函数对称性的三类题型
- 格式:doc
- 大小:340.00 KB
- 文档页数:3
函数的对称问题讲解一、函数对称性的定义函数的对称性是指函数图像关于某条直线或某个点对称的性质。
函数的对称性可以通过函数自身的性质进行描述和刻画,例如函数在某点的导数可以描述函数图像在该点的切线斜率。
函数的对称性分为轴对称和中心对称两种,轴对称是指函数图像关于某条直线对称,中心对称是指函数图像关于某点对称。
二、函数图像的对称轴和对称中心1.对称轴:如果函数图像关于直线x=a对称,那么对于任意x,都有f(a+x)=f(a-x),即函数在x=a处取得极值。
2.对称中心:如果函数图像关于点(a,b)对称,那么对于任意x,都有f(a+x)+f(a-x)=2b,即函数在x=a处的值等于b。
三、奇函数和偶函数的对称性1.奇函数:如果对于任意x,都有f(-x)=-f(x),则函数f(x)是奇函数。
奇函数的图像关于原点对称。
2.偶函数:如果对于任意x,都有f(-x)=f(x),则函数f(x)是偶函数。
偶函数的图像关于y轴对称。
四、对称性与周期性的关系函数的对称性和周期性之间有一定的联系。
例如,如果函数f(x)是周期为T的周期函数,并且图像关于直线x=a对称,那么对于任意x,都有f(a+x)=f(a-x),即函数在x=a处取得极值。
因此,函数的对称性和周期性是相互联系的。
五、对称性与函数最值的关系函数的对称性和最值之间也有一定的关系。
例如,如果函数f(x)在区间[a,b]上单调递增或递减,并且图像关于直线x=(a+b)/2对称,那么f(x)在(a,b)上的最小值或最大值一定出现在对称轴上。
因此,函数的对称性和最值之间也是相互联系的。
六、对称性在解题中的应用函数的对称性在解题中有着广泛的应用。
例如,在求解函数的极值、最值等问题时,可以利用函数的对称性简化问题;在判断函数的单调性时,可以利用函数的对称性寻找关键点;在解决与周期性相关的问题时,可以利用函数的对称性寻找周期的规律等等。
因此,掌握函数的对称性对于解决数学问题具有重要的意义。
函数的对称性真题答案解析在高中数学的学习中,函数的对称性是一个重要的概念。
了解和掌握函数的对称性对于解题和理解函数性质都有很大的帮助。
下面,我们将通过对几道函数对称性的真题进行解析,来深入了解函数对称性的应用和解题技巧。
1. 已知函数f(x)在R上满足f(1-x) = f(x) + 1,求f(0)的值。
首先,我们来分析题目中给出的函数对称性条件,即f(1-x) = f(x) + 1。
这个条件意味着函数关于直线x=1/2对称。
我们可以利用这个对称性进行解题。
假设f(x)的图像在平面直角坐标系上对称于直线x=1/2,那么对于任意x,x和1-x关于直线x=1/2的距离是相等的。
也就是说,对于任意实数x,有|x-1/2|=|1-x-1/2|。
当x=0时,左边的绝对值式子等于1/2,右边的绝对值式子也等于1/2。
所以,f(0)的值与f(1/2)的值是相等的。
进一步推导,我们可以得到f(0) = f(1/2) + 1。
再来看题目中给出的等式f(1-x) = f(x) + 1。
将x替换为1/2,得到f(1/2) = f(1/2) + 1。
这个等式显然是不成立的。
所以,我们可以得出结论,函数f(x)在R上不存在。
通过这道题目的解析,我们可以看到函数的对称性在解题中的应用。
通过观察题目中给出的条件,我们可以得到函数图像的对称轴,进而得到所求的函数值。
这种方法可以解决关于函数对称性的问题,尤其是对称于直线x=a的情况。
2. 已知函数f(x)在[-1,1]上是奇函数,且满足f(x) = f(3x),求f(0)的值。
对于这道题目,我们需要利用函数的对称性以及函数在给定区间上等式的性质来进行解答。
首先,我们来分析题目中给出的条件。
题目中指出函数f(x)在[-1,1]上是奇函数,说明函数关于原点(0,0)对称。
另外,已知f(x) = f(3x),表明函数满足f(x) = f(3x)的等式关系。
结合这两个条件,我们可以得到f(x)在[-1,1]上的对称轴是直线x=0,同时函数满足f(x) = f(3x)的等式关系。
函数对称性的总结函数对称性是数学中的一个重要概念,它描述了函数图像在某些操作下的不变性。
函数对称性有多种形式,包括对称轴对称、点对称和周期性等。
这些对称性不仅仅是数学上的概念,它们在自然界和现实生活中也有广泛的应用。
在这篇文章中,我们将对函数对称性进行详细的总结和讨论。
首先,我们来谈谈对称轴对称性。
对称轴对称是指函数图像以某一直线为轴对称,即对于函数图像上的任意一点P,它关于对称轴上的另一点P'是关于对称轴对称的。
对称轴对称性在直角坐标系中通常体现为对称轴为y轴的情况,此时函数图像关于y轴对称。
也有一些例外,比如平方函数y = x^2关于x轴对称,开方函数y = √x关于y轴对称。
对称轴对称性常见于各种二次函数、三次函数等。
其次,点对称性是另一种常见的函数对称性。
点对称是指函数图像关于某个点对称,即对于函数图像上的任意一点P,它关于对称中心O的另一点P'是关于对称中心对称的。
对于点对称性来说,对称中心可以是任意点,不一定是坐标轴上的点。
点对称性常见于正弦函数、余弦函数等周期函数中。
接下来,我们来看一下周期性对称性。
周期性是指函数具有固定的周期,即对于函数中的任意一点P,在以周期为基准的一段距离内,P点和P'点的函数值相同。
周期函数是常见的具有周期性对称性的函数。
例如正弦函数y = sin(x)、余弦函数y = cos(x)、正切函数y = tan(x)等都具有周期性对称性。
除了以上三种常见的函数对称性,还有一些特殊的对称性值得关注。
例如,奇函数和偶函数是两种特殊的对称性形态。
奇函数是指满足f(-x) = -f(x)的函数,即函数图像关于坐标原点对称。
常见的奇函数有正弦函数和奇次多项式。
偶函数是指满足f(-x) = f(x)的函数,即函数图像关于y轴对称。
常见的偶函数有余弦函数和偶次多项式。
奇函数和偶函数的对称性在函数的定义和求解中有很多实际应用。
最后,函数对称性在数学中起着重要的作用。
高中数学《函数的对称性与周期性》基础知识及专项练习题(含答案)一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x −=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x −=+⇔关于2a b x +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x −=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2a b x +=为所给对称轴即可。
例如:()f x 关于1x =轴对称()()2f x f x ⇒=−,或得到()()31f x f x −=−+均可,只是在求函数值方面,一侧是()f x 更为方便(3)()f x a +是偶函数,则()()f x a f x a +=−+,进而可得到:()f x 关于x a =轴对称。
① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=−+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=−+⎡⎤⎣⎦:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=−+⎡⎤⎣⎦② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。
3、中心对称的等价描述:(1)()()f a x f a x −=−+⇔()f x 关于(),0a 轴对称(当0a =时,恰好就是奇函数)(2)()()()f a x f b x f x −=−+⇔关于,02a b +⎛⎫ ⎪⎝⎭轴对称 在已知对称中心的情况下,构造形如()()f a x f b x −=−+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a b x +=为所给对称中心即可。
函数的对称性Tomorrow Will Be Better, February 3, 2021函数的对称性一、有关对称性的常用结论1、轴对称1)(x f -=)(x f ⇔函数)(x f y =图象关于y 轴对称;2 函数)(x f y =图象关于a x =对称⇔)()(x a f x a f -=+⇔()(2)f x f a x =- ⇔()(2)f x f a x -=+;3若函数)(x f y =定义域为R ,且满足条件)()(x b f x a f -=+,则函数)(x f y =的图象关于直线2b a x +=对称; 2、中心对称1)(x f -=-)(x f ⇔函数)(x f y =图象关于原点对称;.2函数)(x f y =图象关于(,0)a 对称⇔)()(x a f x a f --=+⇔()(2)f x f a x =--⇔)2()(x a f x f +=-;3函数)(x f y =图象关于),(b a 成中心对称⇔b x a f x a f 2)()(=++-⇔b x f x a f 2)()2(=+-4若函数)(x f y = 定义域为R ,且满足条件c x b f x a f =-++)()(c b a ,,为常数,则函数)(x f y =的图象关于点)2,2(c b a + 对称; 二、练习题一选择题1. 已知定义域为R 的函数)(x f 在),(∞+8上为减函数,且函数)8(+=x f y 为偶函数,则 A .)7()6(f f > B.)9()6(f f > C.)9()7(f f > D.)10()7(f f >2.设函数)(x f y =定义在实数集R 上,则函数)1(-=x f y 与)1(x f y -=的图象关于 对称;A.直线0=yB.直线0=xC.直线1=yD.直线1=x3.中山市09年高三统考偶函数()()f x x R ∈满足:(4)(1)0f f -==,且在区间[0,3]与),3[+∞上分别递减和递增,则不等式()0xf x <的解集为A .),4()4,(+∞--∞ ;B .)4,1()1,4( --C .)0,1()4,(---∞ ;D .)4,1()0,1()4,( ---∞4. 若函数c bx x x f ++=2)(对一切实数都有)2()2(x f x f -=+,则A. )4()1()2(f f f <<B. )4()2()1(f f f <<C. )1()4()2(f f f <<D. )1()2()4(f f f <<5.函数)(x f y =在)20(,上是增函数,函数)2(+=x f y 是偶函数,则下列结论中正确的是 A. )27()25()1(f f f << B. )25()1()27(f f f << C. )1()25()27(f f f << D. )1()27()25(f f f << 6.设函数3)()(a x x f +=对任意实数x 都有)2()2(x f x f --=+,则=-+)3()3(f fA.-124B. 124C. -567.函数)(x f 的定义域为R ,且满足)()-12(x f x f =,方程0)(=x f 有n 个实数根,这n 个实数根的和为1992,那么n 为A. 996B. 498C. 332D. 1168.设)(x f y =是定义在实数集R 上的函数,且满足)()-(x f x f =与)()-4(x f x f =,若当]2,0[∈x 时,1)(2+-=x x f ,则当]4,6[--∈x 时,=)(x fA.12+-xB.1)2(2+--xC. 1)4(2++-xD. 1)2(2++-x9.2009全国卷函数)(x f 的定义域为R ,若)1(+x f 与)1-(x f 都是奇函数,则A .)(x f 是偶函数B .)(x f 是奇函数C .)2()(+=x f x fD .)3(+x f 是奇函数10.2009·四川高考已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则))25((f f 的值是 A .0 C .111.设)(x f 是定义在实数集R 上的函数,且满足)10()-10(x f x f +=与)20()-20(x f x f +-=,则)(x f 是A. 偶函数,又是周期函数,B. 偶函数,但不是周期函数C. 奇函数,又是周期函数,D. 奇函数,但不是周期函数 二填空题12. 函数)1(+=x f y 为偶函数,则函数)(x f 的图像的对称轴方程为13. 函数)2(-=x f y 为奇函数,则函数)(x f y =的图像的对称中心为 14.09年深圳九校联考已知)(x f 是定义域为R 的奇函数,若当(0,)∈+∞x 时,()lg =f x x ,则满足()0>f x 的x 的取值范围是 .15. 已知函数)(x f y =是R 上的偶函数,对于R x ∈都有)3()()6(f x f x f +=+成立,且2)4(-=-f ,当]3,0[,21∈x x ,且21x x ≠时,都有0)()(2121>--x x x f x f .则给出下列命题: ①2)2008(-=f ;②函数)(x f y =图像的一条对称轴为6-=x ;③函数)(x f y =在]6,9[--上为减函数;④方程0)(=x f 在]9,9[-上有4个根. 其中所有正确命题的序号为____ ____.三解答题16. 设1)(2+=x x f ,求)1(+x f 关于直线2=x 对称的曲线方程;17.已知函数)1(+x f 的图象,通过怎样的变换可以得到函数)2(+-x f 的图象;18.已知实系数多项式函数)(x f 满足)3()1(x f x f +=-, 并且方程0)(=x f 有四个根,求这四个根之和;19.设1)(2+=x x f , 若)(x g 的图象与)2(+=x f y 的图象关于点)1,1(对称,求)(x g .参考答案一选择题1~4、DDDA 5~8、BACC9、解: (1)f x +与(1)f x -都是奇函数,(1)(1),(1)(1)f x f x f x f x ∴-+=-+--=--,∴函数()f x 关于点(1,0),及点(1,0)-对称,函数()f x 是周期2[1(1)]4T =--=的周期函数. )3()41()1()1()41()3(+--=+---=---=-=+-=+∴x f x f x f x f x f x f ,)3()3(+-=+-∴x f x f ,即(3)f x +是奇函数;故选D10、解:若x ≠0,则有)(1)1(x f x x x f +=+取21-=x , 则有)21()21()21(21211)121()21(f f f f f -=--=---=+-=由此得0)21(=f 于是0)21(5)21(]21211[35)121(35)23(35)23(23231)123()25(==+=+==+=+=f f f f f f f故选A 11、40102044=-=-=b a T=+-=-=--=-+=+-=-∴)4020()20()]30(10[)]30(10[)40()(x f x f x f x f x f x f )()]10(10[)]10(10[)20()20(x f x f x f x f x f -=---=-+-=--=+所以为奇函数;故选C二填空题12、1=x 13、)0,2(- 14、画出草图可知),1()0,1(+∞-∈ x15、①②③④ 在)3()()6(f x f x f +=+中令3-=x 得0)3(=-f , 0)3()3(=-=∴f f 故)()6(x f x f =+,6=∴T ,2)4()4()46334()2008(-=-==+⨯=f f f f 结合函数草图可知①②③④都正确;三解答题16、解:26102+-=x x y17、解:)()1(1x f y x f y =−−−−→−+=个单位右移)(x f y y -=−−−−→−轴对称关于 )2()]2([2+-=--=−−−−→−x f x f y 个单位右移18、解:在)3()1(x f x f +=-中令t x =-1得)4()(t f t f -=)2()2(t f t f -=+∴)(x f y =∴的对称轴为2=x 设方程0)(=x f 的四个根分别为22112,2,2,2x x x x -+-+,则它们的和为8.19、解:158)(2-+-=x x x g。
函数的对称问题湖南彭向阳一、函数的自对称问题1.函数y=f(x的图象关于直线x=a对称f(a+x=f(a-x;特别,函数y=f(x的图象关于y轴对称f(x=f(-x.2.函数y=f(x的图象关于点(a,b对称f(a+x+f(a-x=2b;特别,函数y=f(x的图象关于原点对称f(-x=-f(x.主要题型:1.求对称轴(中心:除了三角函数y=sinx,y=cosx的对称轴(中心)可以由下列结论直接写出来(对称轴为函数取得最值时的x=,对称中心为函数与x轴的交点外,其它函数的对称轴(中心就必须求解,求解有两种方法,一是利用对称的定义求解;二是利用图象变换求解.例1 确定函数的图象的对称中心.解析1 设函数的图象的对称中心为(h,k),在图象上任意取一点P (x,y),它关于(h,k)的对称点为Q(2h-x,2k-y),Q点也在图象上,即有,由于,两式相加得,化简得(*).由于P点的任意性,即(*)式对任意x都成立,从而必有x的系数和常数项都为0,即h=1,k=1.所以函数的图象的对称中心为(1,1).解析2 设函数,则g(x为奇函数,其对称中心为原点,由于,说明函数f(x的图象是由g(x的图象分别向右、向上平移1个单位得到,而原点向右、向上分别平移1个单位得到点(1,1.所以函数的图象的对称中心为(1,1).例2 曲线f(x=ax3+bx2+cx,当x=1-时,f(x有极小值;当x=1+时,f(x有极大值,且在x=1处切线的斜率为.(1求f(x;(2曲线上是否存在一点P,使得y=f(x的图象关于点P中心对称?若存在,求出点P的坐标,并给出证明;若不存在,请说明理由.解析 (1=3ax2+2bx+c,由题意知1-与1+是=3ax2+2bx+c=0的根,代入解得b=-3a,c=-6a.又f(x 在x=1处切线的斜率为,所以,即3a+2b+c=,解得. 所以f(x .(2假设存在P(x0,y0,使得f(x的图象关于点P中心对称,则f(x0+x+f(x0-x=2y0,即,化简得. 由于是对任意实数x都成立,所以,而P在曲线y=f(x上.所以曲线上存在点P,使得y=f(x的图象关于点P中心对称.2.证明对称性:证明对称性有三种方法,一是利用定义,二是利用图象变换,三是利用前面的结论(函数y=f(x的图象关于点(a,b对称f(a+x+f(a-x=2b来解决.例3 求证函数的图象关于点P(1,3)成中心对称.证明1 在函数的图象上任意取一点A(x,y),它关于点P(1,3)的对称点为B(2-x,6-y),因为,所以点B在函数的图象上,故函数的图象关于点P(1,3)对称.证明2 因为.由于是奇函数,所以的图象关于原点对称,将它的图象分别向右平移1个单位,向上平移3个单位,就得到函数的图象,所以的图象关于点P(1,3)对称.所以的图象关于点P(1,3)对称.3.已知函数的对称性求函数的值或参数的值:由函数的对称性求值,关键是将对称问题转化为等式问题,然后对变量进行赋值求解.例4 已知定义在R上的函数f(x的图象关于点对称,且满足则f(1+f(2+f(3+…+f(2005的值为().A.-2 B.-1 C.0 D.1解析由f(x的图象关于点对称,则说明函数是奇函数,也就是有,即,又,所以,即,函数f(x是偶函数.所以,又,即f(x以3为周期,f(2=f(-1=1,f(3=f(0=-2,所以f(1+f(2+f(3+…+f(2005=668(f(1+f(2+f(3)+f(2005=f(2005=f(1=1,选D.例5 已知函数f(x=的图象关于点中心对称,求f(x.解析1 设f(x图象上任意一点A(x,y),它关于点的对称点为B,由于A、B都在f(x上,所以,相加整理得,解得a=1.所以f(x=.解析2 由上面的公式有,代入化简整理得a=1.解析3 由题意知将函数y=f(x的图象向左平移1个单位长度,向下平移个单位长度得y=的图象,它关于原点对称,即是奇函数,=,即y=,它是奇函数必须常数项为0,即a=1.二、函数的互对称问题1. y=f(x与y=g(x的图象关于直线x=a对称f(a+x=g(a-x;2. y=f(x与y=g(x的图象关于直线y=b对称f(x+g(x=2b;3. y=f(x与y=g(x的图象关于点(a,b对称f(a+x+g(a-x=2b.4. y=f(x与y=g(x的图象关于直线y=x对称f(x和g(x互为反函数.记住这些结论不仅仅便于解决选择填空题,也便于解答题中的图象互相对称的函数解析式的求解问题. 主要题型:1.判断两个函数图象的对称关系例6 在同一平面直角坐标系中,函数f(x=2x+1与g(x=21-x的图象关于( .A.直线x=1对称 B.x轴对称C.y轴对称D.直线y=x对称解析作为一个选择题,可以取特殊点验证法,在f(x上取点(1,4,g(x上点(-1,4,而这两个点关于y轴对称,所以选择C.当然也可利用上面的结论解决,因为f(-x=2-x+1=g(x,所以f(x、g(x的图象关于y轴对称,选C.2.证明两个函数图象的对称性:一般利用对称的定义,先证明前一个函数图象上任意一点关于直线(点的对称点在后一个函数的图象上,再证明后一个函数图象上任意一点关于直线(点的对称点也在前一个函数的图象上,这两个步骤不能少. 当然也可利用上面的结论来解决.例7 已知函数f(x=x3-x,将y=f(x的图象沿x轴、y轴正向分别平行移动t、s单位,得到函数y=g(x的图象.求证:f(x和g(x的图象关于点A()对称.解析由已知得g(x=(x-t3-(x-t+s.在y=f(x的图象上任取一点P(x1,y1,设Q(x2,y2是P关于点A的对称点,则有,∴x1=t-x2, y1=s-y2.代入y=f(x,得x2和y2满足方程: s-y2=(t-x23-(t-x2,即 y2=(x2-t3-(x2-t+s,可知点Q(x2,y2在y=g(x的图象上.反过来,同样可以证明,在y=g(x的图象上的点关于点A的对称点也在y=f(x的图象上,因此,f(x和g(x的图象关于点A()对称.3.由两个函数图象的对称性求参数值:首先必须根据对称性由已知函数求出另一函数的解析式,然后再由已知条件确定参数的值.例8 已知f(x是定义在上的偶函数,g(x的图象与f(x的图象关于直线x=1对称,且当时,g(x=2a(x-2-3(x-23,其中为常数,若f(x的最大值为12,求a的值.解析由于g(x的图象与f(x的图象关于直线x=1对称,所以f(1+x=g(1-x,即f(x=g(2-x.当时,,所以f(x=g(2-x= 2a(2-x-2-3(2-x-23=-2ax+3x3,因为f(x是偶函数,所以当时,,f(x=f(-x=2ax-3x3.因为当时,=-2a+9x2≤-2a+9<0,所以f(x在上是减函数,从而f(x 在上是增函数,所以f(x的最大值为f(1=f(-1=2a-3=12,即.。
