转而成的.1.一条平面曲线绕它所在平面内的一条定直线旋转所形成的曲面叫做旋转面.2.旋转体的定义封闭的旋转面围成的几何体称为旋转体.3.旋转面与旋转体的图示图1-1-12(见学生用书第4页)下列叙述错误的有__________.①以直角三角形的一边为轴旋转所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转所得的几何体是圆台;③圆柱、圆锥、圆台的底面都是圆;④用一个平面去截圆锥,得到一个圆锥和一个圆台.【思路探究】根据旋转体的特征判断各命题的对错.【解析】以直角三角形的一条直角边为旋转轴旋转才可得到圆锥,以直角三角形的斜边为旋转轴旋转得到的几何体为两个同底的圆锥连在一起的几何体,如图(1),故①错;以直角梯形垂直于底边的一腰为旋转轴旋转可得到圆台,以直角梯形的不垂直于底的腰为旋转轴旋转得到的几何体为一个圆台一侧挖去一个同上底的圆锥,另一侧补上一个同下底的圆锥,如图(2),故②错;圆柱、圆锥、圆台的底面都是圆面,而不是圆,故③错;用平行于圆锥底面的平面去截圆锥,可得到一个圆锥和一个圆台,用不平行于圆锥底面的平面不能得到,故④错.【答案】①②③④1.准确掌握圆柱、圆锥、圆台、球的生成过程及其结构特征是解决此类概念问题的关键.要注意定义中的关键字眼,对于似是而非的问题,可以通过动手操作来解决.2.旋转体的形状关键是看平面图形绕哪条直线旋转所得,同一个平面图形绕不同的轴旋转所得的旋转体不同.给出以下四个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.上述命题中正确的是________.【解析】①不正确,因为这两点的连线不一定与圆柱的旋转轴平行;②符合圆锥母线的定义,正确;③不正确,结合圆台母线的定义可知,母线与旋转轴的延长线应交于一点,而从圆台上、下底面圆周上各取一点,其连线未必满足这一条;④正确,符合圆柱母线的性质.【答案】②④如图1-1-13所示,画出下列图形绕直线旋转一周后所形成的几何体,并说出这些几何体是由哪些旋转体组合而成的.图1-1-13【思路探究】过图(1)(2)中的顶点D、C分别向旋转轴引垂线,即可得到旋转后的图形.【自主解答】如图所示,(1)是由圆锥、圆柱组合而成的,(2)是由圆柱中间挖去一个圆锥组合而成的.的形成过程进行分析.图1-1-14(2013·连云港检测)如图1-1-14,梯形ABCD中,AD∥BC,且AD<BC,∠B和∠C均为锐角,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.【解】如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.【思路探究】画出轴截面,依据相似三角形求解.【自主解答】 (1)如图所示,设圆台的轴截面是等腰梯形ABCD ,作AM ⊥BC 于M ,延长BA ,CD 交于S .由已知得上底面半径O 1A =2 cm ,下底面半径OB =5 cm ,且腰长AB =12 cm ,∴圆台的高AM =122--2=315(cm).(2)设截得此圆台的圆锥的母线长为l cm , 则由△SAO 1∽△SBO ,得l -12l =25, 解得l =20.即截得此圆台的圆锥的母线长为20 cm.1.本题在求解过程中,通过轴截面实现了空间运算平面几何化的思想,其优点是轴截面较直观得反映了圆台的母线长、高及上、下底面半径间的关系.2.解有关圆柱、圆锥、圆台的计算问题时常常利用它们的轴截面.(2013·南通检测)把一个圆锥截成圆台,已知圆台上下底面的半径之比为1∶4,母线长为9;则圆锥的母线长是________.【解析】 设该圆锥的轴截面如图所示,由平面几何知识可知,O ′B ′OB =CB ′CB∴14=CB ′CB ′+9∴CB ′=3,∴BC =3+9=12.即圆锥的母线长为12.【答案】12(见学生用书第6页)分割法判断旋转体的构成图1-1-15(14分)已知AB是直角梯形ABCD中与底边垂直的一腰,如图1-1-15所示.分别以AB,BC,CD,DA所在的直线为轴旋转,试说明所得几何体的结构特征.【思路点拨】以直角梯形的不同边所在直线为轴旋转,所得到的几何体是不同的.【规范解答】(1)以AB边所在的直线为轴旋转所得旋转体是圆台.如图①所示.3分(2)以BC边所在的直线为轴旋转所得旋转体是一组合体:下部为圆柱,上部为圆锥,如图②所示.6分(3)以CD边所在的直线为轴旋转所得旋转体为一个组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥.如图③所示.10分(4)以AD边所在的直线为轴旋转得到一个组合体:一个圆柱上部挖去一个圆锥,如图④所示.14分1.根据几何体的结构特征判断几何体的类型,首先要熟练掌握各类几何体的概念,把握好各类几何体的主要特征,其次要有一定的空间想象能力.2.对于不规则的平面图形绕轴旋转问题,要先对原平面图形作适当的分割,再根据柱、锥、台的结构特征进行判断.1.圆柱、圆台、圆锥的关系如图所示:2.处理台体问题常采用还台为锥的补体思想,处理组合体问题常采用分割思想.3.重视圆柱、圆台、圆锥的轴截面在解决与旋转体相关量(如母线长等)中的特殊作用,体会空间几何问题平面化的思想.。
课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
(老师读,学生读,加深理解。
第9课时作业平面基本性质空间直线位置关系复习
分层训练
1空间两直线的位置关系哪几种?
