高一数学函数的对称性习题
- 格式:docx
- 大小:36.85 KB
- 文档页数:5
高一数学函数试题答案及解析1.设,的整数部分用表示,则的值是 .【答案】1546【解析】,,,,所以.【考点】信息给予题,要善于捕捉信息,灵活运用2.在R上定义运算,若不等式成立,则实数a的取值范围是().A.{a|}B.{a|}C.{a|}D.{a|}【答案】C【解析】由题知∴不等式对任意实数x都成立转化为对任意实数x都成立,即恒成立,解可得.故选A.【考点】本题考查了在新定义下对函数恒成立问题的应用.关于新定义型的题,关键是理解定义,并会用定义来解题.3.已知点是直线上的任意一点,则的最小值为()A.B.C.D.【答案】A【解析】点是直线上的任意一点,则有,即,所以有,显然当时,有最小值.【考点】消元法,二次函数中配方法求最值.4.一次函数的图像过点和,则下列各点在函数的图像上的是( ) A.B.C.D.【答案】C【解析】法一:设,由该函数的图像过点及,可得,求解得,所以,依次将A、B、C、D中的横坐标代入计算可知,只有点符合要求,故选C;法二:一次函数的图像是一条直线,由该函数的图像过点及可知,,所以直线的方程为:即,依次将各点的纵坐标减去横坐标,看是否为1,是1的点就在直线上,即该点在函数的图像上,最后确定只有C答案满足要求.【考点】1.一次函数的解析式;2.直线的方程.5.下列函数在上单调递增的是()A.B.C.D.【答案】D【解析】:对于A选项,函数在递减,故A不正确;对于B选项,函数在递减,在递增,故B不正确;对于C选项,函数在递减,故C不正确;对于D选项,函数在上单调递增,合题意综上知,D选项是正确选项【考点】本题考查指数函数、对数函数、幂函数、反比例函数等常见函数的单调性.6.函数的最小值是【答案】【解析】,则函数的最小值为。
【考点】函数的性质点评:本题通过构造形式用基本不等式求最值,训练答题都观察、化归的能力.7.已知f(x)是实数集上的偶函数,且在区间上是增函数,则的大小关系是()A.B.C.D.【答案】D【解析】因为,f(x)是实数集上的偶函数,且在区间上是增函数,所以,函数的图象关于y 轴对称,在区间是减函数。
高一数学复习考点题型专题讲解 第13讲 函数的周期性与对称性一、单选题1.已知()f x 是R 上的奇函数,且()()2f x f x +=-,当()0,2x ∈时,()22f x x x =+,则()15f =( )A .3B .3-C .255D .255-【答案】B【分析】根据题意可知()f x 是周期函数,根据周期以及奇函数即可求解.【解析】由()()2f x f x +=-可得,()()42=()f x f x f x +=-+,故()f x 是以4为周期的周期函数,故(15)(1)(1)3f f f =-=-=-,故选:B2.已知()f x 是R 上的奇函数,且(2)(),(1)3f x f x f -==,则(2022)(2023)f f +=( ) A .3- B .1- C .1 D .2【答案】A【分析】由题意求得函数()f x 是周期为4的周期函数,得到()()()()2022202321f f f f +=+-,结合()()11f x f x -+=+,得到()()20f f =,进而求得()()1,0f f -的值,即可求解.【解析】由题意,函数()f x 为R 上的奇函数,可得()(2)()f x f x f x +=-=-,所以()()4f x f x +=,所以()f x 是周期为4的周期函数,所以()()()()2022202321f f f f +=+-,因为()()11f x f x -+=+,令1x =,得()()20f f =,因为()f x 为R 上的奇函数,所以()()()00,113f f f =-=-=-,所以()()20222023033f f +=-=-.故选:A.3.已知定义在R 上的偶函数()f x 满足()()110f x f x -++=,若()03f =,则()()20222023f f +=( )A .0B .3-C .3D .6【答案】B【分析】根据题意, 分析可得函数()f x 是周期为4的周期函数, 由此可得()()()2022203f f f ==-=-,()()()202331f f f ==-,用赋值法求出()1f 的值, 由此计算即可得答案.【解析】根据题意, 函数()f x 满足()()110f x f x -++=, 则()()20f x f x -++=,又由()f x 为偶函数,则有()()2f x f x +=-,则有()()()42f x f x f x +=-+=,即函数()f x 是周期为4的周期函数,()()110f x f x -++=,令0x =可得()10f =.