函数的对称练习题函数的对称性是数学中一个重要的概念,它可以帮助我们简化问题的分析和解决。
在这篇文章中,我们将介绍一些函数的对称练习题,旨在帮助读者更好地理解和应用函数的对称性。
一、关于函数的对称性首先,我们来回顾一下函数的对称性的概念。
在数学中,当函数在某种变换下保持不变时,我们称该函数具有对称性。
常见的函数对称性包括奇函数和偶函数。
1. 奇函数奇函数是指满足f(-x) = -f(x)的函数。
换句话说,当自变量x取相反数时,函数值也取相反数。
在坐标系中,奇函数关于原点对称,即左右对称。
例如,f(x) = x^3是一个奇函数。
2. 偶函数偶函数是指满足f(-x) = f(x)的函数。
换句话说,当自变量x取相反数时,函数值保持不变。
在坐标系中,偶函数关于y轴对称,即左右对称。
例如,f(x) = x^2是一个偶函数。
二、对称练习题有了对函数对称性的了解,我们现在来看一些具体的对称练习题。
1. 给定函数f(x) = sin(x),判断它的对称性。
解析:我们发现当自变量x取相反数时,sin(x)的函数值也取相反数,即f(-x) = -sin(x)。
所以,函数f(x)是一个奇函数。
2. 给定函数f(x) = e^x + e^(-x),判断它的对称性。
解析:我们发现当自变量x取相反数时,e^x + e^(-x)的函数值保持不变,即f(-x) = e^(-x) + e^x。
所以,函数f(x)是一个偶函数。
3. 给定函数f(x) = x^2 + 3x + 2,判断它的对称性。
解析:我们发现当自变量x取相反数时,x^2 + 3x + 2的函数值并不保持不变,即f(-x) = (-x)^2 + 3(-x) + 2 = x^2 - 3x + 2。
所以,函数f(x)既不是奇函数也不是偶函数,它没有对称性。
通过上述的对称练习题,我们可以看出对称性是由函数的定义所决定的,通过对函数的表达式进行变换和计算,我们可以判断一个函数是奇函数、偶函数还是既不是奇函数也不是偶函数。
函数的周期性、对称性一、单选题1.(2023·全国·高三专题练习)已知函数f x =x -e 2+ln ex e -x ,若f e 2020 +f 2e2020+⋅⋅⋅+f 2018e 2020 +f 2019e 2020 =20192a +b ,其中b >0,则12a+a b 的最小值为()A.34B.54C.2D.22【答案】A【解析】因为f x =x -e 2+ln exe -x,所以f x +f e -x =x -e 2+ln ex e -x +(e -x )-e2+ln e (e -x )e -(e -x )=lnex e -x +ln e (e -x )x =ln exe -x ⋅e (e -x )x=ln e 2=2,令S =f e 2020 +f 2e 2020 +⋅⋅⋅+f 2018e 2020 +f 2019e2020 则2S =f e 2020 +f 2019e 2020 +f 2e 2020 +f 2018e 2020 +⋅⋅⋅+f 2019e 2020 +f e2020 =2×2019所以S =2019所以20192a +b =2019,所以a +b =2,其中b >0,则a =2-b .当a >0时12|a |+|a |b =12a +2-b b =12a +2b -1=12a +2b ⋅(a +b )2-1=1252+b 2a +2a b-1≥1252+2b 2a ⋅2a b -1=54当且仅当b 2a =2a b, 即 a =23,b =43 时等号成立;当a <0时 12|a |+|a |b =1-2a +-a b =1-2a +b -2b =1-2a +-2b +1=121-2a +-2b ⋅(a +b )+1=12-52+b -2a +-2ab +1≥12-52+2b -2a ⋅-2a b +1=34,当且仅当 b -2a =-2a b, 即 a =-2,b =4 时等号成立;因为34<54,所以12|a |+|a |b 的最小值为34.故选:A .2.(2023春·重庆·高三统考阶段练习)已知函数f (x )=ln x 2+1-x +1,正实数a ,b 满足f (2a )+f (b -4)=2,则4b a +a2ab +b 2的最小值为( )A.1B.2C.4D.658【答案】B【解析】f x +f -x =ln x 2+1-x +1+ln x 2+1+x +1=2,故函数f x 关于0,1 对称,又f x 在R 上严格递增;f (2a )+f (b -4)=2,∴2a +b -4=0即2a +b =4.4b a +a 2ab +b 2=4b a +a b 2a +b =4b a +a4b ≥24b a ⋅a 4b=2.当且仅当a =169,b =49时取得.故选:B .3.(2023·全国·高三专题练习)已知函数f x 的定义域为R ,f 2x +2 为偶函数,f x +1 为奇函数,且当x ∈0,1 时,f x =ax +b .若f 4 =1,则3i =1f i +12=( )A.12B.0C.-12D.-1【答案】C【解析】因为f 2x +2 为偶函数,所以f -2x +2 =f 2x +2 ,用12x +12代替x 得:f -x +1 =f x +3 ,因为f x +1 为奇函数,所以f -x +1 =-f x +1 ,故f x +3 =-f x +1 ①,用x +2代替x 得:f x +5 =-f x +3 ②,由①② 得:f x +5 =f x +1 ,所以函数f x 的周期T =4,所以f 4 =f 0 =1,即b =1,因为f -x +1 =-f x +1 ,令x =0得:f 1 =-f 1 ,故f 1 =0,f 1 =a +b =0,解得:a =-1,所以x ∈0,1 时,f x =-x +1,因为f -x +1 =-f x +1 ,令x =12,得f 12 =-f 32 ,其中f 12 =-12+1=12,所以f 32 =-12,因为f -2x +2 =f 2x +2 ,令x =14得:f -2×14+2 =f 2×14+2 ,即f 32 =f 52 =-12,因为T=4,所以f 72 =f72-4=f-12,因为f-x+1=-f x+1,令x=32得:f-12=-f52 =12,故f 72 =12,3 i=1fi+12=f32 +f52 +f72 =-12-12+12=-12.故选:C4.(2023·四川资阳·统考模拟预测)已知函数f x 的定义域为R,f x-2为偶函数,f x-2+f-x=0,当x∈-2,-1时,f x =1a x-ax-4(a>0且a≠1),且f-2=4.则13k=1f k=( )A.16B.20C.24D.28【答案】C【解析】因为f x-2是偶函数,所以f-x-2=f(x-2),所以f(x)=f(-x-4),所以函数f(x)关于直线x=-2对称,又因为f x-2+f-x=0,所以-f x-2=f-x,所以f(x)=-f(-x-2),所以f(x)关于点(-1,0)中心对称,由f(x)=f(-x-4)及f(x)=-f(-x-2)得f(-x-4)=-f(-x-2)所以f(-x-4)=-f(-x-2)=f(-x)所以函数f(x)的周期为4,因为当x∈-2,-1时,f x =1a x-ax-4(a>0且a≠1),且f-2=4,所以4=1a-2+2a-4,解得:a=2或a=-4,因为a>0且a≠1,所以a=2.所以当x∈-2,-1时,f x =12x-2x-4,所以f(-2)=4,f(-1)=0,f(-3)=f(-1)=0,f(0)=-f(-2)=-4,f(1)=f(1-4)=f(-3)=0,f(2)=f(-2)=4,f(3)=f(-1)=0,f(4)=f(0)=-4,所以f(1)+f(2)+f(3)+f(4)=8,所以13k=1f k=f(1)+3×8=24,故选:C.5.(2023·全国·高三专题练习)已知函数f(x),g(x)的定义域均为R,且f(x)+g(2-x)=5,g(x)-f(x-4)=7.若y=g(x)的图像关于直线x=2对称,g(2)=4,则22k=1f k =( )A.-21B.-22C.-23D.-24【答案】D【解析】因为y =g (x )的图像关于直线x =2对称,所以g 2-x =g x +2 ,因为g (x )-f (x -4)=7,所以g (x +2)-f (x -2)=7,即g (x +2)=7+f (x -2),因为f (x )+g (2-x )=5,所以f (x )+g (x +2)=5,代入得f (x )+7+f (x -2) =5,即f (x )+f (x -2)=-2,所以f 3 +f 5 +⋯+f 21 =-2 ×5=-10,f 4 +f 6 +⋯+f 22 =-2 ×5=-10.因为f (x )+g (2-x )=5,所以f (0)+g (2)=5,即f 0 =1,所以f (2)=-2-f 0 =-3.因为g (x )-f (x -4)=7,所以g (x +4)-f (x )=7,又因为f (x )+g (2-x )=5,联立得,g 2-x +g x +4 =12,所以y =g (x )的图像关于点3,6 中心对称,因为函数g (x )的定义域为R ,所以g 3 =6因为f (x )+g (x +2)=5,所以f 1 =5-g 3 =-1.所以∑22k =1f (k )=f 1 +f 2 +f 3 +f 5 +⋯+f 21 +f 4 +f 6 +⋯+f 22 =-1-3-10-10=-24.故选:D6.(2023·全国·高三专题练习)设函数f x =x 3+ax 2+bx +2a ,b ∈R ,若f 2+x +f 2-x =8,则下列不等式正确的是( )A.f e +f 32>8 B.f e +f 2-3 >8C.f ln7 +f 2+3 >8 D.f ln5 +f 3ln2 <8【答案】C【解析】由题(2+x )3+a (2+x )2+b (2+x )+2+(2-x )3+a (2-x )2+b (2-x )+2=8,化简整理得(6+a )x 2+2(2a +b +3)=0,于是6+a =0,2a +b +3=0⇒a =-6,b =9,所以f (x )=x 3-6x 2+9x +2,进而f (x )=3x 2-12x +9=3(x -1)(x -3),据此,f (x )在(-∞,1),(3,+∞)上单调递增,f (x )在(1,3)上单调递减,因为f (2+x )+f (2-x )=8,即f (x )+f (4-x )=8.对于A ,由f (e )+f (4-e )=8,又1<4-e <32<3,所以f (4-e )>f 32,即f (e )+f 32<8,故A 错误;对于B ,f (2-3)=(2-3)3-6(2-3)2+9(2-3)+2=4,因为1<2<e<3,所以f(2)>f(e),而f(2)=23-6×22+9×2+2=4,所以f(e)+f(2-3)<8,故B错误;对于C,f(2+3)=(2+3)3-6(2+3)2+9(2+3)+2=4,而1<ln7<2,所以f(ln7)>f(2)=4,所以f(ln7)+f(2+3)>8,故C正确;对于D,由f(ln5)+f(4-ln5)=8,因为1<3ln2<4-ln5<3,所以f(3ln2)>f(4-ln5),所以f(ln5)+f(3ln2)>8,故D错误.故选:C.7.(2023·全国·高三专题练习)定义在R上的奇函数f x 满足f2-x=f x ,且在0,1上单调递减,若方程f x =-1在0,1上所有实根之和是( )上有实数根,则方程f x =1在区间-1,11A.30B.14C.12D.6【答案】A【解析】由f2-x=f x 知函数f x 的图象关于直线x=1对称,∵f2-x=f x ,f x 是R上的奇函数,∴f-x=f x+2=-f x ,∴f x+4=f x ,∴f x 的周期为4,考虑f x 的一个周期,例如-1,3,由f x 在0,1上是增函数,上是减函数知f x 在1,2f x 在-1,0上是减函数,f x 在2,3上是增函数,对于奇函数f x 有f0 =0,f2 =f2-2=f0 =0,故当x∈0,1时,f x <f2 =0,时,f x <f0 =0,当x∈1,2当x∈-1,0时,f x >f0 =0,当x∈2,3时,f x >f2 =0,方程f x =-1在0,1上有实数根,则这实数根是唯一的,因为f x 在0,1上是单调函数,则由于f2-x上有唯一实数,=f x ,故方程f x =-1在1,2在-1,0上f x >0,和2,3则方程f x =-1在-1,0上没有实数根,和2,3从而方程f x =-1在一个周期内有且仅有两个实数根,当x∈-1,3,方程f x =-1的两实数根之和为x+2-x=2,当x∈-1,11,方程f x =-1的所有6个实数根之和为x+2-x+4+x+4+2-x+x+8+2-x+8=2+8+2+8+2+8=30.故选:A.8.(2023·全国·高三专题练习)对于三次函数f x =ax3+bx2+cx+d a≠0,给出定义:设f'x 是函数y=f x 的导数,f″x 是f'x 的导数,若方程f″x =0有实数解x0,则称点x0,f x0为函数y =f x 的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g x =13x3-12x2+3x-512,则g12019+g22019+⋯+g20182019=( )A.2016B.2017C.2018D.2019【答案】C【解析】函数g x =13x3-12x2+3x-512,函数的导数g'x =x2-x+3,g'x =2x-1,由g'x0=0得2x0-1=0,解得x0=12,而g12 =1,故函数g x 关于点12,1对称,∴g x +g1-x=2,故设g12019+g22019+...+g20182019=m,则g20182019+g20172019+...+g12019=m,两式相加得2×2018=2m,则m=2018,故选C.9.(2023春·云南曲靖·高三曲靖一中校考阶段练习)定义在R上的函数f x 满足f-x+f x =0 ,f x =f2-x,且当x∈0,1时,f x =x2.则函数y=7f x -x+2的所有零点之和为( ) A.7 B.14 C.21 D.28【答案】B【解析】依题意,f x 是奇函数.又由f x =f2-x知,f x 的图像关于x=1对称.f x+4=f1+x+3=f1-x+3=f-2-x=-f2+x=-f2--x=-f-x=f x ,所以f x 是周期为4的周期函数.f2+x=f1+1+x=f1-1+x=f-x=-f x =-f2-x,所以f x 关于点2,0对称.由于y=7f x -x+2=0⇔f x =x-2 7从而函数y=7f x -x+2的所有零点之和即为函数f x 与g x =x-27的图像的交点的横坐标之和.而函数g x =x-27的图像也关于点2,0对称.画出y=f x ,g x =x-27的图象如图所示.由图可知,共有7个交点,所以函数y=7f x -x+2所有零点和为7×2=14.故选:B10.(2023·全国·高三专题练习)已知定义在R上的可导函数f x 的导函数为f (x),满足f (x)<f(x)且f x+3为偶函数,f(x+1)为奇函数,若f(9)+f(8)=1,则不等式f x <e x的解集为( )A.-3,+∞B.1,+∞C.(0,+∞)D.6,+∞【答案】C【解析】因为f x+3为偶函数,f(x+1)为奇函数,所以f x+3=f-x+3,f(x+1)+f(-x+1)=0.所以f x =f-x+6,f(x)+f(-x+2)=0,所以f(-x+6)+f(-x+2)=0.令t=-x+2,则f(t+4)+f(t)=0.令上式中t取t-4,则f(t)+f(t-4)=0,所以f(t+4)=f(t-4).令t取t+4,则f(t)=f(t+8),所以f(x)=f(x+8).所以f x 为周期为8的周期函数.因为f(x+1)为奇函数,所以f(x+1)+f(-x+1)=0,令x=0,得:f(1)+f(1)=0,所以f(1)=0,所以f(9)+f(8)=1,即为f(1)+f(0)=1,所以f(0)=1.记g x =f xe x,所以gx =f x -f xe x.因为f (x)<f(x),所以g x <0,所以g x =f xe x在R上单调递减.不等式f x <e x可化为f xe x<1,即为g x <g0 .所以x>0.故选:C11.(2023·全国·高三专题练习)设函数f x 的定义域为R,f x+1为奇函数,f x+2为偶函数,当x∈1,2时,f(x)=ax2+b.若f0 +f3 =6,则f 92 =( )A.-94B.-32C.74D.52【答案】D【解析】[方法一]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路一:从定义入手.f 92 =f 52+2 =f -52+2 =f -12 f -12 =f -32+1 =-f 32+1 =-f 52-f 52 =-f 12+2 =-f -12+2 =-f 32所以f 92 =-f 32 =52.[方法二]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路二:从周期性入手由两个对称性可知,函数f x 的周期T =4.所以f 92=f 12 =-f 32 =52.故选:D .二、多选题12.(2023春·云南·高三云南师大附中校考阶段练习)已知定义域为R 的函数f x 在-1,0 上单调递增,f 2+x =f 2-x ,且图象关于3,0 对称,则f x ( )A.周期T =4B.在0,2 单调递减C.满足f 2021 <f 2022 <f 2023D.