2、异面直线是指( )
A •空间中两条不相交的直线;
B .分别位于两个不同平面内的两条直线;
C .平面内的一条直线与平面外的一条直线;
D .不同在任何一个平面内的两条直线。
4、 空间五个点,没有三点共线,但有四点共面,这样的五个点可以确定平面数最多为
()
A . 3
B . 5
C . 6
D . 7
5、 直线I i //l 2,在l i 上取三点,在12上取两点,由这五个点能确 __________ 个平面.
6、 空间四个平面两两相交,其交线条数为 _______ .
7、 空间四个平面把空间最多分为 ______ 部分.
8、 命题"平面 、 相交于经过点 M 的直线a ”可用符号语言表述为 ________ . 拓展延伸
9、 已知 ABCD-A i B i C i D i 是棱长为a 的正方体。
(1)
正方体的哪些棱所在的直线与直线 BC i 是异面直线?
(2) 求异面直线 AA i 与BC 所成的角;
(3) 求异面直线 BC i 和AC 所成的角。
10、 已知平面 与平面 交于直线I , A 、B 为直线I 上的两点,在平面 内作直线AC ,在 平面 内作直线BD ,求证:AC 与BD 是异面直线。
学生质疑
3、如图,在长方体 ABCD-A i B i C i D i 中,直线
哪些异面直线?如何判断两条直线是异面直线? A i C 与B i B 具有怎样的位置关系?图中还有 C i
C。
1学习空间几何体要“三会”一、会辨别例1下列说法:①一个几何体有五个面,则该几何体可能是球、棱锥、棱台、棱柱;②若一个几何体有两个面平行,且其余各面均为梯形,则它一定是棱台;③直角三角形绕其任意一条边旋转一周都可以围成圆锥.其中说法正确的个数为________.分析可根据柱体、锥体、台体和球体的概念进行判断.解析一个几何体有五个面,可能是四棱锥、三棱台,也可能是三棱柱,但不可能是球,所以①错;由于棱台的侧棱是原棱锥侧棱的一部分,所以棱台的各侧棱的延长线相交于一点,而②中的几何体其侧棱延长线并不一定会交于一点,所以②错;③中如绕直角边旋转可以形成圆锥,但绕斜边旋转形成的是由两个圆锥组成的组合体,所以③错.故填0.★★答案★★0评注要准确辨别各种几何体,可从轴、侧面、底面、母线、平行于底面的截面等方面入手,当然掌握定义是大前提.二、会折展例2纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开,外面朝上展平,得到如图所示的平面图形,则标“Δ”的面的方位是________.分析将平面展开图按要求折叠成正方体,根据方位判断即可.解析将平面展开图折叠成正方体,如图所示,标“Δ”的面的方位应为北.故填北.★★答案★★北评注将空间几何体展开成平面图形,或将展开图折叠成空间几何体,在后面的计算或证明中经常用到,应引起重视.解决这类问题的关键是充分发挥空间想象能力或亲自动手制作模型进行实践.三、会割补例3如图所示是一个三棱台ABC-A1B1C1.试用一个平面把这个三棱台分成一个三棱柱和一个多面体,并用字母表示.分析三棱柱要求两个底面为平行且全等的三角形,其余三个面为四边形,且相邻两个四边形的公共边都相互平行.解作A1D∥BB1,C1E∥BB1,连结DE,则三棱柱为A1B1C1-DBE,多面体为ADECC1A1(如图所示).评注正确理解各类几何体的概念是将几何体进行割补的前提在后面的空间几何体的体积或面积计算中经常要通过线、面将不规则的几何体通过割补的方法转化为规则的几何体,从而可以利用公式求解.2空间几何体中常见错例剖析在空间几何体的解题中,很容易出现错误,本文将结合几道具体的错例来谈谈如何防止出现类似的错误.一、空间几何体概念不清例1下列结论中正确的是________.(填序号)①各个面都是三角形的几何体是三棱锥;②以三角形的一条边所在的直线为旋转轴,将三角形旋转一周形成的曲面所围成的几何体是圆锥;③若棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥;④圆锥的顶点与底面圆周上的任意一点的连线都是母线.错解①②③④剖析①错误,如两个结构相同的三棱锥叠放在一起形成的几何体的各个面都是三角形,但它不是棱锥.②错误,如以一个直角三角形ABC 的斜边AB 为旋转轴旋转一周,其形成的曲面所围成的几何体是同底的两个圆锥,但此几何体不是圆锥.③错误,若六棱锥的底面各边长相等,则其底面多边形是正六边形,由几何图形知,若以正六边形为底面,且侧棱长相等,则棱锥的侧棱长必然大于底面边长. ④显然正确. 正解 ④二、斜二测画法的规则错误例2 如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是________.错解 2剖析 与y 轴平行的那条边和在x 轴上的边垂直,且长度应是原长的2倍,所以其面积应为S =12×|-2|×(2×|-2|2)=2 2. 