()()()2022203f f f ==-=-,()()()2023310f f f ==-=,所以()()202220233f f +=-故选:B4.已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++-=,()1f x +为偶函数,()11f =,则()2023f =( )A .1B .-1C .2D .-3【答案】B【分析】根据对称性可得函数具有周期性,根据周期可将()()()2023311f f f ==-=-.【解析】因为()1f x +为偶函数,所以()f x 的图象关于直线1x =对称,所以()()2f x f x -=,又由()()40f x f x ++-=,得()()4f x f x +=--,所以()()()846f x f x f x +=---=-+,所以()()2f x f x +=-,所以()()4f x f x +=,故()f x 的周期为4,所以()()()2023311f f f ==-=-. 故选:B .5.若定义在R 上的奇函数()f x 满足()()2f x f x -=,在区间()0,1上,有()()()12120x x f x f x ⎡⎤-->⎣⎦,则下列说法正确的是( )A .函数()f x 的图象关于点()1,0成中心对称B .函数()f x 的图象关于直线2x =成轴对称C .在区间()2,3上,()f x 为减函数D .7223f f ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭【答案】C【分析】对于A :根据题意结合奇函数可得()()40f x f x -+=,结合对称中心结论()()2f m x f x n b -++=,则()f x 关于,2m n b +⎛⎫ ⎪⎝⎭成中心对称理解判断;对于B :根据对称轴的结论:()()f m x f x n -=+,则()f x 关于2m n x +=成轴对称,结合题意理解判断;对于C :根据题意可得:()f x 在()0,1内单调递增,结合轴对称性质:对称区间单调性相反理解判断;对于D :整理可得()()4f x f x +=,则()f x 的周期为4,结合单调性整理分析.【解析】()()()()()42222f x f x f x f x f x ⎡⎤-=--=-=--=-⎣⎦,即()()40f x f x -+=,故()f x 关于()2,0成中心对称,A 不正确;∵()()2f x f x -=,则()f x 关于1x =成轴对称,B 错误;根据题意可得:()f x 在()0,1内单调递增∵()f x 关于1x =成轴对称,(2,0)中心对称,则()f x 在()2,3内单调递减;C 正确; 又∵()()()22f x f x f x =-=--,则()()2f x f x +=-∴()()()42f x f x f x +=-+=,可知()f x 的周期为4 则712,D 223f f f ⎛⎫⎛⎫⎛⎫-=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭错误 故选:C .6.已知图象开口向上的二次函数()f x ,对任意x ∈R ,都满足3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,若()f x 在区间(),21a a -上单调递减,则实数a 的取值范围为( )A .5,4⎛⎤-∞ ⎥⎝⎦B .51,4⎛⎤ ⎥⎝⎦C .3,2⎡⎫-+∞⎪⎢⎣⎭D .(],2-∞ 【答案】B【分析】根据题意,可知函数的对称性,并明确其对称轴,根据二次函数的图象性质,可得答案.【解析】由3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,得函数()f x 图象的对称轴是直线32x =, 又二次函数()f x 图象开口向上,若()f x 在区间(),21a a -上单调递减, 则321221a a a ⎧-≤⎪⎨⎪<-⎩,解得514a <≤.故选:B.7.已知定义域为R 的函数()f x 的图象关于点()1,0成中心对称,且当1≥x 时,()2f x x mx n =++,若()17f -=-,则3m n +=( )A .7B .2C .2-D .12-【答案】C【分析】由已知结合函数对称性可求出()3f ,进而求得结果.