在0,2023 上可能有1012个零点【答案】ABD【解析】A 选项:由f (2+x )=f (2-x )知f (x )的对称轴为x =2,且f (4+x )=f (-x ),又图象关于3,0 对称,即f (3+x )=-f (3-x ),故f (6+x )=-f (-x ),所以-f (4+x )=f (6+x ),即-f (x )=f (2+x ),所以f (x )=f (x +4),f (x )的周期为4,正确;B 选项:因为f (x )在-1,0 上单调递增,T =4,所以f (x )在3,4 上单调递增,又图象关于3,0 对称,所以f (x )在2,3 上单调递增,因为关于x =2对称,所以f (x )在1,2 上单调递减,f (1)=f (3)=0,故f (x )在0,2 单调递减,B 正确;C 选项:根据周期性,f (2021)=f (1),f (2022)=f (2),f (2023)=f (3),因为f (x )关于x =2对称,所以f (1)=f (3)=0,f (2)<f (1),故f (2022)<f (2021)=f (2023),错误;D 选项:在0,4 上,f (1)=f (3)=0,f (x )有2个零点,所以f (x )在0,2020 上有1010个零点,在2020,2023 上有2个零点,故f (x )在0,2023 上可能有1012个零点,正确,故选:ABD .13.(2023春·广东广州·高三统考阶段练习)已知函数f x 、g x 的定义域均为R ,f x 为偶函数,且f x +g 2-x =1,g x -f x -4 =3,下列说法正确的有( )A.函数g x 的图象关于x =1对称 B.函数f x 的图象关于-1,-1 对称C.函数f x 是以4为周期的周期函数 D.函数g x 是以6为周期的周期函数【答案】BC【解析】对于A 选项,因为f x 为偶函数,所以f -x =f x .由f x +g 2-x =1,可得f -x +g 2+x =1,可得g 2+x =g 2-x ,所以,函数g x 的图象关于直线x =2对称,A 错;对于B 选项,因为g x -f x -4 =3,则g 2-x -f -2-x =3,又因为f x +g 2-x =1,可得f x +f -2-x =-2,所以,函数f x 的图象关于点-1,-1 对称,B 对;对于C 选项,因为函数f x 为偶函数,且f x +f -2-x =-2,则f x +f x +2 =-2,从而f x +2 +f x +4 =-2,则f x +4 =f x ,所以,函数f x 是以4为周期的周期函数,C 对;对于D 选项,因为g x -f x -4 =3,且f x =f x -4 ,∴g x -f x =3,又因为f x +g 2-x =1,所以,g x +g 2-x =4,又因为g 2-x =g 2+x ,则g x +g x +2 =4,所以,g x +2 +g x +4 =4,故g x +4 =g x ,因此,函数g x 是周期为4的周期函数,D 错.故选:BC .14.(2023春·湖南长沙·高三长郡中学校考阶段练习)设定义在R 上的函数f x 与g x 的导函数分别为f x 和g x ,若f x +2 -g 1-x =2,f x =g x +1 ,且g x +1 为奇函数,则下列说法中一定正确的是( )A.g 1 =0 B.函数g x 的图象关于x =2对称C.2021k =1f k g k =0D.2022k =1g k =0【答案】AC【解析】因为g x +1 为奇函数,所以g x +1 =-g -x +1 ,取x =0可得g 1 =0,A 对,因为f x +2 -g 1-x =2,所以f x +2 +g 1-x =0;所以f x +g 3-x =0,又f x =g x +1 ,g x +1 +g 3-x =0,故g 2+x +g 2-x =0,所以函数g x 的图象关于点(2,0)对称,B 错,因为f x =g x +1 ,所以f x -g x +1 =0,所以f x -g x +1 =c ,c 为常数,因为f x +2 -g 1-x =2,所以f x -g 3-x =2,所以g x +1 -g 3-x =2-c ,取x =1可得c =2,所以g x +1 =g 3-x ,又g x +1 =-g -x +1 ,所以g 3-x =-g -x +1 ,所以g x =-g x -2 ,所以g x +4 =-g x +2 =g (x ),故函数g (x )为周期为4的函数,因为g x +2 =-g x ,所以g 3 =-g 1 =0,g 4 =-g 2 ,所以g (1)+g (2)+g (3)+g (4)=0,所以2022k =1g k =g (1)+g (2)+g (3)+g (4) +g (5)+g (6)+g (7)+g (8) +⋅⋅⋅+g (2017)+g (2018)+g (2019)+g (2020) +g (2021)+g (2022),所以2022k =1g k =505×0+ g (2021)+g (2022)=g (1)+g (2)=g (2),由已知无法确定g (2)的值,故2022k =1g k 的值不一定为0,D 错;因为f x +2 -g 1-x =2,所以f x +2 =2-g x +1 ,f x +6 =2-g x +5 ,所以f x +2 =f (x +6),故函数f (x )为周期为4的函数,f (x +4)g (x +4)=f (x )g (x )所以函数f (x )g (x )为周期为4的函数,又f (1)=2-g (0),f (2)=2-g (1)=2,f (3)=2-g (2)=2+g (0),f (4)=2-g (3)=2,所以f (1)g (1)+f (2)g (2)+f (3)g (3)+f (4)g (4)=0+2g (2)+2g (4)=0,所以2021k =1f k g k =505f (1)g (1)+f (2)g (2)+f (3)g (3)+f (4)g (4) +f (2021)g (2021)2021k =1f kg k =f (1)g (1)=0 ,C 对,故选:AC .15.(2023·全国·高三专题练习)设函数y =f (x )的定义域为R ,且满足f (x )=f (2-x ),f (-x )=-f (x -2),当x ∈(-1,1]时,f (x )=-x 2+1,则下列说法正确的是( )A.f (2022)=1B.当x ∈4,6 时,f (x )的取值范围为-1,0C.y =f (x +3)为奇函数D.方程f (x )=lg (x +1)仅有5个不同实数解【答案】BCD【解析】依题意,当-1<x<0时,0<f x <1,当0≤x≤1时,0≤f x ≤1,函数y=f(x)的定义域为R,有f(x)=f(2-x),又f(-x)=-f(x-2),即f(x)=-f(-x-2),因此有f(2-x)=-f(-x-2),即f(x+4)=-f(x),于是有f(x+8)=-f(x+4)=f(x),从而得函数f(x)的周期T=8,对于A,f2022=-f0 =-1,A不正确;=f252×8+6=f6 =f-2对于B,当4≤x≤5时,0≤x-4≤1,有0≤f(x-4)≤1,则f(x)=-f(x-4)∈[-1,0],当5≤x≤6时,-4≤2-x≤-3,0≤(2-x)+4≤1,有0≤f[(2-x)+4]≤1,f(x)=f(2-x)=-f[(2-x)+4]∈[-1,0],当x∈4,6,B正确;时,f(x)的取值范围为-1,0对于C,f(x+3)=-f[(x+3)+4]=-f(x-1)=-f[2-(x-1)]=-f(-x+3),函数y=f(x+3)为奇函数,C正确;对于D,在同一坐标平面内作出函数y=f(x)、y=lg(x+1)的部分图象,如图:方程f(x)=lg(x+1)的实根,即是函数y=f(x)与y=lg(x+1)的图象交点的横坐标,观察图象知,函数y=f(x)与y=lg(x+1)的图象有5个交点,因此方程f(x)=lg(x+1)仅有5个不同实数解,D正确.故选:BCD16.(2023·全国·高三专题练习)已知定义在R上的单调递增的函数f x 满足:任意x∈R,有f1-x+f1+x=2,f2+x=4,则( )+f2-xA.当x∈Z时,f x =xB.任意x∈R,f-x=-f xC.存在非零实数T,使得任意x∈R,f x+T=f xD.存在非零实数c,使得任意x∈R,f x -cx≤1【答案】ABD【解析】对于A,令x=1-t,则f t +f2-t=2,=2,即f x +f2-x又f2+x=4-2-f x=f x +2;=4-f2-x+f2-x=4,∴f x+2令x=0得:f1 +f1 =2,f2 +f2 =4,∴f1 =1,f2 =2,则由f x+2=f x +2可知:当x∈Z时,f x =x,A正确;对于B ,令x =1+t ,则f -t +f 2+t =2,即f -x +f 2+x =2,∴f -x =2-f 2+x =2-4-f 2-x =f 2-x -2,由A 的推导过程知:f 2-x =2-f x ,∴f -x =2-f x -2=-f x ,B 正确;对于C ,∵f x 为R 上的增函数,∴当T >0时,x +T >x ,则f x +T >f x ;当T <0时,x +T <x ,则f x +T <f x ,∴不存在非零实数T ,使得任意x ∈R ,f x +T =f x ,C 错误;对于D ,当c =1时,f x -cx =f x -x ;由f 1-x +f 1+x =2,f 2+x +f 2-x =4知:f x 关于1,1 ,2,2 成中心对称,则当a ∈Z 时,a ,a 为f x 的对称中心;当x ∈0,1 时,∵f x 为R 上的增函数,f 0 =0,f 1 =1,∴f x ∈0,1 ,∴f x -x ≤1;由图象对称性可知:此时对任意x ∈R ,f x -cx ≤1,D 正确.故选:ABD .17.(2023·全国·高三专题练习)设函数f (x )定义域为R ,f (x -1)为奇函数,f (x +1)为偶函数,当x ∈(-1,1)时,f (x )=-x 2+1,则下列结论正确的是( )A.f 72 =-34B.f (x +7)为奇函数C.f (x )在(6,8)上为减函数D.方程f (x )+lg x =0仅有6个实数解【答案】ABD【解析】f (x +1)为偶函数,故f (x +1)=f (-x +1),令x =52得:f 72 =f -52+1 =f -32,f (x -1)为奇函数,故f (x -1)=-f (-x -1),令x =12得:f -32 =-f 12-1 =-f -12,其中f -12 =-14+1=34,所以f 72 =f -32 =-f -12 =-34,A 正确;因为f (x -1)为奇函数,所以f (x )关于-1,0 对称,又f (x +1)为偶函数,则f (x )关于x =1对称,所以f (x )周期为4×2=8,故f (x +7)=f (x -1),所以f (-x +7)=f (-x -1)=-f x -1 =-f x -1+8 =-f x +7 ,从而f (x +7)为奇函数,B 正确;f (x )=-x 2+1在x ∈(-1,0)上单调递增,又f (x )关于-1,0 对称,所以f (x )在-2,0 上单调递增,且f (x )周期为8,故f (x )在(6,8)上单调递增,C 错误;根据题目条件画出f (x )与y =-lg x 的函数图象,如图所示:其中y =-lg x 单调递减且-lg12<-1,所以两函数有6个交点,故方程f (x )+lg x =0仅有6个实数解,D 正确.故选:ABD18.(2023·全国·高三专题练习)已知f (x )是定义域为(-∞,+∞)的奇函数,f (x +1)是偶函数,且当x ∈0,1 时,f (x )=-x (x -2),则( )A.f x 是周期为2的函数B.f 2019 +f 2020 =-1C.f x 的值域为-1,1D.y =f x 在0,2π 上有4个零点【答案】BCD【解析】对于A ,f x +1 为偶函数,其图像关于x 轴对称,把f x +1 的图像向右平移1个单位得到f x 的图像,所以f (x )图象关于x =1对称,即f (1+x )=f (1-x ),所以f (2+x )=f (-x ),f x 为R 上的奇函数,所以f (-x )=-f x ,所以f (2+x )=-f (x ),用2+x 替换上式中的x 得, f (4+x )=-f (x +2),所以,f (4+x )=f (x ),则f x 是周期为4的周期函数.故A 错误.对于B ,f x 定义域为R 的奇函数,则f 0 =0,f x 是周期为4的周期函数,则f 2020 =f 0 =0;当x ∈0,1 时,f x =-x x -2 ,则f 1 =-1×1-2 =1,则f 2019 =f -1+2020 =f -1 =-f 1 =-1,则f 2019 +f 2020 =-1.故B 正确.对于C ,当x ∈0,1 时,f x =-x x -2 ,此时有0<f x ≤1,又由f x 为R 上的奇函数,则x ∈-1,0 时,-1≤f x <0,f (0)=0,函数关于x =1对称,所以函数f x 的值域-1,1 .故C 正确.对于D ,∵f (0)=0,且x ∈0,1 时,f x =-x x -2 ,∴x ∈[0,1],f (x )=-x (x -2),∴x ∈[1,2],2-x ∈[0,1],f (x )=f (2-x )=-x (x -2)①∴x ∈[0,2]时,f (x )=-x (x -2),此时函数的零点为0,2;∵f (x )是奇函数,∴x ∈[-2,0],f (x )=x (x +2),②∴x ∈2,4 时,∵f (x )的周期为4,∴x -4∈-2,0 ,f x =f x -4 =x -2 x -4 ,此时函数零点为4;③∴x ∈4,6 时,∴x -4∈0,2 ,f x =f x -4 =-(x -4)(x -6),此时函数零点为6;④∴x ∈6,2π 时,∴x -4∈2,4 ,f x =f x -4 =x -6 x -8 ,此时函数无零点;综合以上有,在(0,2π)上有4个零点.故D 正确;故选:BCD19.(2023春·广东广州·高三广州市禺山高级中学校考阶段练习)已知f x 是定义域为(-∞,+∞)的奇函数,f x +1 是偶函数,且当x ∈0,1 时,f x =-x x -2 ,则( )A.f x 是周期为2的函数B.f 2019 +f 2020 =-1C.f x 的值域为[-1,1]D.f x 的图象与曲线y =cos x 在0,2π 上有4个交点【答案】BCD【解析】根据题意,对于A ,f x 为R 上的奇函数,f x +1 为偶函数,所以f (x )图象关于x =1对称,f (2+x )=f (-x )=-f (x )即f (x +4)=-f (x +2)=f (x )则f x 是周期为4的周期函数,A 错误;对于B ,f x 定义域为R 的奇函数,则f 0 =0,f x 是周期为4的周期函数,则f 2020 =f 0 =0;当x ∈0,1 时,f x =-x x -2 ,则f 1 =-1×1-2 =1,则f 2019 =f -1+2020 =f -1 =-f 1 =-1,则f 2019 +f 2020 =-1;故B 正确.对于C ,当x ∈0,1 时,f x =-x x -2 ,此时有0<f x ≤1,又由f x 为R 上的奇函数,则x ∈-1,0 时,-1≤f x <0,f (0)=0,函数关于x =1对称,所以函数f x 的值域[-1,1].故C 正确.对于D ,∵f (0)=0,且x ∈0,1 时,f x =-x x -2 ,∴x ∈[0,1],f (x )=-x (x -2),∴x ∈[1,2],2-x ∈[0,1],f (x )=f (2-x )=-x (x -2),∴x ∈[0,2],f (x )=-x (x -2),∵f (x )是奇函数,∴x ∈[-2,0],f (x )=x (x +2),∵f (x )的周期为4,∴x ∈[2,4],f (x )=(x -2)(x -4),∴x ∈[4,6],f (x )=-(x -4)(x -6),∴x ∈[6,2π],f (x )=(x -6)(x -8),设g (x )=f (x )-cos x ,当x ∈[0,2],g (x )=-x 2+2x -cos x ,g ′(x )=-2x +2+sin x ,设h(x)=g′(x),h′(x)=-2+cos x<0在[0,2]恒成立,h(x)在[0,2]单调递减,即g′(x)在[0,2]单调递减,且g′(1)=sin1>0,g′(2)=-2+sin2<0,存在x0∈(1,2),g′(x0)=0,x∈(0,x0),g′(x)>0,g(x)单调递增,x∈(x0,2),g′(x)<0,g(x)单调递减,g(0)=-1,g(1)=1-cos1>0,g(x0)>g(1)>0,g(2)=-cos2>0,所以g(x)在(0,x0)有唯一零点,在(x0,2)没有零点,即x∈(0,2],f x 的图象与曲线y=cos x有1个交点,当x∈2,4时,,g x =f x -cos x=x2-6x+8-cos x,则g′x =2x-6+sin x,h x =g′x =2x-6+sin x,则h′x =2+cos x>0,所以g′x 在2,4上单调递增,且g′3 =sin3>0,g′2 =-2+sin2<0,所以存在唯一的x1∈2,3⊂2,4,使得g′x =0,所以x∈2,x1,g′x <0,g x 在2,x1单调递减,x∈x1,4,g′x >0,g x 在x1,4单调递增,又g3 =-1-cos3<0,所以g x1<g(3)<0,又g2 =-cos2>0,g4 =-cos4>0,所以g x 在2,x1上有一个唯一的零点,在x1,4上有唯一的零点,所以当x∈2,4时,f x 的图象与曲线y=cos x有2个交点,,当x∈4,6时,同x∈[0,2],f x 的图象与曲线y=cos x有1个交点,当x∈[6,2π],f(x)=(x-6)(x-8)<0,y=cos x>0,f x 的图象与曲线y=cos x没有交点,所以f x 的图象与曲线y=cos x在0,2π上有4个交点,故D正确;故选:BCD.20.(2023·全国·高三专题练习)已知函数f2x+1的图像关于直线x=1对称,函数y=f x+1关于点1,0对称,则下列说法正确的是( )A.f1-x=f1+xB.f x 的周期为4C.f1 =0D.f x =f32-x【答案】AB【解析】f2x的图像关于直线x=32对称,f x 的图像关于x=3对称,又关于点2,0中心对称,所以周期为4,所以B正确而D错误;又f 3-x =f 3+x ,其中x 换x +1得f 2-x =f 4+x =f x ,再将x 换x +1得f 1-x =f 1+x ,但无法得到f (1)=0 所以A 正确C 错误.故选:AB .21.(2023·全国·高三专题练习)已知函数f (x )及其导函数f (x )的定义域均为R ,记g (x )=f (x ),若f 32-2x ,g (2+x )均为偶函数,则( )A.f (0)=0B.g -12 =0C.f (-1)=f (4)D.g (-1)=g (2)【答案】BC【解析】[方法一]:对称性和周期性的关系研究对于f (x ),因为f 32-2x为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x ①,所以f 3-x =f x ,所以f (x )关于x =32对称,则f (-1)=f (4),故C 正确;对于g (x ),因为g (2+x )为偶函数,g (2+x )=g (2-x ),g (4-x )=g (x ),所以g (x )关于x =2对称,由①求导,和g (x )=f (x ),得f 32-x=f 32+x ⇔-f 32-x =f 32+x ⇔-g 32-x =g 32+x ,所以g 3-x +g x =0,所以g (x )关于32,0 对称,因为其定义域为R ,所以g 32=0,结合g (x )关于x =2对称,从而周期T =4×2-32 =2,所以g -12 =g 32 =0,g -1 =g 1 =-g 2 ,故B 正确,D 错误;若函数f (x )满足题设条件,则函数f (x )+C (C 为常数)也满足题设条件,所以无法确定f (x )的函数值,故A 错误.故选:BC .[方法二]:【最优解】特殊值,构造函数法.由方法一知g (x )周期为2,关于x =2对称,故可设g x =cos πx ,则f x =1πsin πx +c ,显然A ,D 错误,选BC .故选:BC .