正解 2 2三、空间想象能力不足致错例3 用一个平面去截正方体,所得的截面不可能是_______________________. (填序号)①正六边形;②菱形;③直角三角形;④等腰梯形;⑤钝角三角形. 错解 ②剖析 空间想象能力和作图能力不强,没有动手实验的学习习惯,做截面问题仅凭直觉.①④显然可以得到.而截面可能是正方形,正方形是菱形,所以②也可得到.③⑤均为三角形,这时截面必与从一个顶点出发的三条棱相交,构造一个“角”,如图,截面三角形PQR 必为锐角三角形.任选一个∠PQR 为例,PQ 2+QR 2-PR 2=(a 2+b 2)+(b 2+c 2)-(a 2+c 2)>0,所以∠PQR 为锐角.同理,∠QPR ,∠PRQ 也为锐角. 所以,本题★★答案★★为③⑤. 正解 ③⑤3“三共”问题的证法精析一、证明点共线例1如图所示,已知正方体ABCD-A1B1C1D1,A1C与截面DBC1交于点O,AC与BD交于点M,求证:C1、O、M三点共线.证明因为C1∈平面DBC1,且C1∈平面A1ACC1,所以C1是平面A1ACC1与平面DBC1的公共点.又因为M∈AC,所以M∈平面A1ACC1,因为M∈BD,所以M∈平面DBC1,所以M也是平面A1ACC1与平面DBC1的公共点,所以C1M是平面A1ACC1与平面DBC1的交线.因为O为平面A1ACC1与平面DBC1的交点,所以O∈平面A1ACC1,O∈平面DBC1,即O也是两个平面的公共点,所以O∈C1M,即C1、M、O三点共线.评注证明点共线的问题,一般可转化为证明这些点是某两个平面的公共点,这样可根据公理2证明这些点同在两个平面的交线上.二、证明线共点例2如图,△ABC与△A1B1C1三条边对应平行,且两个三角形不全等,求证:三对对应顶点的连线相交于一点.分析要证三线共点,可证其中两条直线有交点,且该交点在第三条直线上.证明由A1B1∥AB知,A1B1与AB可确定平面α.同理C1B1,CB和A1C1,AC可分别确定平面β和γ.又△ABC与△A1B1C1不全等,则A1B1≠AB.若AA1,BB1的交点为P,则P∈AA1,且P∈BB1.又β∩γ=CC1,BB1⊂β,则P∈β;AA1⊂γ,则P∈γ.所以点P在β∩γ的交线上,即P∈CC1,这样点P在AA1,BB1,CC1上,即三对对应顶点的连线相交于一点.评注解决此类问题的一般方法:先证其中两条直线交于一点,再证该点也在其直线上.三、证明线共面例3求证:两两相交但不过同一点的四条直线共面.分析四条直线不共点,但有可能三线共点,或没有三线共点,所以应分两种情况加以证明.证明分两种情况证明:①有三条直线过同一点,如图,因为A∉l4,所以过A,l4可确定平面α.因为B,C,D∈l4,所以B,C,D∈α.所以AB⊂α,AC⊂α,AD⊂α.因此四条直线l1,l2,l3,l4共面.②任意三条直线都不过同一点,如图.因为l1∩l2=A,所以过l1,l2可以确定平面α.又因为D,E∈l2,B,C∈l1,所以D,E,B,C∈α.由E∈α,B∈α,可得BE⊂α,即l3⊂α.同理可证l4⊂α.因此四条直线l1,l2,l3,l4共面.评注证明线共面问题,一般有两种方法:一是先由两条直线确定一个平面,再证明第三条直线在这个平面内;二是由其中两条直线确定一个平面α,另两条直线确定一个平面β,再证α,β重合,从而三线共面.4巧用辅助线(面)证明平行关系在证明线与线、线与面、面与面的平行关系时,从“看到结论想判定定理,看到条件想性质定理”来分析题意和寻求证明思路,往往要根据定理的条件,通过构造辅助线或辅助面来解决问题.一、作辅助线来解题例1 如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是棱BC ,C 1D 1的中点,求证:EF ∥平面BB 1D 1D .证明 如图,取D 1B 1的中点O ,连结OF ,OB .因为OF 綊12B 1C 1,BE 綊12B 1C 1,所以OF 綊BE ,即四边形OFEB 为平行四边形, 所以EF ∥BO .又EF ⊄平面BB 1D 1D ,BO ⊂平面BB 1D 1D , 所以EF ∥平面BB 1D 1D .评注 将空间问题转化为平面问题,是解决立体几何问题的重要策略,关键是选择或添加适当的直线.而本题通过巧作平行线,利用“有困难,找中点”来证明线面平行是最有效的方法之一.二、作辅助面来解题例2 如图,已知直线a ∥平面α,直线a ∥平面β,α∩β=b ,求证:a ∥b .分析 要证明线线平行,我们可以通过线面平行,或者面面平行来解决.条件里没有提到面面平行,所以,我们利用线面平行来突破. 证明 过a 作平面γ,δ,使得γ∩α=c ,δ∩β=d .因为γ∩α=c ,直线a ∥平面α,a ⊂γ,所以a ∥c . 同理可证a ∥d .所以c ∥d .由d ⊂β,c ⊄β,得c ∥β. 因为c ⊂α,α∩β=b ,所以c ∥b .又a ∥c ,所以a ∥b .评注本题要使用线面平行的性质定理,需要找出或作出过已知直线且与已知平面相交的平面,以便使用性质定理,因此常作辅助面.5转化中证明空间垂直关系空间中的各种垂直关系是高中数学的重要内容.