【解析】解:因为定义域为R 的函数()f x 的图象关于点()1,0成中心对称,且当1≥x 时,()2f x x mx n =++, 若()17f -=-,则()()317f f =--=.故()23337f m n =++=,即32m n +=-.故选:C.8.已知函数()f x 是定义在R 上的奇函数,当0x <时,()22f x x =-+.若对任意的[]1,2x ∈-,()()f x a f x +>成立,则实数a 的取值范围是( )A .()0,2B .()()0,2,6-∞C .()2,0-D .()()2,06,-+∞【答案】D【分析】利用奇函数求得()f x 的解析式,画出其函数图象的草图,由不等式在闭区间上恒成立,结合()f x 的对称性,有在12x -≤≤中,420x a --<<或42a x >-恒成立,进而求a 的范围.【解析】由题设知:,20()4,2x x f x x x --≤<⎧=⎨+<-⎩,又()f x 是定义在R 上的奇函数,即(0)0f =, ∴当02x <≤时,20x -≤-<,即()()f x x x -=--=,而()()f x f x x =--=-;当2x >时,2x -<-,即()()44f x x x -=-+=-,而()()4f x f x x =--=-;∴综上,有4,2(),224,2x x f x x x x x ->⎧⎪=--≤≤⎨⎪+<-⎩,可得如下函数图象,∴对任意的[]1,2x ∈-有()()f x a f x +>成立,即在12x -≤≤中,24x a x a x +<-⎧⎨+>--⎩或22x a x a x -≤+≤⎧⎨+<⎩或24x a x a x +>⎧⎨+>-⎩恒成立, ∴420x a --<<或42a x >-恒成立,即有20a -<<或6a >.故选:D.【点睛】关键点点睛:由已知求得()f x 的解析式并画出函数图象草图,由不等式恒成立,结合函数的对称性列不等式组,求参数范围.二、多选题9.设函数()f x 定义域为R ,()1f x -为奇函数,()1f x +为偶函数,当()1,1x ∈-时,()21f x x =-+,则下列结论错误的是( )A .7324f ⎛⎫=- ⎪⎝⎭B .()7f x +为奇函数C .()f x 在()6,8上为减函数D .()f x 的一个周期为8【答案】ABD【分析】由(1)(1)f x f x --=--、(1)(1)-+=+f x f x 可推出()f x 的周期为8,利用对称性、周期性求72f ⎛⎫ ⎪⎝⎭、判断()7f x +奇偶性及()7,8x ∈时()f x 的单调性,即可得答案. 【解析】由题设,(1)(1)f x f x --=--,则()f x 关于(1,0)-对称,所以[(1)1](11)f x f x ---=---,即()(2)f x f x -=--,则[(2)](22)f x f x --=---,即(2)(4)f x f x -=--,由(1)(1)-+=+f x f x ,则()f x 关于1x =对称,所以[(1)1](11)f x f x --+=-+,即(2)()f x f x -=,综上,()(4)f x f x =--,则(4)(44)(8)f x f x f x -=---=--,故()(8)f x f x =-,即()(8)f x f x =+易知()f x 的周期为8,D 正确;773113(2)()(1)(1)()22222412f f f f f f ⎛⎫=-=-=--=--=--=- ⎪⎝⎭,A 正确; 由(1)(7)f x f x -=+,而()1f x -为奇函数,故()7f x +为奇函数,B 正确;由()1,0x ∈-时()21f x x =-+递增,则()7,8x ∈时()f x 递增,显然C 错误.故选:ABD10.已知函数()f x 是奇函数,()1f x +是偶函数,并且当(]()0,1,12x f x x ∈=-,则下列结论正确的是( )A .()f x 在()3,2--上为减函数B .()f x 在13,22⎛⎫ ⎪⎝⎭上()0f x < C .()f x 在[]1,2上为增函数D .()f x 关于3x =对称【答案】BD【分析】由已知可得()f x 的图象关于()0,0中心对称,且关于1x =轴对称,周期为4,则可依次判断每个选项正误.