[方法三]:因为f 32-2x,g (2+x )均为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x ,g (2+x )=g (2-x ),所以f 3-x =f x ,g (4-x )=g (x ),则f (-1)=f (4),故C 正确;函数f (x ),g (x )的图象分别关于直线x =32,x =2对称,又g (x )=f (x ),且函数f (x )可导,所以g 32 =0,g 3-x =-g x ,所以g (4-x )=g (x )=-g 3-x ,所以g (x +2)=-g (x +1)=g x ,所以g -12=g 32 =0,g -1 =g 1 =-g 2 ,故B 正确,D 错误;若函数f (x )满足题设条件,则函数f (x )+C (C 为常数)也满足题设条件,所以无法确定f (x )的函数值,故A 错误.故选:BC .【整体点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.22.(2023·全国·高三专题练习)定义f x 是y =f x 的导函数y =f x 的导函数,若方程f x =0有实数解x 0,则称点x 0,f x 0 为函数y =f x 的“拐点”.可以证明,任意三次函数f x =ax 3+bx 2+cx +d a ≠0 都有“拐点”和对称中心,且“拐点”就是其对称中心,请你根据这一结论判断下列命题,其中正确命题是( )A.存在有两个及两个以上对称中心的三次函数B.函数f x =x 3-3x 2-3x +5的对称中心也是函数y =tan π2x 的一个对称中心C.存在三次函数h x ,方程h x =0有实数解x 0,且点x 0,h x 0 为函数y =h x 的对称中心D.若函数g x =13x 3-12x 2-512,则g 12021+g 22021 +g 32021 +⋅⋅⋅+g 20202021 =-1010【答案】BCD【解析】对于A .设三次函数f x =ax 3+bx 2+cx +d a ≠0 ,易知y =f x 是一次函数,∴任何三次函数只有一个对称中心,故A 不正确;对于B .由f x =x 3-3x 2-3x +5,得f x =3x 2-6x -3,f x =6x -6,由6x -6=0,得x =1,函数f x 的对称中心为1,0 ,又由π2x =k π2,k ∈Z ,得x =k ,k ∈Z ,∴f x 的对称中心是函数y =tan π2x 的一个对称中心,故B 正确;对于C .设三次函数h x =ax 3+bx 2+cx +d a ≠0 ,所以h x =3ax 2+2bx +c ,h x =6ax +2b联立3ax 02+2bx 0+c =0,6ax 0+2b =0,得3ac -b 2=0,即当3ac -b 2=0时,存在三次函数h x ,方程h x =0有实数解x 0,且点x 0,h x 0 为函数y =h x 的对称中心,故C 正确.对于D .∵g x =13x 3-12x 2-512,∴g x =x 2-x ,g x =2x -1,令g x =2x -1=0,得x =12,∵g 12 =13×12 3-12×12 2-512=-12,∴函数g x =13x 3-12x 2-512的对称中心是12,-12,∴g x +g 1-x =-1,设T =g 12021+g 22021 +g 32021 +⋯+g 20202021 ,所以2T =g 12021 +g 20202021 +g 22021 +g 20192021 +⋯+g 20202021 +g 12021 =-2020所以g 12021 +g 22021 +g 32021+⋯+g 20202021 =-1010,故D 正确.故选:BCD .三、填空题23.(2023·全国·高三专题练习)设f x 的定义域为R ,且满足f 1-x =f 1+x ,f x +f -x =2,若f 1 =3,则f 1 +f 2 +f 3 +⋯+f 2022 f 2023 +f 2028 +f 2030=___________.【答案】2024【解析】因为f x +f -x =2,f 1 =3,所以f -1 =-1,f 0 =1,f 2 =f 0 =1,由f 1-x =f 1+x ,得f -x =f x +2 ,f x =f 2-x ,有f x +2 +f 2-x =2,可得f x +f 2-x -2 =2,有f x +f 4-x =2,又由f x +f -x =2,可得f 4-x =f -x ,可知函数f x 的周期为4,可得f 2023 =f -1 =-1,f 2028 =f 0 =1,f 2030 =f 2 =1,有f 2023 +f 2028 +f 2030 =1,因为f x +f -x =2,f 1 =3,所以f -1 =-1,f 0 =1由f 1-x =f 1+x 得f -x =f x +2 ,所以f x +f x +2 =2,f x +1 +f x +3 =2,即f x +f x +1 +f x +2 +f x +3 =4,所以f -1 +f 0 +f 1 +f 2 + f 3 +f 4 +⋯+f 2021 +f 2022 =4×506=2024所以f 1 +f 2 +f 3 +⋯+f 2022 =2024-f 0 -f -1 =2024-1--1 =2024.故f 1 +f 2 +f 3 +⋯+f 2022 f 2023 +f 2028 +f 2030 =2024.故答案为:202424.(2023·全国·高三专题练习)对于定义在D 上的函数f x ,点A m ,n 是f x 图像的一个对称中心的充要条件是:对任意x ∈D 都有f x +f 2m -x =2n ,判断函数f x =x 3+2x 2+3x +4的对称中心______.【答案】-23,7027【解析】因为f x =x 3+2x 2+3x +4,由于f x +f -23×2-x =x 3+2x 2+3x +4+-23×2-x 3+2-23×2-x 2+3-23×2-x +4=7027×2=14027.即m =-23,n =7027.所以-23,7027是f x =x 3+2x 2+3x +4的一个对称中心.故答案为:-23,7027 .25.(2023·全国·高三专题练习)对于三次函数f x =ax 3+bx 2+cx +d a ≠0 ,现给出定义:设f x 是函数y =f x 的导数,f x 是f x 的导数,若方程f x =0有实数解x 0,则称点x 0,f x 0 为函数f x =ax 3+bx 2+cx +d a ≠0 的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g x =2x 3-3x 2+1,则g 1100+g 2100+⋯+g 99100 =____.【答案】4912【解析】依题意得,g x =6x 2-6x ,g x =12x -6,令g x =0,得x =12, ∵g 12 =12,∴函数g x 的对称中心为12,12,则g 1-x +g x =1,∵1100+99100=2100+98100=⋯=49100+51100=1,∴g 1100 +g 99100 =g 2100 +g 98100 =⋯=g 49100 +g 51100 =1∴g 1100 +g 2100+⋯+g 99100 =g 1100 +g 99100 +g 2100 +g 98100 +⋯+g 49100 +g 51100 +g 12=49+12=4912,故答案为4912.26.(2023·四川成都·成都七中校考模拟预测)已知S n 为数列a n 的前n 项和,数列a n 满足a 1=-2,且S n =32a n+n ,f x 是定义在R 上的奇函数,且满足f 2-x =f x ,则f a 2021 =______.【答案】0【解析】∵S n =32a n +n ,∴S n -1=32a n -1+n -1n ≥2 ,两式相减得,a n =32a n -32a n -1+1,即a n -1=3a n -1-1 ,∴a n -1a n -1-1=3,即数列a n -1 是以-3为首项,3为公比的等比数列,∴a n -1=-3⋅3n -1=-3n ,∴a n =-3n +1.∵f x 是定义在R 上的奇函数,且满足f 2-x =f x ,∴令x =2,则f 2 =f 0 =0,又f2-x=f x =-f(-x),∴f(2+x)=-f(x),∴f(x+4)=f(x+2+2)=-f(x+2)=-[-f(-x)]=f(x),即f(x+4)=f(x),即f x 是以4为周期的周期函数.∵a2021=-32021+1=-4-12021+1=-C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020+C2021202140⋅-12021+1=-C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020+2其中C020*******⋅-10+C1202142020⋅-11+⋯+C2020202141⋅-12020能被4整除,∴f a2021=f-32021+1=f2 =0.故答案为:0.27.(2023·全国·高三专题练习)已知定义域为R的奇函数f x 满足f x+1=f3-x,当x∈0,2时,f x =-x2+4,则函数y=f x -a a∈R在区间-4,8上的零点个数最多时,所有零点之和为__________.【答案】14【解析】由于定义域为R的奇函数f x 满足f x+1=f3-x,∴f-x=-f x ,f x+4=f-x,∴f x+4=-f x ,∴f x+8=-f x+4=f x ,∴函数f x 为周期函数,且周期为8,当x∈0,2时,f x =-x2+4,函数y=f x -a a∈R在区间-4,8上的零点的个数,即为函数y=f x 与y=a 的交点的个数,作出函数 y=f x ,x∈-4,8上的函数的图象,显然,当a=0 时,交点最多,符合题意,此时,零点的和为-4+-2+0+2+4+6+8=14 .28.(2023·全国·高三专题练习)已知函数f(x)满足f(x+3)=f(1-x)+9f(2)对任意x∈R恒成立,又函数f x +9 的图象关于点(-9,0)对称,且f (1)=2022,则f (45)=_________.【答案】-2022【解析】因为函数f (x )满足f (x +3)=f (1-x )+9f (2)对任意x ∈R 恒成立,所以令x =-1,即f (2)=f (2)+9f (2),解得f (2)=0,所以f (x +3)=f (1-x )对任意x ∈R 恒成立,又函数f x +9 的图象关于点(-9,0)对称,将函数f x +9 向右平移9个单位得到f (x ),所以f (x )关于点(0,0),即f (x )为R 上的奇函数,所以f (x )=-f -x ,又f (x +3)=f (1-x )对任意x ∈R 恒成立,令x =-x -3,得f (-x )=f (x +4),即-f (x )=f (x +4),再令x =x +4,得-f (x +4)=f (x +8),分析得f (x )=f (x +8),所以函数f (x )的周期为8,因为f (1)=2022,所以在f (x +3)=f (1-x )中,令x =0,得f (3)=f (1)=2022,所以f (45)=f 6×8-3 =f -3 =-f 3 =-2022.故答案为:-2022.29.(2023·全国·高三专题练习)已知f x 是定义在R 上的函数,若对任意x ∈R ,都有f (x +8)=f (x )+f (4),且函数f (x -2)的图像关于直线x =2对称,f (2)=3,则f (2022)=_______.【答案】3【解析】因为函数f (x -2)的图像关于直线x =2对称,所以函数f (x )的图像关于直线x =0对称,即函数f x 是偶函数,则有f x =f -x ;因为对任意x ∈R ,都有f (x +8)=f (x )+f (4),令x =-4,得f -4+8 =f -4 +f 4 ⇒f -4 =f 4 =0,所以对任意x ∈R ,都有f (x +8)=f (x )+f (4)=f x ,即函数f x 的周期为8,则f 2022 =f 252×8+6 =f 6 =f 6-8 =f -2 =f 2 =3,故答案为:3.30.(2023·全国·高三专题练习)已知定义在R 上的函数f (x )和函数g (x )满足2f (x )=g (x )-g (-x ),且对于任意x 都满足f (x )+f (-x -4)+5=0,则f (2021)+f (2019)=________.【答案】5050【解析】由题意知:f (x )定义域为R ,2f (-x )=g (-x )-g (x ),可得:f (x )+f (-x )=0,f (x )为奇函数,又f (-x -4)=-f (x )-5=-f (x +4),则f (x +4)=f (x )+5,可得:f (2021)+f (2019)=f (1+4×505)+f (-1+4×505)=f (1)+5×505+f (-1)+5×505=5050.故答案为:5050.31.(2023·全国·高三专题练习)已知定义域为R 的奇函数f x ,当x >0时,有f x =-log 34-x ,0<x ≤54f x -3 ,x >54,则f 2 +f 4 +f 6 +⋅⋅⋅+f 2022 =______.【答案】0【解析】R上的奇函数f x ,则有f-x=-f(x),而当x>0时,有f x =-log34-x,0<x≤5 4f x-3,x>5 4,于是有f(2)=f(-1)=-f(1)=1,f(4)=f(1)=-1,f(6)=f(3)=f(0)=0,因∀x>54,f(x)=f(x-3),则有∀n∈N∗,f(6n-4)=f(2)=1,f(6n-2)=f(1)=-1,f(6n)=f(3)=0,所以f2 +f4 +f6 +⋅⋅⋅+f2022=337f2 +f4 +f6=0.故答案为:032.(2023·全国·高三专题练习)已知函数f x =x3-3x2+9x+4,若f a =7,f b =15,则a+b=___________.【答案】2【解析】因为f x =3x2-6x+9,对称轴为x=1,所以f x 的对称中心为1,f1,即1,11,因为f x =3x2-6x+9=3(x-1)2+6>0,所以f x 在R上单调递增,所以方程f a =7,f b =15的解a,b均有且只有一个,因为f a +f b =2f1 =22,所以a,7,b,15关于对称中心1,11对称,所以a+b=2,故答案为:233.(2023·全国·高三专题练习)已知函数f x 的定义域为R,且f x 为奇函数,其图象关于直线x=2对称.当x∈0,4时,f x =x2-4x,则f2022=____.【答案】4【解析】∵f x 的图象关于直线x=2对称,∴f(-x)=f(x+4),又f x 为奇函数,∴f(-x)=-f x ,故f(x+4)=-f x ,则f(x+8)=-f(x+4)=f x ,∴函数f x 的周期T=8,又∵2022=252×8+6,∴f2022= f6 =f(-2)=-f2 =-(4-8)=4.故答案为:4.34.(2023·全国·高三专题练习)若函数f(x)=1-x2x2+ax+b,a,b∈R的图象关于直线x=2对称,则a+b=_______.【答案】7【解析】由题意f(2+x)=f(2-x),即f(x)=f(4-x),所以f(0)=f(4)f(1)=f(3),即b=-15(16+4a+b)0=-8(9+3a+b),解得a=-8b=15,此时f(x)=(1-x2)(x2-8x+15)=-x4+8x3-14x2-8x+15,f(4-x)=-(4-x)4+8(4-x)3-14(4-x)2-8(4-x)+15=-(x4-16x3+96x2-256x+256)+8(64-48x+12x2-x3)-14(16-8x+x2)-32+8x+15= -x4+8x3-14x2-8x+15=f(x),满足题意.所以a=-8,b=15,a+b=7.故答案为:7.35.(2023·全国·高三专题练习)已知函数f x =3x-5x-2,g x =2x+22x-2+1,记f(x)与g(x)图像的交点横,纵坐标之和分别为m与n,则m-n的值为________.【答案】-2.【解析】f(x)=3x-5x-2=3+1x-2在(-∞,2)和(2,+∞)上都单调递减,且关于点(2,3)成中心对称,g(x)=2x+22x-2+1=4×2x-2+22x-2+1=4-22x-2+1在(-∞,+∞)上单调递增,g(4-x)+g(x)=4-222-x+1+4-22x-2+1=8-2(2x-2+1)+2(22-x+1)(22-x+1)(2x-2+1)=8-2(2x-2+22-x+2)2+2x-2+22-x=8-2=6,所以g(x)的图像也关于点(2,3)成中心对称,所以f(x)与g(x)图像有两个交点且关于点(2,3)对称,设这两个交点为(x1,y1)、(x2,y2),则x1+x2=2×2=4,y1+y2=2×3=6,所以m=4,n=6,所以m-n=4-6=-2.故答案为:-2.。
考点09函数的对称性(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.能通过平移,分析得出一般的轴对称和中心对称公式和推论.2.会利用对称公式解决问题.【知识点】1.奇函数、偶函数的对称性(1)奇函数关于对称,偶函数关于对称.(2)若f (x -2)是偶函数,则函数f (x )图象的对称轴为 ;若f (x -2)是奇函数,则函数f (x )图象的对称中心为.2.若函数y =f (x )的图象关于直线x =a 对称,则f (a -x )=f (a +x );若函数y =f (x )满足f (a -x )=-f (a +x ),则函数的图象关于点 对称.3.两个函数图象的对称(1)函数y =f (x )与y =f (-x )关于 对称;(2)函数y =f (x )与y =-f (x )关于 对称;(3)函数y =f (x )与y =-f (-x )关于对称.【核心题型】题型一 轴对称问题 函数y =f (x )的图象关于直线x =a 对称⇔f (x )=f (2a -x )⇔f (a -x )=f (a +x );若函数y =f (x )满足f (a +x )=f (b -x ),则y =f (x )的图象关于直线x =a +b 2成轴对称.【例题1】(2024·辽宁·一模)已知函数(2)f x +为偶函数,且当2x ³时,()()217log 47f x x x =-+,若()()f a f b >,则( )A .(4)()0a b a b +--<B .(4)()0a b a b +-->C .(4)()0a b a b ++-<D .(4)()0a b a b ++->【变式1】(2024·四川泸州·二模)定义域为R 的函数()f x 满足()()22f x f x +=-,当[]2,2x Î-时,函数()24f x x =-,设函数()|2|()e 26x g x x --=-<<,则方程()()0f x g x -=的所有实数根之和为( )A .5B .6C .7D .8【变式2】(2024·陕西安康·模拟预测)已知函数()1f x x =-,公差不为0的等差数列{}n a 的前n 项和为n S .若()()10121013f a f a =,则2024S =( )A .1012B .2024C .3036D .4048【变式3】(2024·全国·模拟预测)已知函数()f x 及其导数()f x ¢的定义域为R ,记()()g x f x ¢=,且()(),1f x g x +都为奇函数.若()52f -=,则()2023f =( )A .0B .12-C .2D .2-题型二 中心对称问题函数y =f (x )的图象关于点(a ,b )对称⇔f (a +x )+f (a -x )=2b ⇔2b -f (x )=f (2a -x );若函数y =f (x )满足f (a +x )+f (b -x )=c ,则y =f (x )的图象关于点(a +b 2,c 2)成中心对称.【例题2】(2024·全国·模拟预测)设()f x 是定义域为R 的偶函数,且()21f x +为奇函数.若1111,3322f f æöæö==ç÷ç÷èøèø,则2023202332f f æöæö+=ç÷ç÷èøèø( )A .16B .16-C .56-D .56【变式1】(2024·全国·模拟预测)定义在R 上的偶函数()f x 满足()()2f x f x -=-,则( )A .