在高考中着重考查线线垂直、线面垂直、面面垂直的证明,这就需要利用线面垂直、面面垂直的判定定理及其性质,运用三者之间的转化关系.一、证明线面垂直证明线面垂直通常有两种方法:一是利用线面垂直的判定定理,由线线垂直得到线面垂直;二是利用面面垂直的性质定理,由面面垂直得到线面垂直.例1如图,AB是圆O的直径,P A垂直于圆O所在的平面,M是圆周上任意一点,AN⊥PM,垂足为点N.求证:AN⊥平面PBM.证明因为P A垂直于圆O所在的平面,所以P A⊥BM.因为M是圆周上一点,所以BM⊥AM.又因为P A∩AM=A,所以BM⊥平面P AM,所以BM⊥AN.又因为AN⊥PM,PM∩BM=M,所以AN⊥平面PBM.评注本题是考查线面垂直很好的载体,它融合了初中所学的圆的特征,在求解时要注意线线、线面垂直关系的转化.二、证明面面垂直证明面面垂直一般有两种方法:一是利用面面垂直的定义,通过求二面角的平面角为直角而得到,这种方法在证明面面垂直时应用较少;二是利用面面垂直的判定定理由线面垂直得到面面垂直.例2如图,△ABC为等边三角形,EC⊥平面ABC,BD∥EC,且EC=CA=2BD,M是EA 的中点.(1)求证:DE =DA ;(2)求证:平面BDM ⊥平面ECA .证明 (1)如图,取EC 的中点F ,连结DF ,易知DF ∥BC . 因为EC ⊥BC ,所以DF ⊥EC . 在Rt △EFD 和Rt △DBA 中,因为EF =12EC =BD ,FD =BC =AB ,所以Rt △EFD ≌Rt △DBA , 所以DE =DA .(2)如图,取CA 的中点N ,连结MN ,BN ,则MN ∥EC ,且MN =12EC .又EC ∥BD ,且BD=12EC , 所以MN ∥BD ,且MN =BD , 所以四边形BDMN 是平行四边形, 所以点N 在平面BDM 内. 因为EC ⊥平面ABC ,所以EC ⊥BN . 又CA ⊥BN ,所以BN ⊥平面ECA .因为BN ⊂平面MNBD ,所以平面BDM ⊥平面ECA . 评注 在证明面面垂直时通常转化为证明线面垂直的问题. 三、证明线线垂直证明线线垂直,往往根据线面垂直的性质,即如果一条直线垂直于一个平面,那么它和这个平面内的任意一条直线垂直.例3 如图,已知平面α∩平面β=CD ,EA ⊥α,EB ⊥β,垂足分别为A ,B ,求证:CD ⊥AB .证明 因为EA ⊥α,CD ⊂α,所以CD ⊥EA .又因为EB ⊥β,CD ⊂β,所以EB ⊥CD . 又因为EA ∩EB =E ,所以CD ⊥平面ABE . 因为AB ⊂平面ABE ,所以CD ⊥AB .评注 在证明空间中的垂直关系的问题时,经常要用到转化与化归的数学思想,主要体现在线线垂直、线面垂直、面面垂直证明的相互转化过程之中.其转化关系如下: 线线垂直????判定定理性质定理线面垂直????判定定理性质定理面面垂直.6 几何法求空间角空间角的计算是对空间线与线、线与面、面与面位置关系的一种定量研究和精确的刻画.利用几何法求解空间角的过程可以将逻辑推理与运算融为一体,能达到综合考查同学们的空间想象能力、逻辑推理能力、运算能力、分析问题及解决问题的能力的目的.下面就举例说明利用几何法求空间角的策略. 一、求异面直线所成的角求异面直线所成的角主要是根据定义利用平移法作出所成角,平移的主要途径有:(1)利用三角形和梯形的中位线;(2)利用平行线分线段成比例的性质;(3)利用平行四边形(矩形、正方形)的性质;(4)利用线面平行和面面平行的性质等.例1 已知三棱柱ABC -A 1B 1C 1的侧棱都垂直于底面,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角为________.分析 考虑直线AC 1在平面AA 1C 1C 上平行移动,当点C 1移至A 1时,点A 自然移至CA 的延长线上,因此只需取AD =AC 即可顺利求解. 解析 如图,延长CA 到D ,使得AD =AC ,连结A 1D .由AC ∥A 1C 1且AC =A 1C 1, 得AD ∥A 1C 1且AD =A 1C 1, 所以四边形ADA 1C 1为平行四边形.所以∠DA 1B 就是异面直线BA 1与AC 1所成的角. 设AB =AC =AA 1=1,则A 1D =A 1B =BD =2, 即△A 1DB 为等边三角形. 所以∠DA 1B =60°. ★★答案★★ 60° 二、求直线与平面所成的角求直线与平面所成的角关键是根据定义作出斜线在平面上的射影,强调“射影”,而射影又主要是通过作出斜线上一点在平面上的射影来实现.例2 如图,三棱锥A -BCD 的棱长都相等,Q 是AD 的中点,求CQ 与平面BCD 所成角的正弦值.分析 为找出CQ 与平面BCD 所成的角,由线面所成角的定义,只需要找出CQ 在平面BCD 内的射影.解 过点A 作AO ⊥平面BCD ,交平面BCD 于点O ,连结OD ,OB ,OC ,则可以证明O 是△BCD 的中心. 作QP ⊥OD ,则QP ∥AO . 