【解析】因为()f x 是奇函数,()1f x +是偶函数,所以()()f x f x -=-,(1)(1)f x f x +=-+,所以(4)(31)(31)(2)(2)f x f x f x f x f x +=++=--+=--=-+,又(2)(11)(11)()()f x f x f x f x f x +=++=--+=-=-,所以(4)()f x f x +=,所以函数()f x 的周期为4,其图象关于1x =轴对称,当(]0,1x ∈时,()12f x x =-,则函数()f x 在()0,1x ∈上递减,根据对称性可得()f x 在()1,2x ∈单调递增,再结合周期性可得()f x 在()3,2--上为增函数,故A 错误,因为当(]0,1x ∈时,()12f x x =-,()f x 在1,12x ⎛⎤∈ ⎥⎝⎦小于0,根据对称性可得()f x 在13,22x ⎛⎫∈ ⎪⎝⎭小于0,故B 正确; ()f x 的图象关于1x =轴对称,所以13202f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,()()200f f ==, 所以()f x 不可能在[]1,2上为增函数,故C 错误;因为()()f x f x -=-,(1)(1)f x f x +=-+,所以(1)(1)(1)(1)f x f x f x f x --=-+=--+=-+所以()f x 的图象关于1x =-轴对称,因为()f x 的周期为4,所以()f x 关于3x =对称,故D 正确.故选:BD.11.已知函数()[]f x x x =-,其中[]x 表示不大于x 的最大整数,如:[]0.20=,[]1.22-=-,则( )A .()f x 是增函数B .()f x 是周期函数C .()2f x 的值域为[)0,1D .()2f x 是偶函数【答案】BC【分析】利用特殊值法可判断AD 选项;利用函数周期性的定义可判断B 选项;利用题中的定义求出函数()2f x 的值域,可判断C 选项.【解析】对于A 选项,因为()[]1110f =-=,()[]2220f =-=,所以,函数()f x 不是增函数,A 错;对于B 选项,对任意的x ∈R ,存在Z k ∈,使得1k x k ≤<+,则[]=x k ,所以,112k x k +≤+<+,则[][]111x k x +=+=+,所以,()[][]()[]()11111f x x x x x x x f x +=+-+=+-+=-=,故函数()f x 为周期函数,且周期为1,B 对;对于C 选项,对任意的x ∈R ,存在Z k ∈,使得21k x k ≤<+,则[]2x k =,所以,()[][)22220,1f x x x x k =-=-∈,C 对;对于D 选项,令()()2g x f x =,该函数的定义域为R ,因为()()[]0.40.80.80.80.8g f ==-=,()()[]0.40.80.80.80.810.2g f -=-=---=-+=,所以,()()0.40.4g g ≠-,故函数()2f x 不是偶函数,D 错.故选:BC.12.已知定义在R 上的函数()f x 满足()()0f x f x +-=,()(6)0f x f x ++=,且对任意的12,[3]0x x ∈-,,当12x x ≠时,都有11221221()()()()x f x x f x x f x x f x +<+,则以下判断正确的是( )A .函数()f x 是偶函数B .函数()f x 在[96]--,上单调递增 C .x =2是函数(1)f x +的对称轴D .函数()f x 的最小正周期是12【答案】BCD【分析】根据函数的奇偶性的定义判断A;由()(6)0f x f x ++=结合函数的奇偶性可推得(6)()f x f x +=-以及(12)()f x f x +=,从而判断函数的对称轴和周期,判断C,D ;根据函数的对称性和单调性以及周期性可判断B;【解析】因为定义在R 上的函数()f x 满足()()0f x f x +-=,即()()f x f x -=-, 故函数()f x 是奇函数,故A 错误;因为()(6)0f x f x ++=,故(6)()f x f x +=-,而()()f x f x -=-,所以(6)()f x f x +=-,即()f x 的图象关于3x =对称,则x =2是函数(1)f x +的对称轴,故C 正确;因为(6)()f x f x +=-,所以(12)(6)()f x f x f x +=-+=,故12是函数()f x 的周期;对任意的12,[3]0x x ∈-,,当12x x ≠时,都有11221221()()()()x f x x f x x f x x f x +<+, 即1212()[()()]0x x f x f x -⋅-<,故3[]0x ∈-,时,()f x 单调递减,又因为()f x 为奇函数,所以]3[0x ∈,时,()f x 单调递减, 又因为()f x 的图象关于3x =对称,故6[3,]x ∈时,()f x 单调递增,因为12是函数()f x 的周期,故函数()f x 在[9,6]-- 单调性与[3,6]x ∈时的单调性相同, 故函数()f x 在[9,6]--上单调递增,故B 正确,作出函数()f x 的大致图象如图示:结合图象可得知12是函数()f x 的最小正周期,D 正确;故选:BCD【点睛】本题考查了函数的奇偶性单调性以及对称性和周期性的判断,综合性强,推理复杂,要能熟练地应用相应概念进行相应的推理,解答的关键是函数单调性对称性以及奇偶性周期性的综合应用.