()()2f x f x =+B .()()2f x f x -=-C .()()4f x f x =-D .()2f x -是奇函数【变式2】(2024·四川南充·二模)已知函数()3=f x x,则函数()11y f x =-+的图象( )A .关于点()1,1对称B .关于点()1,1-对称C .关于点()1,0-对称D .关于点()1,0对称【变式3】(23-24高三下·江苏扬州·开学考试)定义在R 上的函数()y f x =和()y g x =的图象关于y 轴对称,且函数(2)1y f x =-+是奇函数,则函数()y g x =图象的对称中心为( )A .(2,1)B .(2,1)--C .(2,1)-D .(2,1)-题型三 两个函数图象的对称函数y =f (a +x )的图象与函数y =f (b -x )的图象关于直线x =b -a2对称.【例题3】(2024上·北京·高二统考学业考试)在同一坐标系中,函数()y f x =与()y f x =-的图象( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线y x =对称【变式1】(2024下·江苏扬州·高三统考开学考试)定义在R 上的函数()y f x =和()y g x =的图象关于y 轴对称,且函数(2)1y f x =-+是奇函数,则函数()y g x =图象的对称中心为( )A .(2,1)B .(2,1)--C .(2,1)-D .(2,1)-【变式2】(2020上·安徽·高一校联考期末)已知函数(1)=-y f x 是定义在R 上的奇函数,函数()y g x =的图象与函数()y f x =的图象关于直线0x y -=对称,那么()y g x =的对称中心为( )A .(1,0)B .(1,0)-C .(0,1)D .(0,1)-【变式3】(2024高三·全国·专题练习)若函数y =f (x )的定义域为R ,则函数y =f (x -1)与y =f (1-x )的图象关于直线( )A .x =0对称B .y =0对称C .x =1对称D .y =1对称【课后强化】基础保分练一、单选题1.(23-24高三上·宁夏银川·阶段练习)函数()y f x =满足对任意x ÎR 都有()()2f x f x +=-成立,函数()1y f x =-的图象关于点()1,0对称,且()14f =,则()()()201820192020f f f ++=( )A .-4B .0C .4D .82.(2023·宁夏银川·模拟预测)已知函数32()f x x ax x b =+++的图象关于点(1,1)对称,则b =( )A .1-B .1C .2-D .23.(23-24高三上·全国·开学考试)已知函数()1122,1,22,1,x x x f x x --+ì+<-=í->-î则()f x 的图象关于( )A .点()1,2-对称B .点()1,2-对称C .直线1x =对称D .直线=1x -对称4.(2023·云南·模拟预测)已知函数()f x ,()g x 的定义域均为R ,()()112f x f x ++-=,()2g x +是偶函数,且()()24f x g x ++=,()22g =,则( )A .()f x 关于直线1x =对称B .()f x 关于点()1,0中心对称C .()20231f =D .151()15k f k ==å5.(2023·甘肃张掖·模拟预测)已知函数()f x 的定义域为R ,()1f x -的图象关于点(1,0)对称,()30f =,且对任意的()12,,0x x Î-¥,12x x ¹,满足()()21210f x f x x x -<-,则不等式()()110x f x -+³的解集为( )A .(][),12,-¥È+¥B .[][]4,10,1--ÈC .[][]4,11,2--ÈD .[][)4,12,--È+¥二、多选题6.(2024·全国·二模)已知()f x 是定义在R 上不恒为0的函数,()1f x -的图象关于直线1x =对称,且函数12y x =-的图象的对称中心也是()f x 图象的一个对称中心,则( )A .点()2,0-是()f x 的图象的一个对称中心B .()f x 为周期函数,且4是()f x 的一个周期C .()4f x -为偶函数D .()()31352f f +=7.(2024·江苏南通·二模)已知函数()f x ,()g x 的定义域均为R ,()f x 的图象关于点(2,0)对称,(0)(2)1g g ==,()()()()++-=g x y g x y g x f y ,则( )A .()f x 为偶函数B .()g x 为偶函数C .(1)(1)--=--+g x g xD .(1)(1)g x g x -=+三、填空题8.(2024·宁夏银川·一模)已知偶函数()f x 的图象关于直线2x =对称,()22f =,且对任意[]12,0,1x x Î,均有()()()1212f x x f x f x +=+成立,若()27777222n f f f f t æöæöæö++++<ç÷ç÷ç÷èøèøèøL 对任意*n ÎN 恒成立,则t 的最小值为.9.(23-24高三下·河南濮阳·开学考试)已知函数()f x 的定义域为R ,且()41f x +的图象关于点()0,2中心对称,若()()2240f x f x x +--+=,则()1001i f i ==å.四、解答题10.(2024高三·全国·专题练习)下列函数是否存在对称轴或对称中心?(1)f (x )=21x x x ++;(2)f (x )=(e x -e -x )2;(3)f (x )=2x +42x.11.(2024·湖南·二模)已函数32()(,,)f x x ax bx c a b c =+++ÎR ,其图象的对称中心为(1,2)-.(1)求a b c --的值;(2)判断函数()f x 的零点个数.12.(2024高三下·浙江杭州·专题练习)已知函数()7x f x x a+=+关于点()11,-中心对称.(1)求函数()f x 的解析式;(2)讨论()()()2g x x f x =在区间()0,+¥上的单调性;(3)设()111,n n a a f a +==,证明:222ln ln 71n n a --<.综合提升练一、单选题1.(2024·云南昆明·一模)已知函数()2e e x xf x -=+,则下列说法正确的是( )A .()f x 为增函数B .()f x 有两个零点C .()f x 的最大值为2eD .()y f x =的图象关于1x =对称2.(2024·河南新乡·二模)已知函数()f x 满足()()()1f x y f x f y ++=+,则下列结论一定正确的是( )A .()1f x +是奇函数B .()1f x -是奇函数C .()1f x -是奇函数D .()1f x +是奇函数3.(2024高三·全国·专题练习)已知函数()1x f x x =-,()11e e 1x x g x --+=-+,则()f x 与()g x 的图象交点的纵坐标之和为( )A .4B .2C .1D .04.(2024·全国·模拟预测)若定义在R 上的函数()f x 满足()()f x f x =,且()()()226,36f x f x f ++-==,则下列结论错误的是( )A .()()8f x f x +=B .()f x 的图象关于直线4x =对称C .()2013f =D .()23y f x =+-是奇函数5.(23-24高三下·山东菏泽·阶段练习)已知函数()f x 定义域为R ,且()()224f x f x x +--=-,()13f x +关于()0,2对称,则()2025f =( )A .4046-B .4046C .1D .06.(2024·陕西西安·模拟预测)已知()f x 的定义域为R ,函数()f x 满足()()()12202346,48x f x f x g x x ++-==-,()(),f x g x 图象的交点分别是()()()()11223344,,,,,,,,x y x y x y x y LL ,(),n n x y ,则12n y y y +++LL 可能值为( )A .2B .14C .18D .257.(2024·福建漳州·一模)已知可导函数()f x 的定义域为R ,12x f æö-ç÷èø为奇函数,设()g x 是()f x 的导函数,若()21g x +为奇函数,且()102g =,则()1012k kg k ==å( )A .132B .132-C .112D .112-8.(2024·安徽芜湖·二模)已知函数()f x 的定义域为R ,且()22f x +-为奇函数,()31f x +为偶函数,()10f =,则()20241k f k =å=( )A .4036B .4040C .4044D .4048二、多选题9.(2023·山东·模拟预测)已知函数()f x 的定义域为R ,()21f x +为奇函数,()()4f x f x -=,()02f =,且()f x 在[]0,2上单调递减,则( )A .()10f =B .()82f =C .()f x 在[]6,8上单调递减D .()f x 在[]0,100上有50个零点10.(2024·全国·模拟预测)设()f x 是定义域为R 的偶函数,且()21f x +为奇函数.若1111,3322f f æöæö==ç÷ç÷èøèø,则( )A .()f x 的图象关于点()1,0对称B .()f x 的周期是2C .()f x 的图象关于直线2x =对称D .202320231326f f æöæö+=ç÷ç÷èøèø11.(2024·湖北·二模)我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数.有同学发现可以将其推广为:函数()y f x =的图象关于点(,)P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.已知函数4()22x f x =+,则下列结论正确的有( )A .函数()f x 的值域为(0,2]B .函数()f x 的图象关于点(1,1)成中心对称图形C .函数()f x 的导函数()f x ¢的图象关于直线1x =对称D .若函数()g x 满足(1)1y g x =+-为奇函数,且其图象与函数()f x 的图象有2024个交点,记为(,(1,2,,))2024i i i A x y i =L ,则20241(8)404i i i x y =+=å三、填空题12.(2024高三·全国·专题练习)若函数y =g (x )的图象与y =ln x 的图象关于直线x =2对称,则g (x )=.13.(2024·宁夏银川·一模)已知定义在R 上的偶函数()f x 满足()(2)f x f x =-,当[0,1]x Î时,()2f x x =.函数()()1e13x g x x --=-<<,则()f x 与()g x 的图象所有交点的横坐标之和为 .14.(2024·内蒙古呼和浩特·一模)已知定义在R 上的函数()113e e (1)x xf x x x --=-+-+,满足不等式()()24232f x f x -+-³,则x 的取值范围是 .四、解答题15.(23-24高三上·重庆·阶段练习)已知函数()2x f x =,函数()h x 与()f x 关于点23log 3,2a æöç÷èø中心对称.(1)求()h x 的解析式;(2)若方程()()f x h x =有两个不等的实根1x ,2x ,且122x x -=,求a 的值.16.(2023高三·全国·专题练习)已知函数()393x f x =+.(1)求证:函数()f x 的图象关于点11,22æöç÷èø对称;(2)求()()()()()20222021020222023S f f f f f =-+-+++++L L 的值.17.(23-24高三上·上海·期中)已知函数()(),41x nf x m m n =-Î+R .(1)当3m =时,确定是否存在n ,使得()f x 的图象关于原点中心对称;(2)对于任意给定的非零常数m ,()y f x =的图象与x 轴负半轴总有公共点,求n 的取值范围;(3)当1n =时,函数()g x 的图象与()y f x =图象关于点()1,0对称,若对任意:()1,2x Î,()0g x <恒成立,求m 的取值范围.18.(23-24高三上·陕西咸阳·阶段练习)已知函数()()220f x x x m m =+->的图象关于直线1x =对称.(1)求m 的值,及()f x 的最小值;(2)设a ,b 均为正数,且a b m +=,求14a b+的最小值.19.(23-24高三下·山东·开学考试)已知函数()()ln 1f x x =+.(1)讨论函数()()()F x ax f x a =-ÎR 的单调性;(2)设函数()()1111g x x f f x x æöæö=+-+ç÷ç÷èøèø.(ⅰ)求()()12g g --的值;(ⅱ)证明:存在实数m ,使得曲线()y g x =关于直线x m =对称.拓展冲刺练一、单选题1.(23-24高三下·陕西安康·阶段练习)已知函数()331xf x =+,则()f x 的图象( )A .关于点3,02æöç÷èø对称B .关于直线32x =对称C .关于点30,2æöç÷èø对称D .关于直线12x =对称2.(2024·山西吕梁·一模)已知函数()f x 满足()()()()()23132f x y f x y f x f y f ++-==,,则下列结论不正确的是( )A .()03f =B .函数()21f x -关于直线12x =对称C .()()00f x f +³D .()f x 的周期为33.(2023·四川乐山·一模)已知函数()f x 定义域为R ,且满足()00f =,()()f x f x -=,()()1140f t f t t --++=,给出以下四个命题:①()()13f f -=; ②()()2f x f x +=;③()464f =;④函数()2y f x x =-的图象关于直线1x =对称.其中正确命题的个数是( )A .0B .1C .2D .34.(22-23高三下·全国·阶段练习)已知函数()12e 1x f x ax =++,则下列关于()f x 的结论中正确的是( )A .()f x 在[)1,+¥上有最小值B .若14a =,则()f x 有最大值C .()()e e 1f f -+=D .()f x 关于点()0,1中心对称5.(2023·新疆乌鲁木齐·二模)已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=¹,则下列说法正确的是( )A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==å二、多选题6.(23-24高三上·浙江杭州·期末)已知函数()cos 2f x x =,()πsin 23g x x æö=+ç÷èø,则( )A .将函数()y f x =的图象右移π12个单位可得到函数()y g x =的图象B .将函数()y f x =的图象右移π6个单位可得到函数()y g x =的图象C .函数()y f x =与()y g x =的图象关于直线π24x =对称D .函数()y f x =与()y g x =的图象关于点7π,024æöç÷èø对称7.(2024·吉林白山·二模)已知函数()f x 的定义域为R ,其图象关于()1,2中心对称,若()()424f x f x x --=-,则( )A .()()2334f x f x -+=B .()()4f x f x =-C .()20254046f =-D .201()340i f i ==-å三、填空题8.(2023·四川泸州·一模)函数()1xf x x =-的对称中心为 .9.(23-24高三上·河南·阶段练习)已知函数()()()32121,2,33f x x x x f m f n =-++==,则m n += .四、解答题10.(2023高三·全国·专题练习)已知函数1()122f x a x æö=--ç÷èø,R a Î且0a >(1)证明:函数()f x 的图像关于直线12x =对称;(2)若0x 满足00(())f f x x =, 但00()f x x ¹,则0x 称为函数()f x 的二阶周期点,如果()f x 有两个二阶周期点12,x x ,试确定实数a 的取值范围.11.(2023·上海嘉定·二模)已知()2sin f x x x =+,等差数列{}n a 的前n 项和为n S ,记()1nn i i T f a ==å.(1)求证:函数()y f x =的图像关于点(),p p 中心对称;(2)若1a 、2a 、3a 是某三角形的三个内角,求3T 的取值范围;(3)若100100S p =,求证:100100T p =.反之是否成立?并请说明理由.。
坐标对称及最值问题是数学中的常见问题,常常出现在函数、几何、三角函数等领域。
这类问题需要运用对称思想,以及寻找最值的方法。
下面列举了5种常见的题型及相应的解法。
题型一:函数的最值对于函数f(x),其最值可能出现在最小值(f(x)min)和最大值(f(x)max)上。
对于这类问题,我们通常需要观察函数的对称性,例如,如果函数是关于原点对称的,那么最小值和最大值可能在左右两侧取得。
解法上,我们通常需要利用导数或其他方法来找到函数的极值点,从而确定最值。
题型二:两点之间的距离在两点之间的距离问题中,如果两个点关于某个轴对称,那么它们之间的距离可以通过简单的轴对称距离公式来计算。
解法上,我们通常需要利用轴对称距离公式,以及两点之间的距离公式来求解。
题型三:圆的半径的最值在圆的半径的最值问题中,如果圆关于某条直线对称,那么我们需要找到圆的半径与对称轴的位置关系,从而确定圆的半径的最值。
解法上,我们通常需要利用圆的半径公式,以及对称轴的位置关系来求解。
题型四:三角形的重心坐标在三角形的重心坐标问题中,如果三个顶点关于某条直线对称,那么我们需要找到重心坐标与对称轴的关系,从而确定重心的坐标。
解法上,我们通常需要利用重心的几何性质,以及对称轴的位置关系来求解。
题型五:椭圆的离心率在椭圆的离心率问题中,如果焦点关于某轴对称,那么我们需要找到椭圆的离心率与对称轴的关系,从而确定椭圆的离心率。
解法上,我们通常需要利用椭圆的离心率公式,以及对称轴的位置关系来求解。
总的来说,坐标对称及最值问题的解法主要依赖于对称性和位置关系。
对于不同类型的题目,我们需要灵活运用这些方法来解决问题。
同时,对于不同类型的题目,也需要进行相应的变化和拓展,以适应更复杂的情况。
希望以上信息对您有所帮助。
如果您有任何具体问题或需要进一步的解释,请随时告诉我。