所以QP ⊥平面BCD .连结CP ,则CP 是CQ 在平面BCD 内的射影,从而∠QCP 就是CQ 与平面BCD 所成的角. 设三棱锥的棱长为a ,则在等边△ACD 中,Q 是AD 的中点, 所以CQ =32a . 因为QP ∥AO ,Q 是AD 的中点, 所以QP =12AO =12a 2-(33a )2=66a . 所以sin ∠QCP =QP CQ =23.故CQ 与平面BCD 所成角的正弦值为23.三、求二面角求二面角是通过求其平面角的大小实现的,而平面角的作法中必须强调“垂直”,其常见途径:(1)利用共底的两个等腰三角形;(2)利用共公共边的两个全等三角形;(3)利用线面垂直和面面垂直的性质;(4)对于“无棱”二面角一般需先确定棱,然后再利用上述方法作出平面角.例3 在三棱锥S -ABC 中,已知△ABC 是边长为a 的等边三角形,且SA ⊥底面ABC ,AS =12a ,求二面角A -BC -S 的大小. 解 如图所示,因为AB =AC =a ,∠BAS =∠CAS =90°,所以SB =SC .取BC 的中点D ,连结AD ,SD ,则由等腰三角形的性质,可得SD ⊥BC ,AD ⊥BC .于是由二面角的平面角的定义可知,∠ADS 为二面角A -BC -S 的平面角.因为AS =12a ,AD =32BC =32a ,所以在Rt △ASD 中,tan ∠ADS =12a 32a =33.所以∠ADS =30°,即所求二面角A -BC -S 的大小为30°.评注 在应用二面角的定义时,常常要先在二面角的棱上取一个适当的点(常取中点),然后再过这一点在二面角的两个半平面内分别作棱的垂线,找出二面角的平面角,然后通过解三角形求得二面角的大小.7 空间几何体体积的求法精析空间几何体的体积公式在实际生活中有着广泛的应用,但在具体求解过程中,仅仅记住公式是远远不够的,还要把握图形的内在因素,掌握一些常见的求解策略,灵活选择恰当的方法进行求解. 一、直接用公式求解根据柱体、锥体、台体、球体的体积公式,明确公式中各几何量的值,把未知的逐个求出,再代入公式进行求解.例1 已知圆锥的表面积为15π cm 2,侧面展开图的圆心角为60°,求该圆锥的体积.分析 根据锥体的体积公式V =13Sh 知,应分别求出圆锥的底面半径和高,代入公式计算.解 设圆锥的底面半径为r ,高为h ,母线长为l ,根据题意可得⎩⎪⎨⎪⎧πr 2+πrl =15π,2πr =60×2πl360, 解得⎩⎪⎨⎪⎧r =157,l =6r .所以h =l 2-r 2=(6r )2-r 2=35r 2 =35r =35×157=5 3. 所以V =13π×⎝⎛⎭⎫1572×53=2537π(cm 3).故该圆锥的体积为2537π cm 3.评注 直接利用几何体的体积公式求体积时,需牢固掌握公式,明确各几何量之间的关系,准确进行计算. 二、分割补形求解当给出的几何体比较复杂,有关的计算公式无法运用时,可以采用“分割”或“补形”的方法,化复杂的几何体为简单的几何体(柱、锥、台、球),利用各简单几何体的体积和或差求解.例2 如图所示,在三棱台ABC -A 1B 1C 1中,AB ∶A 1B 1=1∶2,求三棱锥A 1-ABC 、三棱锥B -A 1B 1C 、三棱锥C -A 1B 1C 1的体积之比.分析 如图,三棱锥B -A 1B 1C 可以看作棱台减去三棱锥A 1-ABC 和三棱锥C -A 1B 1C 1后剩余的几何体,然后相比即可.解 设三棱台的高为h ,S △ABC =S ,则111A B C S ∆=4S .111·,33ABC A ABC V S h Sh ∆-三棱锥所以==111114·.33A B C A ABC V S h Sh ∆-三棱锥==1117,3ABC A B C V Sh -三棱台又=11111111117142.3333C B C B C A B C ABC V V V V Sh Sh Sh Sh -----三棱锥三棱锥三棱台三棱锥所以===A B -A B C -A A -11111111:::2:4.B B C C B C V V V 三棱锥三棱锥三棱锥所以=1A -ABC -A -A评注 三棱柱、三棱台可以分割成三个三棱锥,分割后可由锥体的体积求柱体和台体的体积.在立体几何中,通过分割或补形,将原几何体割成或补成较易计算体积的几何体,从而求出原几何体的体积,这是求体积的重要思路与方法. 三、等积转换求解对于一个几何体,可以从不同的角度去看待它,通过改变顶点和底面,利用体积不变的原理,求原几何体的体积.例3 如图所示的三棱锥O -ABC 为长方体的一角,其中OA ,OB ,OC 两两垂直,三个侧面OAB ,OAC ,OBC 的面积分别为1.5 cm 2,1 cm 2,3 cm 2,求三棱锥O -ABC 的体积.分析 三棱锥O -ABC 的底面和高不易求解,可以转换视角,将三棱锥O -ABC 看作C 为顶点,△OAB 为底面.由三棱锥C -OAB 的体积得出三棱锥O -ABC 的体积.解 设OA ,OB ,OC 的长分别为x cm ,y cm ,z cm ,则由已知可得⎩⎪⎨⎪⎧12xy =1.5,12xz =1,12yz =3,解得⎩⎪⎨⎪⎧x =1,y =3,z =2.于是V 三棱锥O -ABC =V 三棱锥C -OAB =13S △OAB ·OC=13×1.5×2=1(cm 3)。