三、填空题13.对x ∀∈R ,函数()f x 都有()()20f x f x +-=,则()f x =___________.(答案不唯一,写出一个即可)【答案】sin x π(答案不唯一)【分析】由已知关系式可知()f x 关于点()1,0对称,由此可得函数解析式.【解析】()()20f x f x +-=,()f x ∴图象关于点()1,0对称,则()sin f x x π=.故答案为:sin x π(答案不唯一).14.已知函数()f x 的定义域为R ,对任意x 都有()()22f x f x +=-,且()()f x f x -=,下列结论正确的是____.(填序号)①()f x 的图像关于直线2x =对称;②()f x 的图像关于点()20,对称;③()f x 的最小正周期为4;④()4y f x =+为偶函数.【答案】①③④【分析】由()()22f x f x +=-可得()f x 的图像关于直线2x =对称,然后结合()f x 为偶函数可判断出答案.【解析】因为()()22f x f x +=-,所以()f x 的图像关于直线2x =对称,故①正确,②错误; 因为函数f (x )的图像关于直线2x =对称,所以()()4f x f x -=+,又()()f x f x -=,所以()()4f x f x +=,所以4T =,故③正确;因为4T =且()f x 为偶函数,所以()4y f x =+为偶函数,故④正确.故答案为:①③④15.已知函数()|1|||f x x x t =++-的图像关于2x =对称,则t 的值是_______【答案】5【分析】函数()f x 的图像关于2x =对称,则()()4f x f x =-,代入即可求解.【解析】又因为函数()|1|||f x x x t =++-的图像关于2x =对称,所以()()4f x f x =-,则|1||||5||4|x x t x x t ++-=-+--所以5t =故答案为:516.已知定义在R 上的奇函数()f x 满足()()22f x f x -++=,当[]1,0x ∈-时,()22f x x x =+,若()0f x x b --≥对一切R x ∈恒成立,则实数b 的最大值为______.【答案】14-##0.25-【分析】根据题设条件可得()f x 的图象关于()1,1呈中心对称,再根据奇偶性求出()f x 在[]0,1上的解析式,即可画出函数的图象,结合图象可求实数b 的最大值.【解析】解:因为()()22f x f x -++=,故()f x 的图象关于()1,1呈中心对称,因为当[]1,0x ∈-时,()22f x x x =+,当[0,1]x ∈时,()()22()22f x f x x x x x =--=-=+--,故()f x 的图象如图所示:结合图象可得:只需当[1,0]x ∈-时,2()2f x x x x b =+≥+即可, 即21124b x ⎛⎫+- ⎪⎝⎭≤,故14b ≤-, 故答案为:14-.四、解答题17.已知()f x 是定义在R 上的函数,满足()()()121f x f x f x -+=+.(1)若132f ⎛⎫-= ⎪⎝⎭,求72f ⎛⎫ ⎪⎝⎭; (2)求证:()f x 的周期为4;(3)当[)0,2x ∈时,()3f x x =,求()f x 在[)2,0x ∈-时的解析式.【答案】(1)3(2)证明见解析(3)()3537x f x x +=-+ 【分析】(1)先求出32f ⎛⎫ ⎪⎝⎭,然后再求72f ⎛⎫ ⎪⎝⎭即可; (2)利用函数周期性的定义,即可证明;(3)根据[)2,0x ∈-以及题设条件,先求出()()232f x x +=+,再根据()()()121f x f x f x -+=+,即可解出()f x 在[)2,0x ∈-时的解析式.