【答案】5【分析】先根据①①可知函数的对称中心和对称轴,再分别画出()f x 和()g x 的部分图像,由图像观察交点的个数.【详解】根据题意,①(2)()0f x f x -+=,得函数()f x 的图像关于点()1,0对称,①(2)()0f x f x ---=,得函数()f x 的图像关于1x =-对称,则函数()f x 与()g x 在区间[3,3]-上的图像如图所示,由图可知()f x 与()g x 的图像在[]3,3-上有5个交点.由图知()f x 与()h x 的图象在区间()2,6-有四个交点,设交点横坐标分别为1234,,,x x x x ,且1422x x +=,2322x x +=,所以12348x x x x +++=,所以()f x 与()h x 的图象所有交点的横坐标之和为8, 3.定义在R 上的函数()f x 满足()(2)f x f x -=,且当1≥x 时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为( )A .1-B .23-C .13-D .13【答案】C 【分析】若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,即对[,1]x t t ∈+,不等式()()1f x f x +t ≤+恒成立,-1x x t ≥+,进而可得答案.【详解】当14x ≤<时,3y x =-+单调递减,()()241log 41f x f >=-=-,当4x ≥时,()f x 单调递减,()()41f x f ≥=-,故()f x 在[)1,+∞上单调递减,由()(2)f x f x -=,得()f x 的对称轴为1x =, 若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,即对[,1]x t t ∈+,不等式()()1f x f x +t ≤+恒成立,-1x x t ∴≥+,即()()221x x t -≥+,即()22110t x t ++-≤,()()()22211011321110t t t t t t t ⎧++-≤⎪⇒-≤≤-⎨+++-≤⎪⎩,故实数t 的最大值为13-. 4.已知()f x 是定义域为R 的奇函数,(1)(1)f x f x +=-,当01x ≤≤时,()1xf x e =-,则23x ≤≤时,()f x 的解析式为( )6.已知函数()f x 满足对任意的x ∈R 都有11222⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭f x f x 成立,则 127...888f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= . 【答案】7 【解析】设,则,因为11222⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭f x f x ,所以,,故答案为7.7.已知函数21()ln |2|45f x x x x =---+,则使不等式(21)(2)f t f t +>+成立的实数t 的取值范围是___________.【答案】111(,)(,1)322⋃ 【分析】由函数解析式知函数()f x 的图象关于直线2x =对称,利用定义证得2x >时,函数()f x 是减函数,2x <时,函数为增函数,利用对称性和单调性解不等式即可.【详解】∵f(x)=1x 2−4x+5−ln |x −2|=1(x−2)2+1−ln |x −2|,21(2)ln ||1f t t t ∴-=-+,。
三角函数图象的对称性题型分类解析对于正弦型函数y =Asin(ωx +ϕ)与余弦型函数y =Asin(ωx +ϕ)的对称性一般需要根据基本函数y =sinx 与y =cosx 的对称性进行整体代换求解.本文对这类问题进行归类分析.关于y =sinx 、y =cosx 与y =tanx 的对称性如下结论:①函数y =sinx 的图象的对称轴方程为x k =k π+π2(k∈Z),对称中心坐标为(k π,0)(k∈Z); ②函数y =cosx 的图象的对称轴方程为x k =k π(k∈Z).对称中心坐标为(k π+π2,0)(k∈Z); 一、根据函数解析式确定图象的对称轴例1函数y =cos(2x +π2)的图象的一条对称轴方程是( ) A.x =-π2 B.x =-π4 C.x =π8D.x =π 解:∵2x +π2=k π(k ∈Z)得图象的对称轴方程为x =k π2-π4(k ∈Z).当k=0时,x =-π4.故选B. 方法点拨:上面解法可以先利用诱导公式将函数解析式化简后进行求解,如例1化为y =-sin2x ,再由x =k π(k ∈Z)可求得结果.因为对称轴过三角函数型函数的最值点,因此可以根据选择题的特点还可以利用验证法,即将各选择项代入函数解析式的右端,如果所得的值为1或-1,则就为正确选项.二、根据函数解析式确定图象的对称中心例2函数y =sin(2x -π6)图象的一个对称中心是( ) A.(﹣π12,0) B.(π12,0) C.(11π12,0) D.(﹣13π12,0) 解:由2x -π6=k π(k ∈Z)得,对称中心为 (k π2+π12,0)(k ∈Z).当k =0时,即为(π12,0),故选B. 方法点拨:本题直接根据正弦函数的对称中心坐标,利用整体代换方法可求得结果.由于正函弦数的对称中心为图象提零点,因此可以将选择项代入解析式左端,如果所得的值为0,则就是正确的选项.三、根据图象的对称轴确定函数的解析式例3 如果函数y =sin2x +acos2x 的图象关于直线x =-π8对称,那么a 等于( ) A. 2 B.- 2C.1D.-1解析1:由三角函数的性质知,可知当x =-π8时函数取最大值或最小值. ∴由题设条件知,函数的最大值为1+a 2,最小值为-1+a 2,而当x =-π8,y =-22+22a,∴|-22+22a|=1+a 2,解得a =-1,故选D. 解析2:∵x =-π8是此函数的一条对称轴,∴f(-π8-x)=f(-π8+x)对定义域上的任何值都成立, 令x =-π8,则f(-π8+π8)=f(0)=sin0+acos0=a , f(-π8-π8)=f(-π4)=sin(-π2)+acos(-π2)=-1, ∴a =-1.故选D. 方法点拨:解法1主要是利用通过不同途径求的最值相同建立关于a 的方程而求得的,而解法2是利用函数的对称性,同时结合特殊值来求解的.四、根据图象的对称中心确定函数解析式例4函数y =sin(3x +ϕ)图象的一个对称中心是(-7π12,0),则ϕ取( ) A.π4 B.-π4 C.7π12 D.-7π12解析1:由3x +ϕ=k π(k ∈Z)得x =k π-ϕ3(k ∈Z),所以对称中心为(k π-ϕ3,0)(k ∈Z), 由k π-ϕ3=-7π12(k ∈Z),得ϕ=k π+7π4(k ∈Z).当k =-2时,ϕ=-π4,故选B. 解析2:由于正弦函数的对称中心点为正弦函数的零点,因此sin[3×(-7π12)+ϕ]=0, 即sin(ϕ-3π4)=0,∴ϕ-3π4=k π(k ∈Z),即ϕ=k π+3π4,当k =-1时,ϕ=-π4,故选B. 方法点拨:本题实质上是一道逆向型思维问题,即“已知函数的对称中心,求解析式中的参数”,上述解法是先根据正弦函数图象的对称中心作整体代换求得函数y =sin(3x +ϕ)图象的对称中心的横坐标,再与已知的对称中心的横坐标相等而求得的.而解析2是根据图象上对称中心的位置特征(即为零点)来求解的.。
高中数学函数的对称性专题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 已知函数f(x)=x2−2x+m,若f(x1)=f(x2)(x1≠x2),则f(x1+x22)=()A.1B.2C.m−1D.m2. 在同一平面直角坐标系中,函数f(x)=lg(x+1)的图象与函数g(x)=lg(−x+1)的图象关于( )A.原点对称B.x轴对称C.直线y=x对称D.y轴对称3. 下列给出函数y=f(x)的部分对应值,则f(f(8))等于()A.πB.4C.8D.04. 已知幂函数y=f(x),f(8)=2,则y=f(x)一定经过的点是( )A.(2, 1)B.(2, 4)C.(4, 2)D.(0, 1)5. 已知函数f(x+1)=3x+2,则f(x)的解析式是( )A.3x+2B.3x+1C.3x−1D.3x+46. 若函数f(x)=x2+e x−12(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.(−∞,√e)B.√e ) C.√e√e) D.(−√e,√e)7. 定义在上的偶函数,其图像关于点对称,且当时,,则( )A. B. C. D.8. 已知函数f (x )=ln (x −2)+ln (4−x ),则( ) A.f (x )的图象关于直线x =3对称 B.f (x )的图象关于点(3,0)对称 C.f (x )在(2,4)上单调递增 D.f (x )在(2,4)上单调递减9. 函数f (x )=x 3−2021x +1图象的对称中心为( ) A.(0,0) B.(1,0) C.(0,1) D.(1,1)10. 已知函数f (x )=11+ex ,若正实数m ,n 满足f (m −1)=1−f (n ),则1m+4n的最小值为( ) A.7 B.9 C.3+2√2D.8911. 函数f (x )满足f (x )=f (2−x ),x ∈R ,且当x ≥1时,f (x )=lg x ,则有( ) A.f (13)<f (2)<f (12)B.f (12)<f (2)<f (13)C.f (12)<f (13)<f (2) D.f (2)<f (12)<f (13)12. 已知函数f (x )={log a x,x >0,|x +3|,−4≤x <0,(a >0且a ≠1).若函数f (x )的图象上有且只有两个点关于原点对称,则a 的取值范围是( ) A.(0,14) B.(0,14)∪(1,+∞) C.(14,1)∪(1,+∞) D.(0,1)∪(1,4)13. 设函数f(x)=(x −3)3+x −1,{a n }是公差不为0的等差数列,f(a 1)+f(a 2)+⋯+f(a 7)=14,则a 1+a 2+⋯+a 7=( ) A.0 B.7 C.14 D.2114. 已知定义域为R 的函数f (x )在[2,+∞)单调递减,且f (4−x )+f (x )=0,则使得不等式f (x 2+x )+f (x +1)<0成立的实数x 的取值范围是( )A.(−3,1)B.(−∞,−1)∪(3,+∞)C.(−∞,−3)∪(1,+∞)D.(−∞,−1)∪(−1,+∞)15. 已知函数f(x)=x2+e x−1(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是( )A.(−∞,1]B.(−∞,√e)C.(−∞,1)D.(1,√e)16. 函数f(x)=x+1x图象的对称中心为________.17. 若偶函数y=f(x)(满足f(1+x)=f(1−x),且当时,,则函数g(x)=f(x)−的零点个数为________个.18. 设y=f(x)是定义域为R的偶函数,且它的图象关于点(2, 0)对称,若当x∈(0, 2)时,f(x)=x2,则f(19)=________19. 已知函数对于都有,且周期为2,当时,,则________________.20. 已知函数f(x)满足f(x)+f(−x)=2,g(x)=1x+1,y=f(x)与y=g(x)交于点(x1,y1),(x2,y2),则y1+y2=________.21. 已知定义在R上的函数f(x)满足f(x)=−f(2−x),当x≥1时,f(x)=log2x,则不等式f(x)≤2的解集为________.22. 若函数f(x)=(1−x2)(x2+ax+b)的图象关于直线x=−2对称,则f′(x)=________.23. 已知f(x)是定义在R上的奇函数,当x>0时,f(x)={2|x−1|−1,0<x≤2, 12f(x−2),x>2.有下列结论:①函数f(x)在(−6,−5)上单调递增;②函数f(x)的图象与直线y=x有且仅有2个不同的交点;③若关于x的方程[f(x)]2−(a+1)f(x)+a=0(a∈R)恰有4个不相等的实数根,则这4个实数根之和为8;④记函数f(x)在[2k−1,2k](k∈N∗)上的最大值为a k,则数列{a n}的前7项和为12764.其中所有正确结论的编号是________.24. 设函数的图象与的图象关于直线对称,且,求a的值.25. 已知幂函数f(x)=x3m−9(m∈N∗)的图象关于y轴对称,且在(0, +∞)上是减函数,求满足(a+1)−m<(3−2a)−m的实数a的取值范围.26. 已知函数f(x)=2x+2−x.(1)求方程f(x)=52的根;(2)求证:f(x)在[0,+∞)上是增函数;(3)若对于任意x∈[0,+∞),不等式f(2x)≥f(x)−m恒成立,求实数m的最小值.27. 已知函数f(x)=x2−2ax+1满足f(x)=f(2−x).(1)求a的值;(2)若不等式f(2x)4x≥m对任意的x∈[1, +∞)恒成立,求实数m的取值范围;(3)若函数g(x)=f(|log2x|)−k(|log2x|−1)有4个零点,求实数k的取值范围.28. 已知函数f(x)为偶函数,g(x)为奇函数,且f(x)−g(x)=1e x.(1)求函数f(x)和g(x)的解析式;(2)若f(2x)>ag(x)在x∈(1,+∞)上恒成立,求实数a的取值范围;(3)记H(x)=g(x+1)+1,若a,b∈R,且a+b=1,求H(−4+a)+H(b+1)的值.f(x+1)参考答案与试题解析高中数学函数的对称性专题含答案一、选择题(本题共计 15 小题,每题 3 分,共计45分)1.【答案】C【考点】函数的对称性【解析】先求出二次函数的对称轴方程,由条件可得x1+x2=2×1=2,然后代入求值即可. 【解答】解:对于二次函数f(x)=x2−2x+m,其对称轴方程是x=1,若f(x1)=f(x2)(x1≠x2),则x1+x2=2×1=2,故f(x1+x22)=f(22)=m−1.故选C.2.【答案】D【考点】函数的对称性函数的图象变换【解析】易知g(x)=f(−x),由f(−x)与f(x)的图象间的关系可得g(x)与f(x)的图象关系.【解答】解:f(−x)=lg(−x+1)=g(x),因为f(−x)与f(x)的图象关于y轴对称,所以f(x)与g(x)的图象关于y轴对称.故选D.3.【答案】A【考点】函数的求值函数的对称性函数的概念及其构成要素【解析】先求出f(8)=,从而f(8]=t(1),由此能求出结果.【解答】f(θ)=1,f(1)=π,∴ Mf(8)=f(1)=π故选:A.4.【答案】C【考点】幂函数的概念、解析式、定义域、值域抽象函数及其应用函数的对称性【解析】试题分析:由已知得8a=2√2,解得a的值,由此求出f(x)的表达式,得到结论.解:幂函数y=f(x)=x8的图象经过点(8,2√2)∵8a=2√2,解得a=12∴(x)=√x将(4,2)代入f(x),满足方程,故选:c.【解答】此题暂无解答5.【答案】C【考点】利用导数研究函数的单调性函数解析式的求解及常用方法函数的对称性【解析】试题分析:设t=x+1x=t−1f(t)=3(t−1)+2=3t−1【解答】此题暂无解答6.【答案】A【考点】已知函数的单调性求参数问题函数的对称性【解析】由题意可得e x0−12−ln(−x0+a)=0有负根,函数ℎ(x)=e x−12−ln(−x+a)为增函数,由此能求出a的取值范围.【解答】解:由题意可得:存在x0∈(−∞, 0),满足x02+e x0−12=(−x0)2+ln(−x0+a),即e x0−12−ln(−x0+a)=0有负根,∵当x趋近于负无穷大时,e x0−12−ln(−x0+a)也趋近于负无穷大,且函数ℎ(x)=e x −12−ln (−x +a)为增函数,∴ ℎ(0)=e 0−12−ln a >0, ∴ ln a <ln √e , ∴ a <√e ,∴ a 的取值范围是(−∞, √e). 故选A . 7.【答案】 D【考点】函数奇偶性的判断 函数的周期性 函数的对称性 【解析】由偶函数y =f (x ),其图像关于点(12,0)对称,可得f (12+x)+f (12−x)=0,进而可推出f (x )最小正周期为2,所以f (π)=f (π−4)=f (4−π),代入题中所给解析式即可求出结果. 【解答】因为y =f (x )图像关于点(12,0)对称,所以f (12+x)+f (12−x)=0,所以f (1+x )+f (−x )=0,又y =f (x )为偶函数,所以f (−x )=−f (x ),所以f (x +2)=−f (1+x )=f (x ),所以函数f (x )最小正周期为2,所以f (π)=f (π−4)=f (4−π)=π−4+12=π−728. 【答案】 A【考点】复合函数的单调性 函数的对称性【解析】求出函数的定义域,利用对称性进行判断即可. 【解答】解:要使函数有意义,则{x −2>0,4−x >0,解得2<x <4,则函数的定义域为(2,4),f (x +3)=ln (x +1)+ln (1−x ), f (3−x )=ln (1−x )+ln (1+x ), 则f (x +3)=f (3−x ),即函数关于x =3对称,故A 正确,B 错误,∵函数关于x=3对称,∴函数在定义域(2,4)上不具备单调性,故CD错误.故选A.9.【答案】C【考点】函数的对称性【解析】根据函数对称性的性质建立方程进行求解即可.【解答】解:设对称中心的坐标为(a,b),则有2b=f(a+x)+f(a−x)对任意x均成立,代入函数解析式得,2b=(a+x)3−2021(a+x)+1+(a−x)3−2021(a−x)+1对任意x均成立,解得a=0,b=1,即对称中为(0,1).故选C.10.【答案】B【考点】基本不等式在最值问题中的应用函数的对称性【解析】无【解答】解:因为f(x)=11+e x,所以f(−x)=11+e−x,所以f(x)+f(−x)=1.由于函数f(x)=11+e x在定义域上单调递减,正实数m,n满足f(m−1)+f(n)=1,故1−m=n,所以m+n=1,所以1m +4n=(m+n)(1m+4n)=5+nm +4mn≥5+2√4=9(当且仅当2m=n=23时,等号成立).故选B.11.【答案】C【考点】对数函数的单调性与特殊点函数的对称性【解析】【解答】解:由f (x )=f (2−x ).得f (x )的图象关于直线x =1对称,又当x ≥1时,f (x )=lg x . 故函数f (x )的大致图象如图所示.则有f (12)<f (13)<f (0)=f (2).故选C .12.【答案】 C【考点】分段函数的应用 函数的对称性【解析】由题意,a >1时,显然成立;0<a <1时,f (x )=log a x ,关于原点的对称函数为f (x )=−log a (−x )则log a 4<−1,即可得到结论. 【解答】解:由题意,a >1时,显然成立, 0<a <1时,f (x )=log a x 关于原点的对称函数为: f (x )=−log a (−x ),则log a 4<−1, 解得,14<a <1.综上所述,a 的取值范围是(14,1)∪(1,+∞) . 故选C . 13. 【答案】 D【考点】 函数的对称性 等差数列的性质 【解析】此题暂无解析【解答】解:因为f(x)=(x−3)3+x−1,所以f(x)−2=(x−3)3+x−3,令g(x)=f(x)−2,所以g(x)关于(3,0)对称,因为f(a1)+f(a2)+⋯+f(a7)=14,所以f(a1)−2+f(a2)−2+⋯+f(a7)−2=0,所以g(a1)+g(a2)+⋯+g(a7)=0,所以g(4)为g(x)与x轴的交点,因为g(x)关于(3,0)对称,所以a4=3,所以a1+a2+⋯+a7=7a4=21.故选D.14.【答案】C【考点】奇偶性与单调性的综合函数的对称性【解析】由题意,f(x)关于(2,0)对称,f(2)=0,当x>2时,函数f(x)单调递减,则函数f(x)<0,x<2时,函数f(x)单调递减,函数f(x)>0,由题意设x1<x2,则由题意,x1−2<0且x2−2>0,|x1−2|>|x2−2|则f(x1)>0f(x2)<0,且|f(x1)|>|f(x2)|,可将f(x1)+f(x2)小于0等价转化解之可得结果.【解答】解:定义在R上的函数f(x),满足f(−x)=−f(x+4),则f(x)关于(2,0)对称,令x=−2,则f(2)=−f(2),所以f(2)=0,当x>2时,函数f(x)单调递减,所以x>2时,函数f(x)<0,当x<2时,函数f(x)单调递减,所以x<2时,函数f(x)>0,所以函数f(x)在R上单调递减,根据f(x+1)=−f(3−x),所以f(x2+x)<f(3−x),所以x2+x>3−x,解得x>1或x<−3.故选C.15.【答案】C【考点】函数的图象变换函数的对称性【解析】函数g(x)关于y轴对称的函数为y=x2+ln(−x+a),因为函数f(x)=x2+e x−1,x<0与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,函数f(x)=x2+e x−1,x<0与y=x2+ln(−x+a)有交点,化为函数y=e x−1与y=ln(−x+a)在x<0时图象有交点,数形结合法求解即可.