第一章立体几何初步一、知识结构二、重点难点重点:空间直线,平面的位置关系。
柱、锥、台、球的表面积和体积的计算公式。
平行、垂直的定义,判定和性质。
难点:柱、锥、台、球的结构特征的概括。
文字语言,图形语言和符号语言的转化。
平行,垂直判定与性质定理证明与应用。
第一课时棱柱、棱锥、棱台【学习导航】知识网络学习要求1.初步理解棱柱、棱锥、棱台的概念。
掌握它们的形成特点。
2.了解棱柱、棱锥、棱台中一些常用名称的含义。
3.了解棱柱、棱锥、棱台这几种几何体简单作图方法4.了解多面体的概念和分类.自学评价1.棱柱的概念:表示法:思考:棱柱的特点:.【答】2.棱锥的概念:表示法:思考:棱锥的特点:. 【答】3.棱台的概念:表示法:思考:棱台的特点:. 【答】4.多面体的概念:5.多面体的分类:⑴棱柱的分类⑵棱锥的分类⑶棱台的分类【精典范例】例1:设有三个命题:空间几何体简单的空间几何体基本元素(点、线、面)关系多面体(棱柱、棱锥、棱台) 旋转体(圆柱、圆锥、圆台)直线与直线直线与平面平面与平面结构特征,图形表示,侧面积,体积平行、垂直、夹角、距离三视图,直观图,展开图判定、性质综合应用听课随笔棱柱、棱锥、棱台棱柱的结构特征棱锥的结构特征棱台的结构特征甲:有两个面平行,其余各面都是平行四边形所围体一定是棱柱;乙:有一个面是四边形,其余各面都三角形所围成的几何体是棱锥;丙:用一个平行与棱锥底面的平面去截棱锥,得到的几何体叫棱台。
以上各命题中,真命题的个数是()A.0 B. 1 C. 2 D. 3例2:画一个四棱柱和一个三棱台。
【解】四棱柱的作法:⑴画上四棱柱的底面----画一个四边形;⑵画侧棱-----从四边形的每一个顶点画平行且相等的线段;⑶画下底面------顺次连结这些线段的另一个端点⑷画一个三棱锥,在它的一条侧棱上取一点,从这点开始,顺次在各个侧面画出与底面平行的线段,将多余的线段檫去.点评:(1)被遮挡的线要画成虚线(2)画台由锥截得思维点拔:解柱、锥、台概念性问题和画图需要:(1).准确地理解柱、锥、台的定义(2).灵活理解柱、锥、台的特点:例如:棱锥的特点是:⑴两个底面是全等的多边形;⑵多边形的对应边互相平行;⑶棱柱的侧面都是平行四边形。
听课随笔第13课时二面角一、【学习导航】知识网络学习要求1.理解二面角及其平面角的概念2.会在具体图形中作出二面角的平面角,并求出其大小. 【课堂互动】自学评价1. 二面角的有关概念(1).半平面:(2).二面角:(3).二面角的平面角:(4).二面角的平面角的表示方法:(5).直二面角:(6).二面角的范围:2.二面角的作法:(1)定义法(2)垂面法(3)三垂线定理【精典范例】例1:下列说法中正确的是 (D )A.二面角是两个平面相交所组成的图形B.二面角是指角的两边分别在两个平面内的角C.角的两边分别在二面角的两个面内, 则这个角就是二面角的平面角D.二面角的平面角所在的平面垂直于二面角的棱.例2如图, 在正方体ABCD-A 1B 1C 1D 1中:(1)求二面角D 1-AB-D 的大小;(2)求二面角A 1-AB-D 的大小D D 1 A 1 C B 1 C 1见书43例1(1) 45°(2) 90思维点拨要求二面角的平面角,关键是根据图形自身特点找出二面角的平面角,主要方法有:定义法,垂面法,三垂线定理法.步骤为作,证,求.例3在正方体ABCD-A 1B 1C 1D 1中,求平面A 1BD 与平面C 1BD 的夹角的正弦值.点拨:本题可以根据二面角的平面角的定义作出二面角的平面角.分析:取BD 的中点O ,连接A 1O,C 1O ,则∠A 1O C 1为平面A 1BD 与平面C 1BD 的二面角的平面角.答:平面A 1BD 与平面C 1BD 的夹角的正弦值13C A 听课随笔追踪训练1.从一直线出发的三个半平面,两两所成的二面角均等于θ,则θ=60°2.矩形ABCD中,AB=3,AD=4,PA⊥面ABCD,且,则二面角A-BD-P的度数为30°3.点A为正三角形BCD所在平面外一点,且A到三角形三个顶点的距离都等于正三角形的边长,求二面角A-BC-D的余弦值.答:1 3。
符号表示5 .直线和平面垂直的性质定、【学习导航】学习要求1.掌握直线与平面的位置关系.2 .掌握直线和平面平行的判定与性质定 理..3.应用直线和平面平行的判定和性质定理证明两条直线平行等有关问题.【课堂互动】 自学评价1.直线和平面垂直的定义: _______________符号表示: ____________________________垂线: ________________________________垂面: ________________________________垂足: ________________________________思考:在平面中,过一点有且仅有一条直线与已知直线垂直,那么在空间。