(1) ∵1131122122212f f f f ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=-+==- ⎪ ⎪⎛⎫⎝⎭⎝⎭+- ⎪⎝⎭, ∴317322332212f f f f ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+== ⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭. (2)∵对任意的x ∈R ,满足()()()121f x f x f x -+=+ ∴()()()()()()()()()1112142211211f x f x f x f x f x f x f x f x f x ---+++=++===-++++,∴函数()f x 是以4为周期的周期函数.(3)设[)2,0x ∈-,则[)20,2x +∈,∵当[)0,2x ∈时,()3f x x =,∴当[)20,2x +∈时,()()232f x x +=+,又∵()()()121f x f x f x -+=+, ∴()()()1321f x x f x -+=+ ∴()3537x f x x +=-+. 18.定义域为R 的函数()f x 满足:对任意实数x ,y ,均有()()()2f x y f x f y +=++,且()22f =,当1x >时,()0f x >.(1)求()0f ,()1f -的值;(2)证明:当1x <时,()0f x <.【答案】(1)()02f =-,()14f -=-(2)证明见解析【分析】(1)利用赋值法求解(2)当1x <时,21x ->,则()20f x ->,再结合已知求解.(1)(1)令0x y ==,则()()()0002f f f =++,解得()02f =-.令1x y ==,则()()()2112f f f =++,解得()10f =,令1x =,1y =-,则()()()0112f f f =+-+,解得()14f -=-.(2)(2)当1x <时,21x ->,则()20f x ->.因为()()()()22222f f x x f x f x =-+=-++=,所以()()20f x f x =--<.19.设()f x 是定义在R 上的奇函数,且对任意实数x ,恒有(2)()f x f x +=-.当[0x ∈,2]时,2()2f x x x =-.(1)求证:()f x 是周期函数;(2)当[2x ∈,4]时,求()f x 的解析式;(3)计算(0)(1)(2)(2008)f f f f ++++的值.【答案】(1)证明见解析;(2)2()68f x x x =-+;(3)1.【分析】(1)根据函数周期的定义进行证明即可;(2)根据奇函数的性质,结合函数的周期性进行求解即可;(3)根据函数的周期性进行求解即可.【解析】(1)证明:(2)()f x f x +=-,(4)(2)()f x f x f x ∴+=-+=.()f x ∴是周期为4的周期函数.(2)当[2x ∈-,0]时,[0x -∈,2],由已知得22()2()()2f x x x x x -=---=--,又()f x 是奇函数,2()()2f x f x x x ∴-=-=--,2()2f x x x ∴=+.又当[2x ∈,4]时,4[2x -∈-,0],2(4)(4)2(4)f x x x ∴-=-+-.又()f x 是周期为4的周期函数,22()(4)(4)2(4)68f x f x x x x x ∴=-=-+-=-+.从而求得[2x ∈,4]时,2()68f x x x =-+.(3)(0)0f =,f (2)0=,f (1)1=,f (3)1=-.又()f x 是周期为4的周期函数,(0)f f ∴+(1)f +(2)f +(3)f =(4)f +(5)f +(6)f +(7)(2f =⋯=008)(2f +009)(2f +010)(2f +011)(2f =012)(2f +013)(2f +014)(2f +015)0=.而(2016)(2017)(2008)(0)(1)(2)1f f f f f f ++=++=,所以(0)(1)(2)(2008)1f f f f ++++=.20.已知二次函数()()220f x ax x c a =++≠的图象与y 轴交于点()0,1,且满足()()22f x f x -+=--()x R ∈.(1)求()f x 的解析式,并求()f x 在[]3,0-上的最大值;(2)若()f x 在()1,t -+∞上为增函数,求实数t 的取值范围.【答案】(1)()21212f x x x =++;()max 1f x =;(2)1t ≥-.【分析】根据二次函数()()220f x ax x c a =++≠的图象与y 轴交于点()0,1,求得c ,根据()()22f x f x -+=--,得函数关于2x =-对称,即可求得a ,从而可得函数得解析式,再根据二次函数得性质即可的解;(2)根据二次函数得单调性即可的解.