【解答】解:设(x,y)是函数g(x)关于y轴对称的图象上的点,则(−x,y)在函数g(x)的图象上,将(−x,y)代入g(x)=x2+ln(x+a),可得y=x2+ln(−x+a),因为函数f(x)=x2+e x−1(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,所以函数f(x)=x2+e x−1(x<0)与y=x2+ln(−x+a)有交点,即x2+e x−1=x2+ln(−x+a),x<0有解,即e x−1=ln(−x+a),x<0有解,作函数y=e x−1与y=ln(−x+a)在x<0时的图象,临界值在x=0处取到(虚取),此时a=1,要使函数y=e x−1与y=ln(−x+a)在x<0时有交点,则a<1.故选C.二、填空题(本题共计 8 小题,每题 3 分,共计24分)16.【答案】(0, 1)【考点】函数的对称性【解析】利用方式函数的性质进行求解即可.【解答】解:f(x)=x+1x =1+1x,则函数f(x)的对称中心为(0, 1),故答案为:(0, 1)17.【答案】10【考点】函数的周期性函数的对称性【解析】运用函数的对称性和奇偶性,确定函数y=f(x)的周期,构造函数y=f(x),ℎ(x)= |lg x|,则函数lg(x)=f(x)−|lg x|的零点问题转化为图象的交点问题,结合图象,即可得到结论.偶函数y=f(x)满足f(1+x)=f(1−x)即函数M(x)关于x=对称,即有f(x+2)=f(−x)=f(x)则函数y =f (x )的周期为2,构造函数y =f (x ),ℎ(x )=lg x则函数lg (x )=f (x )−lg x 的零点问题转化为图象的交点问题,画出函数图象,如图,由于f (x )的最大值1,所以x >10时,图象没有交点,在(0,1)上有一个交点,(1,3),(3,5),(5,7),(7,9)上各有两个交点,在(9,10)上有一个交点,故共有10个交点,即函数零点的个数为10.故答案为10.【解答】此题暂无解答18.【答案】∼1.【考点】函数的对称性复合函数的单调性【解析】根据题意,由函数的奇偶性与对称性分析可得f (x +8)=f (x ),即函数f (x )是周期为8的周期函数,据此可得f (19)=f (3+2×8)=f (3)=−f (−1)=−f (1),再由函数的解析式计算即可.【解答】根据题意,y =f (x )是定义域为R 的偶函数,则f (−x )=f (x )又由y =f (x )得图象关于点(2,0)对称,则f (−x )+f (x +4)=0所以f (x +4)=−f (x ),即函数y =f (x )是周期为8的周期函数,所以f (19)=f (3+2×8)=f (3)=−f (−1)=−f (1)又当x ∈(0,2)时,f (x )=x 2,则f (1)=1所以f (19)=−f (1)=−1故答案为:—1.19.【答案】14【考点】函数的周期性函数的对称性【解析】利用f (4−x )=f (x ),且周期为2,可得f (−x )=f (x ),得f (52)=f (−52)【解答】f (4−x )=f (x ),且周期为2,f (−x )=f (x ),又当x ∈[−3,−2]时,f (x )=(x +2)2f (52)=f (−52)=(−52+2)2=14故答案为:1420.【答案】2【考点】函数的对称性【解析】无【解答】解:因为f(x)+f(−x)=2,所以y=f(x)关于点(0,1)对称,+1也关于点(0,1)对称,y=g(x)=1x则交点关于(0,1)对称,∴y1+y2=2.故答案为:2.21.【答案】(−∞,4]【考点】函数的对称性函数的图象【解析】利用函数的图象和函数的对称性解不等式即可. 【解答】解∵ f(x)=−f(2−x),∴ f(x)+f(2−x)=0,∴ f(x+1)+f(1−x)=0,∴ f(x)关于点(1,0)对称,∵ x≥1时,y=logx,2由对称性作出f(x)在R上的图象,令f(x)=2,则log2x=2,解得x=4,故由图像可知f(x)≤2时,x≤4,故f(x)≤2解集为(−∞,4].故答案为:(−∞,4].22.【答案】−4x 3−24x 2−28x +8【考点】函数的对称性导数的运算【解析】【解答】解:∵ 函数f (x )=(1−x 2)(x 2+ax +b )的图象关于直线x =−2对称,∴ f (−1)=f (−3)=0,且f (1)=f (−5)=0,即[1−(−3)2][(−3)2+a ⋅(−3)+b ]=0,且[1−(−5)2][(−5)2+a ⋅(−5)+b ]=0,整理得{9−3a +b =0,25−5a +b =0,解得{a =8,b =15,因此,f (x )=(1−x 2)(x 2+8x +15)=−x 4−8x 3−14x 2+8x +15,求导得f ′(x )=−4x 3−24x 2−28x +8.故答案为:−4x 3−24x 2−28x +8.23.【答案】①④【考点】奇偶性与单调性的综合函数的对称性根的存在性及根的个数判断等比数列的前n 项和【解析】此题暂无解析【解答】解:①由题得,当x >0时,f(x)在(2k −1,2k](k ∈N ∗)上单调递增,又f(x)是定义在R 上的奇函数,当k =3时,f(x)在(5,6)上单调递增,所以f(x)在(−6,−5)上单调递增,故①正确;②作出函数f(x)的图象,如图,由图知f(x)的图象与y =x 有三个不同的交点,故②错误;③[f (x )]2−(a +1)f (x )+a =0(a ∈R ),整理得[f(x)−a][f(x)−1]=0,设方程的四个跟为x1,x2,x3,x4.当f(x)=1时,有唯一解x1=2,所以f(x)=a(a≠1)有三个不相等的实数根,由图象可知,当a=±12时,方程f(x)=a有三个不相等的实数根,当a=12时,x2+x3=2×1=2,x4=4,此时x1+x2+x3+x4=8当a=−12时,x2+x3=2×(−1)=−2,,x4=−4,此时x1+x2+x3+x4=−4,故③错误;④由函数的单调性可知,f(x)在[2k−1,2k](k∈N∗)上的最大值a k=f(2k)(k∈N∗),所以数列{a n}的通项公式为a n=12n−1,则数列{a n}的前7项和为1−1 271−12=2−126=12764,故④正确.故答案为:①④.三、解答题(本题共计 5 小题,每题 10 分,共计50分)24.【答案】2【考点】函数的对称性【解析】设点(x,y)是y=f(x)的图像上任一点,则点(−y,−x)必在y=2x+1的图象上,根据对称性先求出f(x)的解析式,再代入解析式即可求出答案.【解答】解:设点(x,y)是y=f(x)的图像上任一点,则点(−y,−x)必在y=2x+1的图象上,−x=2−1++y=a−log2(−x),即f(x)=a−log2(−x)f(−2)+f(−4)=(a−log22)+(a−log24)=a−1+a−2=2a−3=1a=225.【答案】解:∵幂函数f(x)=x3m−9(m∈N∗)在(0, +∞)上是减函数,∴3m−9<0,解得m<3,∵m∈N∗,∴m=1或m=2,∵函数的图象关于y轴对称,∴3m−9是偶数,∴m=1,∵(a+1)−m<(3−2a)−m,∴(a+1)−1<(3−2a)−1,∴a+1>3−2a>0或0>a+1>3−2a或a+1<0<3−2a,解得23<a<32.∴实数a的取值范围是(23, 32 ).【考点】函数的对称性其他不等式的解法幂函数的单调性、奇偶性及其应用幂函数的性质【解析】由幂函数的单调性和奇偶性结合已知条件求出m=1,从而得到(a+1)−1<(3−2a)−1,由此能求出实数a的取值范围.【解答】解:∵幂函数f(x)=x3m−9(m∈N∗)在(0, +∞)上是减函数,∴3m−9<0,解得m<3,∵m∈N∗,∴m=1或m=2,∵函数的图象关于y轴对称,∴3m−9是偶数,∴m=1,∵(a+1)−m<(3−2a)−m,∴(a+1)−1<(3−2a)−1,∴a+1>3−2a>0或0>a+1>3−2a或a+1<0<3−2a,解得23<a<32.∴实数a的取值范围是(23, 32 ).26.【答案】解:(1)∵f(x)=2x+12x,∴当2x+12x =52时,解得x=1或x=−1,∴f(x)=52的根为x=1或x=−1.(2)证明:任取x1,x2∈[0,+∞),且x1>x2,则f(x1)−f(x2)=22x1+12x1−22x2+12x2=(2x1−2x2)(2x1+x2−1)2x1+x2.∵x1>x2>0,则2x1>2x2,则2x1+x2>1,∴ f(x1)−f(x2)>0,即f(x1)>f(x2),∴ 证得f(x)在[0,+∞)上是增函数.(3)由题意得f(2x)−f(x)=122x +22x−2x−12x,令2x+12x=t(t≥2),则ℎ(t)=t2−2−t,∴对称轴为t=12,∴ℎ(t)min=ℎ(2)=0,则−m≤0,∴m≥0,综上所述,m的最小值为0. 【考点】函数的求值函数单调性的判断与证明函数恒成立问题函数的对称性【解析】直接求解方程即可.利用函数单调性的定义证明即可.通过构造二次函数,结合函数最值求解即可.【解答】解:(1)∵ f (x )=2x +12x , ∴ 当 2x +12x =52 时,解得 x =1 或x =−1,∴ f (x )=52的根为 x =1 或x =−1. (2)证明:任取x 1,x 2∈[0,+∞) ,且 x 1>x 2,则f (x 1)−f (x 2)=22x 1+12x 1−22x 2+12x 2 =(2x 1−2x 2)(2x 1+x 2−1)2x 1+x 2.∵ x 1>x 2>0,则 2x 1>2x 2 ,则 2x 1+x 2>1,∴ f (x 1)−f (x 2)>0 ,即 f (x 1)>f (x 2),∴ 证得 f (x ) 在[0,+∞)上是增函数.(3)由题意得 f (2x )−f (x )=122x +22x −2x −12x ,令 2x +12x =t (t ≥2),则ℎ(t )=t 2−2−t ,∴ 对称轴为 t =12 ,∴ ℎ(t )min =ℎ(2)=0,则 −m ≤0 ,∴ m ≥0,综上所述 ,m 的最小值为0.27.【答案】解:(1)∵ f(x)=f(2−x),∴ f(x)的图象关于x =1对称,∴ a =1.(2)令2x =t ,则原不等式可化为m ≤(1−1t )2(t ≥2)恒成立,∴ m ≤(1−1t )min 2=14,∴ m 的取值范围是(−∞,14]. (3)令b =|log 2x|,则y =g(x)可化为y =b 2−(k +2)b +k +1=(b −1)(b −k −1),由(b −1)(b −k −1)=0可得b 1=1或b 2=k +1,∵ y =g(x)有4个零点,b 1=|log 2x|有2个零点,∴ b 2=|log 2x|有2个零点,∴ b 2=k +1>0,∴ k >−1.【考点】函数的对称性函数恒成立问题函数的零点与方程根的关系【解析】(1)由题意可得对称轴为x =1,计算可得a 的值;(2)原不等式可化为m ≤(1−1t )2(t ≥2)恒成立,由函数的性质可得最小值,即可得到所求范围;(3)令t =|log 2x|,则y =g(x)可化为y =t 2−(k +2)t +k +1=(t −1)(t −k −1),令y =0,解方程,再令其根大于0,可得所求范围.【解答】解:(1)∵ f(x)=f(2−x),∴ f(x)的图象关于x =1对称,∴ a =1.(2)令2x =t ,则原不等式可化为m ≤(1−1t )2(t ≥2)恒成立,∴ m ≤(1−1t )min 2=14,∴ m 的取值范围是(−∞,14]. (3)令b =|log 2x|,则y =g(x)可化为y =b 2−(k +2)b +k +1=(b −1)(b −k −1),由(b −1)(b −k −1)=0可得b 1=1或b 2=k +1,∵ y =g(x)有4个零点,b 1=|log 2x|有2个零点,∴ b 2=|log 2x|有2个零点,∴ b 2=k +1>0,∴ k >−1.28.【答案】解:(1)由题知:函数f (x )为偶函数,函数g (x )为奇函数,且f (x )−g (x )=e −x ①,则f(−x)−g(−x)=e −(−x)=e x ,又由f (−x )=f (x ),g (−x )=−g (x ),故f (x )+g (x )=e x ②,则由①②式,解得f (x )=e x +e −x 2,g (x )=e x −e −x 2.(2)由f (2x )>ag (x )在(1,+∞)上恒成立,即e 2x +e −2x 2>a ⋅e x −e −x 2在(1,+∞)上恒成立,即e 2x −2⋅e x ⋅e −x +e −2x +2>a (e x −e −x )在(1,+∞)上恒成立,则(e x −e −x )2−a (e x −e −x )+2>0在(1,+∞)上恒成立.令t =e x −e −x ,易知t =e x −e −x 在x ∈(1,+∞)上单调递增,故t ∈(e −1e ,+∞), 即t 2−at +2>0在(e −1e ,+∞)上恒成立.由at <t 2+2,即a <t +2t ,且y =t +2t 在[√2,+∞)上单调递增,e −1e >√2, 得y =t +2t 在(e −1e ,+∞)上的最小值为e 2−1e +2e e 2−1=e 4+1e (e 2−1), 故a ≤e 4+1e (e 2−1). (3)由H (x )=g (x+1)f (x+1)+1=e x+1−e −(x+1)e x+1+e −(x+1)+1 =2e x+1e x+1+e −(x+1).令G (x )=2e x e x +e −x ,则G (−x )=2e −x e −x +e x ,故G (x )+G (−x )=2(e x +e −x )e x +e −x =2,又由G (x +1)=H (x ),a +b =1,故H (−4+a )+H (b +1)=G (−3+a )+G (b +2)=G(−3+a)+G[(1−a)+2]=G (−3+a )+G (3−a )=2.【考点】函数奇偶性的性质函数解析式的求解及常用方法函数恒成立问题二次函数在闭区间上的最值函数的求值函数的对称性【解析】由题知:函数f (x )为偶函数,函数g (x )为奇函数,且f (x )−g (x )=e −x ①,则f(−x)−g(−x)=e −(−x)=e x ,又由f (−x )=f (x ),g (−x )=−g (x ),故f (x )+g (x )=e x ②,则由①②式,解得f (x )=e x +e −x 2,g (x )=e x −e −x 2. (2)由f (2x )>ag (x )在(1,+∞)上恒成立,即e 2x +e −2x 2>a e x −e −x 2在(1,+∞)上恒成立,即e 2x −2⋅e x ⋅e −x +e −2x +2>a (e x −e −x )在(1,+∞)上恒成立,则(e x −e −x )2−a (e x −e −x )+2>0在(1,+∞)上恒成立,令t =e x −e −x ,易知t =e x −e −x 在x ∈(1,+∞)上单调递增;解关于t 的二次函数求出a 的范围.(3)由H (x )=g (x+1)f (x+1)+1=e x+1−e −(x+1)e x+1+e −(x+1)=2e n+1e x+1+e −(x+1),令G (x )=2e x e x +e −x ,又由G (−x )=2e −xe −x +e x ,且G (−x )+G (x )=2(e x +e −x )e x +e −x =2,故G (x +1)=H (x ),a +b =1,故H (−4+a )+H (b +1)=G (−3+a )+G (b +2)=2.【解答】解:(1)由题知:函数f (x )为偶函数,函数g (x )为奇函数,且f (x )−g (x )=e −x ①, 则f(−x)−g(−x)=e −(−x)=e x ,又由f (−x )=f (x ),g (−x )=−g (x ),故f (x )+g (x )=e x ②,则由①②式,解得f (x )=e x +e −x 2,g (x )=e x −e −x 2.(2)由f (2x )>ag (x )在(1,+∞)上恒成立,即e 2x +e −2x 2>a ⋅e x −e −x 2在(1,+∞)上恒成立,即e 2x −2⋅e x ⋅e −x +e −2x +2>a (e x −e −x )在(1,+∞)上恒成立,则(e x −e −x )2−a (e x −e −x )+2>0在(1,+∞)上恒成立.令t =e x −e −x ,易知t =e x −e −x 在x ∈(1,+∞)上单调递增,故t ∈(e −1e ,+∞), 即t 2−at +2>0在(e −1e ,+∞)上恒成立. 由at <t 2+2,即a <t +2t ,且y =t +2t 在[√2,+∞)上单调递增,e −1e >√2, 得y =t +2t 在(e −1e ,+∞)上的最小值为e 2−1e +2e e 2−1=e 4+1e (e 2−1), 故a ≤e 4+1e (e 2−1). (3)由H (x )=g (x+1)f (x+1)+1=e x+1−e −(x+1)e x+1+e −(x+1)+1=2e x+1e x+1+e −(x+1).令G (x )=2e x e x +e −x ,则G (−x )=2e −x e −x +e x ,故G (x )+G (−x )=2(e x +e −x )e x +e −x =2,又由G (x +1)=H (x ),a +b =1,故H(−4+a)+H(b+1)=G(−3+a)+G(b+2) =G(−3+a)+G[(1−a)+2]=G(−3+a)+G(3−a)=2.。