(1) 过一点有几条直线与已知平面垂直?答:(2) 过一点有几条平面与已知直线垂直?答:2 .定理:过一点有且只有一条直线与已知平面垂直,过一点有且只有一个平面与已知直线垂直3 •点到平面的距离: __________________ 已知: 求证: 证明:见书346 .直线和平面的距离: 【精典范例】 例1:.求证:如果两条平行直线中的一条垂 直于一个平面,那么另一条直线也垂直于这个 平面. 证明:见书34例14.直线与平面垂直的判定定理:思维点拔:要证线面垂直,只要证明直线与平面内的两条相交直线垂直,或利用定义进行证明。
RtAABC 所在平面外一点S ,且SA=SB=SC(1)求证:点s在斜边中点D的连线SD丄面ABC⑵若直角边BA=BC,求证:BDXffi SAC例3.已知正方体ABCD-A|B]CQi .(1)求证:AiC丄BQi ;(2)若M、N分别为BQi与GD上的点,且MN丄BQi , MN丄CiD ,求证:MN//AQ .追踪训练如图,已知PAX a , PB丄B ,垂足分别为A、B,且a Ci B = /,求证:AB丄/.分析:⑴可先证BiDi丄面AiCCi,从而证出结论.(2)可证MN和A©都垂直于面BDG,从而利用性质证出结论证明:略例2.已知直线/ //平面a .求证:直线/各点到平面a的距离相等.证明:见书34例2点评:要证线线平行均可利用线面垂直的性质。
第1课时棱柱、棱锥、棱台分层训练
1. 将梯形沿某一方向平移形成的几何体是()
A.四棱柱
B.四棱锥
C.四棱台
D.五棱柱
2. 下列命题中,正确的是()
A. 有两个面互相平行,其余各面都是四边形
的几何体叫棱柱
B. 棱柱中互相平行的两个面叫做棱柱的底面
C. 棱柱的侧面是平行四边形,而底面不是平行四边形
D. 棱柱的侧棱都相等,侧面是平行四边形
3. 六棱台是由一个几何体被平行于底面的一个
平面截得而成,这个几何体是()
A.六棱柱
B.六棱锥
C.长方体
D.正方体
4. ______________________ 一个棱柱至少有个面,面数最少的
棱柱有__________ 条棱,有__________ 条侧棱,有_________ 个顶点.
5. 一个棱锥至少有_______________ 个面,它既叫
___________ 面体,又叫 ___________ 棱锥.
6. 只有3个平面的几何体能构成多面体吗?有4 面体的棱台吗?棱台至少有几个面?拓展延伸
1. 平行于棱柱侧棱的截面是什么图形? 过棱
锥顶点的截面是什么图形?
【解】
2.用任意一个平面去截正方体,得到的截
面可能是几边形?
【解】
本节学习疑点:
7.画一个三棱锥和一个四棱台.(不写画法)。
第一章 立体几何体初步1.已知直线a , b 和平面α, 下面命题中正确的是 ( )A.若a//α, b ⊂α, 则a//bB.若a//α, b//α, 则a//bC.若a//b , b ⊂α, 则a//αD.若a//b , a//α, 则b//α, 或b ⊂α2.如图所示, 点P 是平面ABC 外一点, 且满足PA 、PB 、PC 两两垂直, PE ⊥BC , 则该图中两两垂直的平面共有( )A. 3对B. 4对C. 5对D. 6对 3.一个正六棱锥的底面边长为a , 体积为23a 3, 那么侧棱与底面所成角为 ( ) A. 6π B. 4π C. 3π D. π125 4.如果圆锥底面半径为r , 轴截面为等腰直角三角形, 那么圆锥的全面积为 ( ) A.2πr 2 B. (2+1)πr 2 C. 31(2+1)πr 2 D. 32πr 2 5.两个平行平面的距离等于10, 夹在这两个平面间的线段AB 长为20 , 则AB 与这两个平面所成角是__________ .6.已知点P 是△ABC 所在平面外一点, 过点P 作PO ⊥平面ABC , 垂足为O , 连结PA 、PB 、PC.①若PA=PB=PC , 则O 为△ABC 的____心;②若PA ⊥PB, PB ⊥PC, PC ⊥PA , 则O 是△ABC 的____心;③若P 点到三边AB 、BC 、CA 的距离相等, 则O 是△ABC 的_____心.7.(1)底面边长为2 , 高为1的正三棱锥的全面积为__________ .(2)若球的体积与其表面积的2倍的数值相等, 则球的半径为_______ .8.下列命题中:①过直线外一点可作无数条直线与己知直线成 异面直线;②如果一条直线不在平面内, 那么这条直线与这个平面平行;③过直线外一点有无数个平面与这条直线平行;④若α⊥γ, β⊥γ, 则α//β;A B CP E⑤若α⊥β, β⊥γ, 则α⊥γ.说法正确的是 .9.如图, 在四棱锥P-ABCD 中, M 、N 是AB 、PC 的中点, 若ABCD 是平行四边形, 求证: MN//平面PAD .10.