【解析】解:(1)因为二次函数为()()220f x ax x c a =++≠的图象与y 轴交于点()0,1,故1c =,又因为函数()f x 满足()()()22f x f x x R -=-∈+-,所以函数关于2x =-对称,即222x a =-=-,所以12a =, 故二次函数的解析式为:()21212f x x x =++由()f x 在[]3,2--单调递减,在[]2,0-单调递增,又()()13,012f f -=-=,所以()()max 01f x f ==;(2)因为函数在()1,t -+∞上为增函数,且函数图象的对称轴为2x =-,即二次函数()f x 在()2,-+∞上递增,所以12t -≥-,故1t ≥-.21.设函数()f x 是定义在R 上的偶函数,且(1)(1)f x f x +=-对任意的x ∈R 恒成立,且当[0,1]x ∈时,2()f x x =. (1)求证:()f x 是以2为周期的函数(不需要证明2是()f x 的最小正周期); (2)对于整数k ,当[21,21]x k k ∈-+时,求函数()f x 的解析式.【答案】(1)证明见解析;(2)2()(2),[21,21]()f x x k x k k k Z =-∈-+∈.【分析】(1)通过证明(2)()f x f x +=成立得解;(2)先求解[1,1]x ∈-时,2()f x x =,再通过周期为2得(2)()f x k f x -=可求解当[21,21]x k k ∈-+时函数()f x 的解析式【解析】解:(1)因为()(2)[(1)1]11()()f x f x f x f x f x ⎡⎤+=++=-+=-=⎣⎦, 所以:()f x 是以2为周期的函数;(2)∵当[0,1]x ∈时,2()f x x =,函数()f x 是定义在R 上的偶函数∴当[1,0]x ∈-时,2()f x x =,∴[1,1]x ∈-时,2()f x x =,∵()f x 是以2为周期的函数,即(2)()f x k f x -=,()k ∈Z设[21,21]x k k ∈-+,则2[1,1]x k -∈-,2(2)(2)f x k x k ∴-=-,即2()(2),[21,21]()f x x k x k k k Z =-∈-+∈.22.已知函数2()21f x x ax =--,且(2)(2)f x f x +=-.(1)求函数()y f x =的解析式;(2)若()()g x f x mx =+在[1,1]-上时单调函数,求实数m 的取值范围.【答案】(1)2()41y f x x x ==--.(2)[6,)(,2]+∞-∞【分析】(1)利用函数的对称性和二次函数的性质进行求解即可;(2)根据二次函数的性质,结合分类讨论法进行求解即可.(1)解:因为(2)(2)f x f x +=-,所以函数()y f x =的对称轴为:2x =,函数2()21f x x ax =--的对称轴为:x a =,所以有2a =,即2()41y f x x x ==--.(2)解:2()()(4)1g x f x mx x m x =+=+--, 该函数的对称轴为:42m x -=-, 当412m -≤-时,函数在[1,1]-上单调递减,解得 2m ≤; 当412m --≤-时,函数在[1,1]-上单调递增,解得6m ≥, 综上所述:实数m 的取值范围为[6,)(,2]+∞-∞.23.我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学发现可以将其推广为:函数()y f x =的图象关于点(,)P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.(1)求证:点(1,2)-是函数32()3f x x x =+图象的对称中心;(2)已知函数32()3f x x x =+,求(2021)(2020)(2019)(2018)f f f f -+-++的值.【答案】(1)证明见解析;(2)8.【分析】(1)令()(1)2g x f x =--,利用单调性的定义证明()g x 是奇函数即可;(2)根据条件可得()()0g x g x +-=,即(1)(1)4f x f x -+--=,将数字直接代入计算即可.(1)证明:因为32()3f x x x =+,令()(1)2g x f x =--,所以32()(1)3(1)2g x x x =-+--3223(331)3(21)23x x x x x x x =-+-+-+-=-即3()3g x x x =-,33()()3()3()g x x x x x g x -=---=-+=-所以()g x 是奇函数.