函数图象的对称性对称性是函数图象的一个重要性质,其中包含着函数的奇偶性.函数图象的对称性又分一个函数图象自身的对称性和两个函数图象的对称性.一、函数图象自身的对称性(自对称)结论1:若)()(x a f x a f -=+(⇔)()2(x f x a f =-,即函数)(x a f y +=为偶函数),则)(x f 的图象关于直线a x =对称.特别地,若)()(x f x f =-,则)(x f 的图象关于直线0=x 即y 轴对称. 证明:用x a -代换)()(x a f x a f -=+中的x ,可得)()2(x f x a f =-;再次用x a -代换)()2(x f x a f =-中的x ,可得)()(x a f x a f -=+.所以)()(x a f x a f -=+⇔)()-2(x f x a f =. 设))(,(x f x P 是)(x f 图象上的任意一点,则它关于直线a x =的对称点为))(,2('x f x a P -,因为)()-2(x f x a f =,所以))2(,2('x a f x a P --,即'P 在)(x f 的图象上.所以)(x f 的图象关于直线a x =对称.例1 (2009年高考山东卷)已知定义在R 上的奇函数)(x f ,满足)()4(x f x f -=-,且在区间]2,0[上是增函数,则( )A .)80()11()25(f f f <<-B .)25()11()80(-<<f f fC .)25()80()11(-<<f f fD .)11()80()25(f f f <<-分析:由条件)()4(x f x f -=-可得函数的周期性,用其先把三个函数值化简,然后结合函数的奇偶性,得出函数图象的对称性,即可进一步转化函数值,最后用函数的单调性比较大小.解:由)()4(x f x f -=-,可得)()4()4)4(()8(x f x f x f x f =--=--=-,所以)(x f 的周期8=T ,所以)0()80(),3()11(),1()25(f f f f f f ==-=-.因为)(x f 是定义在R 上的奇函数,所以0)80(),1()25(=-=-f f f ,)()4(x f x f =-,所以)(x f 图象关于直线2=x 对称,所以)1()3()11(f f f ==.因为在区间]2,0[上是增函数,所以0)0()1(=>f f ,所以0)1(<-f ,所以)11()80()25(f f f <<-.选D .评注:若画出草图,数形结合,会把抽象函数直观化,更快捷.练习1 设)(x f 是定义在实数集R 上的函数,且满足下列关系)10()10(x f x f -=+, )20()20(x f x f -=+,则)(x f 是( )A .偶函数,又是周期函数B .偶函数,但不是周期函数C .奇函数,又是周期函数D .奇函数,但不是周期函数解:由)10()10(x f x f -=+可得)(x f 图象关于直线10=x 对称,由)20()20(x f x f -=+可得)(x f 图象关于直线20=x 对称,所以)(x f 是周期函数,其周期20|1020|2=-=T ,同时得)(x f 图象关于y 轴对称,所以)(x f 是偶函数.选A .练习2 已知)(x f 是定义域为R 的奇函数,满足)1()1(x f x f -=+.若2)1(=f ,则=+++)50()2()1(f f f ( )A .50-B .0C .2D .50解:由)1()1(x f x f -=+可得)(x f 图象关于直线1=x 对称,又因为)(x f 是奇函数,所以)(x f 是周期函数,其周期4|01|4=-=T .因为0)0()2(==f f ,2)1()3(-=-=f f ,0)0()4(==f f ,所以++)2()1(f f 0)4()3(=+f f ,所以2)2()1()50()2()1(=+=+++f f f f f .选C .例2 (2022年新高考Ⅰ卷,多选题)已知函数)(x f 及其导函数)('x f 的定义域均为R ,记)()('x f x g =,若)2(,223x g x f +⎪⎭⎫ ⎝⎛-均为偶函数,则( ) A .0)0(=f B .021=⎪⎭⎫ ⎝⎛-g C .)4()1(f f =- D .)2()1(g g =- 解:由⎪⎭⎫ ⎝⎛-x f 223为偶函数,可得⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+x f x f 223223,所以⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+x f x f 2323①,所以)(x f 图象关于直线23=x 对称,把25=x 代入①式得)4()1(f f =-,所以C 正确;由)2(x g +为偶函数,可得)2()2(x g x g +=-②,所以)(x g 图象关于直线2=x 对称,由②无法推出D ,错误.依题意23=x 是)(x f 的极值点,所以023=⎪⎭⎫ ⎝⎛g ;所以0252322=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⨯g g ,所以25=x 是)(x f 的极值点,所以2125232=-⨯=x 也是)(x f 的极值点,所以021=⎪⎭⎫ ⎝⎛g ;所以0272122=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⨯g g ,所以27=x 也是)(x f 的极值点,所以2127232-=-⨯=x 也是)(x f 的极值点,所以021=⎪⎭⎫ ⎝⎛-g ,所以B 正确.)0(f 是)(x f 的常数项,不一定为0,所以A 错误.例3 函数x x x f 212)(4+=+的图象关于( ) A .点)0,2(-对称 B .直线2-=x 对称 C .点)0,2(对称 D .直线2=x 对称解法一:⎪⎭⎫ ⎝⎛+=++222124)(x x x f ,易证明x x y 212+=是偶函数,图象关于y 轴对称,而22212+++=x x y 的图象可由前者向左平移2个单位得到,所以)(x f 图象关于直线2-=x 对称.选B .解法二:组成)(x f 两个函数之间用+号连接,所以二者交换位置依然如故,设用y 代换其中的x 可以达成互换,即⎩⎨⎧+=--=+.4,4x y x y 解得4--=x y ,所以)()4(x f x f =--,所以)(x f 图象关于直线2-=x 对称.选B .练习3 已知)4ln()2ln()(x x x f -+-=,则( A )A .)(x f 的图象关于直线3=x 对称B .)(x f 的图象关于点)0,3(对称C .)(x f 在)4,2(上单调递增D .)(x f 在)4,2(上单调递减结论2:若)()(x b f x a f -=+,则)(x f 的图象关于直线2b a x +=对称;若)()(x f x b a f =-+,则)(x f 的图象关于直线2b a x +=对称;若)()(mx b f mx a f -=+,则)(x f 的图象关于直线2b a x +=对称;若)()(mx f mx b a f =-+,则)(x f 的图象关于直线2b a x +=对称.显然结论1是结论2的特例. 证明:设))(,(x a f x a P ++是)(x f 图象上的任意一点,则它关于直线2b a x +=的对称点为))(,('x a f x b P +-,因为)()(x b f x a f -=+,所以))(,('x b f x b P --,即'P 在)(x f 的图象上.所以)(x f 的图象关于直线2b a x +=对称. 例4 (2021年高考全国甲卷)设)(x f 是定义域为R 的奇函数,且)()1(x f x f -=+.若3131=⎪⎭⎫ ⎝⎛-f ,则=⎪⎭⎫ ⎝⎛35f ( ) A .35- B .31- C .31 D .35 分析:把)(x f -视为)0(x f -,即可由结论2得出)(x f 图象的对称性,进而再结合奇偶性求出)(x f 的周期,即可转化⎪⎭⎫ ⎝⎛35f . 解:由)()1(x f x f -=+可得)0()1(x f x f -=+,所以)(x f 图象关于直线21201=+=x 对称,又因为)(x f 是奇函数,所以)(x f 的周期20214=-=T ,所以313135=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛f f .选C . 评注:函数图象的对称性还可以由结论1得出:因为)())(1()1(x f x f x f -=--=+,所以)(x f 图象关于直线21=x 对称. 练习4 若函数)(x f 在定义域R 内可导,)1.0()9.1(x f x f -=+,且0)()1('<-x f x ,)3(,21),0(f c f b f a =⎪⎭⎫ ⎝⎛==,则c b a ,,的大小关系是( ) A .c b a >> B .b a c >> C .a b c >> D .c a b >>解:由)1.0()9.1(x f x f -=+可得)(x f 的图象关于直线121.09.1=+=x 对称,所以)1(-=f c . 由0)()1('<-x f x 可知当1<x 时,0)('>x f ,)(x f 单调递增,所以b a c <<.选D .结论3:若)()(x a f x a f --=+(⇔)()2(x f x a f -=-或0)()(=-++x a f x a f ,即函数)(x a f y +=为奇函数),则)(x f 的图象关于点)0,(a 对称.特别地,若)()(x f x f --=(0)()(=-+x f x f ),则)(x f 的图象关于点)0,0(即原点对称.证明:设))(,(x f x P 是)(x f 图象上的任意一点,则它关于点)0,(a 的对称点为))(,2(x f x a P --,,因为)()2(x f x a f -=-,所以))2(,2('x a f x a P --,即'P 在)(x f 的图象上.所以)(x f 的图象关于点)0,(a 对称.例5 (1992年全国高中数学联赛)设)(x f 是定义在实数集R 上的函数,且满足下列关系)10()10(x f x f -=+,)20()20(x f x f --=+,则)(x f 是( )A .偶函数,又是周期函数B .偶函数,但不是周期函数C .奇函数,又是周期函数D .奇函数,但不是周期函数解:由)10()10(x f x f -=+可得)(x f 图象关于直线10=x 对称,由)20()20(x f x f --=+可得)(x f 图象关于点)0,20(对称,所以)(x f 是周期函数,其周期40|1020|4=-=T ,同时得)(x f 图象关于原点对称,所以)(x f 是奇函数.选C .练习5 函数x x e e x f --=2)(的图象关于() A .点)0,1(对称 B .直线1-=x 对称 C .点)0,1(-对称 D .直线1=x 对称 解法一:)()(11x x e e e x f ---=,易证明x x e e y --=是奇函数,图象关于原点对称,而x x e e y ---=11的图象可由前者向右平移1个单位得到,所以)(x f 图象关于点)0,1(对称.选A .解法二:组成)(x f 两个函数之间用—号连接,所以二者交换位置后互为相反,设用y 代换其中的x 可以达成前后互换,即⎩⎨⎧=--=.2,2x y x y 解得x y -=2,所以)()2(x f x f -=-,所以)(x f 图象关于点)0,1(对称对称.选A .结论4:若)(2)(x a f b x a f --=+(⇔)(2)2(x f b x a f -=-或b x a f x a f 2)()(=-++),则)(x f 的图象关于点),(b a 对称.若)(2)(x n f b x m f --=+(b x n f x m f 2)()(=-++),则)(x f 的图象关于点⎪⎭⎫ ⎝⎛+b n m ,2对称. 证明:设))(,(x f x P 是)(x f 图象上的任意一点,则它关于点),(b a 的对称点为))(2,2(x f b x a P --,,因为)(2)-2(x f b x a f -=,所以))2(,2('x a f x a P --,即'P 在)(x f 的图象上.所以)(x f 的图象关于点),(b a 对称.例6 (2022年高考全国乙卷)已知函数)(),(x g x f 的定义域均为R ,且)(,5)2()(x g x g x f =-+ 7)4(=--x f .若)(x g y =的图象关于直线2=x 对称,4)2(=g ,则∑==221)(i k f ( ) A .21-B .22-C .23-D .24- 分析:根据对称性和已知条件得到2)2()(-=-+x f x f ,从而得到10)21()5()3(-=+++f f f ,10)22()6()4(-=+++f f f ,易求)2(f 的值,再由题意得到6)3(=g ,进而可得)1(f 的值.解:因为)(x g y =的图象关于直线2=x 对称,所以)2()2(+=-x g x g ,因为7)4()(=--x f x g ,所以7)2()2(=--+x f x g ,即)2(7)2(-+=+x f x g ;因为5)2()(=-+x g x f ,所以5)2()(=++x g x f ,所以5)2(7)(=-++x f x f ,即2)2()(-=-+x f x f ,所以10)21()5()3(-=+++f f f ,10)22()6()4(-=+++f f f .因为5)2()(=-+x g x f ,所以5)2()0(=+g f ,所以1)0(=f ,所以3)0(2)2(-=--=f f . 因为7)4()(=--x f x g ,所以7)()4(=-+x f x g ,又因为5)2()(=-+x g x f ,二者相加得12)2()4(=-++x g x g ,所以)(x g y =的图象关于点)6,3(对称,所以6)3(=g ;因为5)2()(=++x g x f ,所以1)3(5)1(-=-=g f .所以24101031)(221-=----=∑=i k f .选D .评注:本例中的图象对称比较隐蔽,需对相关对称的表达式很熟悉,同时还要瞄准目标,善于转化,方能成功求解.练习6 已知函数)12(+=x f y 的图象关于直线1=x 对称,函数)1(+=x f y 的图象关于点)0,1(对称,则下列说法正确的是( )A .0)1(=fB .)1()1(x f x f +=-C .)(x f 的周期是2D .⎪⎭⎫ ⎝⎛-=x f x f 23)( 解:由)12(+=x f y 的图象关于直线1=x 对称,可得)1)1(2()1)1(2(++=+-x f x f ,即)23()23(x f x f +=-,所以)3()3(x f x f +=-,所以)(x f 的图象关于直线3=x 对称,所以)6()(x x f -=,无法得出⎪⎭⎫ ⎝⎛-=x f x f 23)(,D 错误. 由)1(+=x f y 的图象关于点)0,1(对称和平移知识,可得)(x f 图象关于点)0,2(对称,所以)(x f 的周期4)23(4=-=T ,C 错误.由)1(+=x f y 的图象关于点)0,1(对称得0)2(=f ,由)(x f 的图象关于直线3=x 对称得0)4(=f ,由周期4=T 得0)0(=f ,无法得出0)1(=f ,A 错误.由)6()(x x f -=和4=T 可得)2()(x f x f -=,所以)1()1(x f x f +=-,所以B 正确.选B .二、两个函数图象的对称性(互对称)结论5:函数)(x f y =与)2(x a f y -=的图象关于直线a x =对称;函数)(x f y =与)2(x a f y --=的图象关于点)0,(a 对称;函数)(x f y =与)2(2x a f b y --=的图象关于点),(b a 对称.证明:设))(,(x f x P 是)(x f 图象上的任意一点,则它关于直线a x =的对称点为))(,2(x f x a P -,,因为 )())2(2(x f x a a f =--,所以点'P 在)2(x a f y -=的图象上.点))(,(x f x P 关于点)0,(a 的对称点为))(,2(x f x a P --,,因为)())2(2(x f x a a f -=---,所以点'P 在)2(x a f y --=的图象上.反向证明略.例7 下列函数中,其图象与函数)1ln(+=x y 的图象关于直线1=x 对称的是( )A .)1ln(x y -=B .)3ln(x y -=C .)1ln(x y +=D .)3ln(x y += 解:设)1ln()(+=x x f ,则与其关于直线1=x 对称的是)3ln()12ln()2(x x x f -=+-=-的图象.选B .结论6:函数)(x a f y +=与)(x a f y -=的图象关于直线0=x (y 轴)对称;函数)(x a f y +=与)(x a f y --=的图象关于点)0,0((原点)对称.证明:设))(,(x a f x P +是)(x a f y +=图象上的任意一点,则它关于直线0=x 的对称点为))(,(x a f x P +-,,因为)())((x a f x a f +=--,所以点'P 在)(x a f y -=的图象上.点))(,(x a f x P +关于点)0,0(的对称点为))(,(x a f x P +--,,因为)())((x a f x a f +-=---,所以点'P 在)(x a f y --=的图象上.反向证明略.结论7:函数)(x a f y +=与)(x b f y -=的图象关于直线2||b a x -=对称;函数)(x a f y +=与)(x b f y --=的图象关于点⎪⎭⎫ ⎝⎛-0,2||b a 对称;函数m x a f y ++=)(与n x b f y +--=)(的图象关于点⎪⎭⎫ ⎝⎛+-2,2||n m b a 对称.结论5,6是结论7的特殊情况. 证明: 不妨设a b >,则22||a b b a -=-. 设))(,(x a f x P +是)(x a f y +=图象上的任意一点,则它关于直线2a b x -=的对称点为))(,(x a f x a b P +--,,因为)())((x a f x a b b f +=---,所以点'P 在)(x b f y -=的图象上. 点))(,(x a f x P +关于点⎪⎭⎫ ⎝⎛-0,2a b 的对称点为))(,(x a f x a b P +---,,因为)())((x a f x a b b f +-=----,所以点'P 在)(x b f y --=的图象上.反向证明略.例8 函数1)1(+-=x f y 与3)3(---=x f y 的图象关于点 对称.解: 两个函数的图象关于点⎪⎭⎫ ⎝⎛---231,2)1(3即()1,2- 结论8:函数)(x f y =与)(x f y --=的图象关于原点对称;函数)(x f y =与)(x f y -=的图象关于x 轴对称;函数)(x f y =与)(x f y -=的图象关于y 轴对称.例9 (1989年全国高中数学联赛)已知函数)(x f 的定义域均为R ,则)1(-=x f y 与)1(x f y -=的图象( )A .关于x 轴对称B .关于y 轴对称C .关于直线1=x 对称D .关于直线1=y 对称 解:因为)(x f y =与)(x f y -=关于y 轴对称,而)1(-=x f y 与)1(x f y -=的图象可视为前两者向右平移1个单位所得,所以二者图象关于直线1=x 对称.选C .评注:结论:函数)(a x f y -=与)(x a f y -=的图象关于直线a x =对称.练习7 函数)ln(x x y -=与x x y ln =的图象关于( )A .直线x y =对称B .x 轴对称C .y 轴对称D .原点对称解:设)ln()(x x x f -=,则x x y ln =为)(x f y --=,所以二者图象关于原点对称.选D .。
对称性
一、有关对称性的常用结论
(一)函数图象自身的对称关系(加法)
1、轴对称
(1))(x f -=)(x f ⇔函数)(x f y =图象关于y 轴对称;
(2)函数)(x f y =图象关于a x =对称⇔)()(x a f x a f -=+⇔()(2)f x f a x =-
(32(1(2(3(4,则函数
1.
2.
推论:函数)(x a f y +=与函数)(x b f y --=图象关于点)0,2(a b -对称。
类型一:双对称问题
1.设)(x f 是定义在R 上的偶函数,且)1()1(x f x f -=+,当01≤≤-x 时,x x f 2
1)(-=,则=)6.8(f ___________
解:因为f(x)是定义在R 上的偶函数,所以)(0x f y x ==是的对称轴;又因为(1)(1)f x f x +=-,所以1x =也是()y f x =的对称轴,故)(x f y =是以2为周期的周期函数,所以x =2,2(c a b -
3.0)6.0()6.0()6.08()6.8(=-==+=f f f f 。
2.(2005年广东卷I )设函数)2()2(),()(x f x f x f +=-∞+-∞上满足在,)7()7(x f x f +=-,且在闭区间[0,7]上只有0)3()1(==f f 。
(1)试判断函数)(x f y =的奇偶性;非奇非偶函数
(2)试求方程0)(=x f 在闭区间[-2005,2005]上根的个数并证明你的结论。
3.设,则:
,图1. 2. (3.4..
2个单位所得.
因为反比例函数3y x
=的对称中心是()0,0,O 自然也进行相应地平移, 所以函数()121x f x x
-=+图象的对称中心是()1,2.-- 类型三:求值
1.已知函数f (x )=,若f (a )=,则f (-a )=________.
2.设函数f (x )=的最大值为M ,最小值为m ,则M +m =________.
解析:f (x )==1+.设g (x )=,则g (-x )==-g (x ),
所以g (x )是R 上的奇函数.所以若g (x )的最大值是W ,则g (x )的最小值是-W .所以函数f (x )的最大值是1+W ,最小值是1-W ,即M =1+W ,m =1-W ,所以M +m =2.
答案:2
3.()()311f x x =-+,则()()()()()43056f f f f f -+-+++++=.
解析()()311f x x =-+是由3y x =平移得到的,
由于3y x =是奇函数,图象关于原点对称,
因此()f x 的对称中心为()1,1,()()22f x f x +-=,
所以()()()()()43056f f f f f -+-+++++ =))3b a 数列,()1a f A.0218π D.1316
π所以f 是公差为又因为已知条件()()()1255,a a a f f f π+++=
所以32a π=,()3f a π=,13284a a ππ=-⨯=,533284
a a ππ=+⨯=. 所以()()222231333153132cos cos .24416a a a a a a a f πππππ⎛⎫---=--⨯=⎡⎤ ⎪⎣⎦⎝⎭
=。