在四棱锥P-ABCD 中, 若PA ⊥平面ABCD, 且ABCD 是正方形.(1)求证: 平面PAC ⊥平面PBD ;(2)若PA=AB=AD , 试求PC 与平面ABCD 所成角的正切值.11.如图, 四棱锥P-ABCD 中, 侧面PDC 是边长为2的正三角形且与底面ABCD 垂直,∠ADC=60°且ABCD 为菱形.(1)求证: PA ⊥CD ;(2)求异面直线PB 和AD 所成角的余弦值;(3)求二面角P-AD-C 的正切值.A B C D M N PA B C D P12.圆台的体积是2343πcm 3, 侧面展开图是半圆环, 它的大半径等于小半径的3倍, 求这个圆台的底面半径.选修检测13. 以下四个命题:(1)圆上三点可确定一个平面;(2)圆心和圆上两点可确定一个平面;(3)四条平行线确定六个平面;(4)不共线的五点可确定一个平面,则必有三点共线..其中正确的是 ( )A.(1)B.(1)(3)C.(1)(4)D.(1)(2)(4)14.正三棱锥S -ABC 的侧棱与底面边长相等,如果E ,F 分别是SC ,AB 的中点,那么异面直线EF 与SA 所成的角等于 ( )A.90°B.45°C.60°D.30°15.(94上海)在棱长为1的正方体ABCD -A ′B ′C ′D ′中,M 、N 分别为A ′B ′和BB ′的中点,那么AM 和CN 所成角的余弦值为 ( ) A.23 B.210C.53D.52 16.一个二面角的两个半平面分别垂直与另一个二面角的两个半平面,则这两个二面角的位置关系是 ( )A . 相等 B. 互补C. 相等或互补D. 不能确定17.过正方形ABCD 的顶点A 作线段AP ⊥平面ABCD ,且AP=AB ,则平面ABP 与平面CDP 所成的二面角的度数是 .18.已 知△ABC 中,A ∈α,BC ∥α,BC=6,∠BAC=90︒,AB 、AC 与平面α分别成30︒、45︒的角.则BC 到平面α的距离为 .19. Rt △ABC 的斜边在平面α内,直角顶点C 是α外一点,AC 、BC 与α所成角分别为30°和45°.则平面ABC 与α所成角为 .20.在空间四边形ABCD 中,AD=BC=2,E 、F 分别是AB 、CD 的中点,若EF=3,则AD 、BC 所成的角为 .21.圆锥的底面半径为5cm , 高为12cm , 当它的内接圆柱的底面半径为何值时, 圆锥的内接圆柱全面积有最大值; 最大值是多少?22.在三棱锥P-ABC 中,三条侧棱PA ,PB ,PC 两两垂直,H 是△ABC 的垂心,求证: ⑴PH ⊥底面ABC ⑵△ABC 是锐角三角形._A23.在正方体AC 1中,E 为BC 中点(1)求证:BD 1∥平面C 1DE ;(2)在棱CC 1上求一点P ,使平面A 1B 1P ⊥平面C 1DE ;(3)求二面角B —C 1D —E 的余弦值.24.(06江苏高考)在正ABC ∆中,E 、F 、P 分别是AB 、AC 、BC 边上的点,满足AE :EB=CF :FA=CP :PB=1:2(如图1),将△AEF 沿EF 折起到△A 1EF 的位置,使二面角1A EF B --成直二面角,连结A 1B 、A 1P (如图2)⑴求证:1A E ⊥平面BEP ;⑵求直线A 1E 与平面A 1BP 所成角的大小;⑶求二面角1B A P F --的大小(用反三角函数值表示)。
第10课直线与平面的位置关系
分层训练
1•给出下列四个命题
①若一条直线与一个平面内的一条直线平行,则这条直线与这个平面平行;
②若一条直线与一个平面内的两条直线平行,则这条直线与这个平面平行;
③若平面外的一条直线和这个平面内的一条
直线平行,那么这条直线和这个平面平行;
④若两条平行直线中的一条与一个平面平行,
则另一条也与这个平面平行•
其中正确命题的个数是()
A. 0
B. 1
C. 2
D. 3 2•梯形ABCD 中,AB//CD, AB 1 a , CD? a ,则
CD与平面a内的直线的位置关系只能是()
A.平行
B.平行或异面
C.平行或相交
D.异面或相交
3.如图aA3 =CD , ady =EF , ^门丫=AB
若AB// a,贝U CD与EF __________ ( “平行”或“不平行” •
6•如图,E、F、G、H分别是空间四边形ABCD 的边AB、BC、CD、DA的中点,求证:
(1) 四点E、F、G、H共面;
(2) BD〃平面EFGH , AC// 平面EFGH .
4•如图,在三棱柱ABC-A 1B1C1中,E C BC , F C B1C1 , EF//C1C,点M C 平面AA1B1B,点M、E、F确定平面丫,试作平面丫与三棱柱
ABC-A 1B1C1 表面的交线,其画法5•如图,AB〃a , AC//BD , C Ca , D Ca ,求证:
AC=BD.
C E
拓展延伸
如图,在四棱锥P-ABCD中,M、N分别是AB、
PC的中点,若ABCD是平行四边形,求证:
MN// 平面PAD .
节学习疑点:
学生质疑
教师释疑。