由题意,点(1,2)-是函数32()3f x x x =+图象的对称中心.(2)由(1)知函数32()3f x x x =+的图像的对称中心为(1,2)-,所以()()(1)2(1)20g x g x f x f x +-=--+---=,所以(1)(1)4f x f x -+--=,所以(2021)(2019)=(2020)(2018)=4f f f f -+-+,所以(2021)(2020)(2019)(2018)=8f f f f -+-++.24.设函数()()R y f x x =∈.(1)若对任意实数a ,b 有()()()f a b f a f b +=+成立,且当0x >时,()0f x >; ①判断函数的增减性,并证明;②解不等式:()()2560f t f t ++<;(2)证明:“()()R y f x x =∈图象关于直线x a =对称”的充要条件是“任意给定的R x ∈,()2()f a x f x -=”.【答案】(1)①函数()y f x =为R 上增函数,证明见解析;②{|51}t t -<<-(2)证明见解析【分析】(1)①利用赋值法和单调性的定义进行证明,②先利用赋值法得到()00=f ,再利用单调性和()()()f a b f a f b +=+进行变形求解;(2)结合函数的性质,从充分性、必要性两方面进行证明.(1)解:①函数()y f x =为R 上增函数,证明如下:由()()()f a b f a f b +=+,得()()()f a b f a f b +-=,对于12,R x x ∈,且12x x >,则120x x ->,则()()()12120f x f x f x x -=->,所以当12x x >时,有()()12f x f x >,所以函数()y f x =为R 上增函数.②由①得:()()2560f t f t ++<可化为2[(5)6]0f t t ++<,取0b =,得()()()0f a f a f =+,解得()00=f ,又因为函数()y f x =为R 上增函数,所以2(5)60t t ++<,解得51t -<<-即()()2560f t f t ++<的解集为{|51}t t -<<-.(2)证明:因为()y f x =图象关于直线x a =对称,所以()()f a x f a x =-+,令a x t -=,则x a t =-,2a x a t +=-,所以()(2)f t f a t =-,即()(2)f x f a x =-成立;若()(2)f x f a x =+,令x a t =-,则2a x a t -=+,即()()f a t f a t -=+,即()()f a x f a x =-+成立,即()y f x =图象关于直线x a =对称;所以“()()R y f x x =∈图象关于直线x a =对称”的充要条件是“任意给定的R x ∈,()2()f a x f x -=”.25.已知函数()21f x x =-+. (1)利用函数单调性定义证明()21f x x =-+在区间()1,-+∞上的单调性; (2)请利用(1)的结论,说出()21f x x =-+在区间(),1-∞-上的单调性(不用证明); (3)利用本题中(1)(2)得到的结论,求函数()21f x x =-+在区间()5,2--上的值域. 【答案】(1)证明见解析(2)()21f x x =-+在区间(),1-∞-上单调递增 (3)1,22⎛⎫ ⎪⎝⎭ 【分析】(1)根据函数单调性的定义证明即可;(2)根据函数图象的变换,结合函数的对称性与单调性求解即可;(3)根据函数的单调性,结合函数的值域求解即可.(1)设1x ,2x 是区间()1,-+∞上的任意两个实数,且12x x <,则()()()()()()()()212112121212211222111111x x x x f x f x x x x x x x +---⎛⎫-=---=-=- ⎪++++++⎝⎭ 由121x x -<<,得210x x ->,()()12120x x ++> 所以()()120f x f x -<,即()()12f x f x <.故()21f x x =-+在区间()1,-+∞上单调递增. (2)()21f x x =-+由反比例函数()2f x x=-向左平移得到 所以()21f x x =-+图像关于点()1,0-对称 由(1)知()21f x x =-+在区间()1,-+∞上单调递增 所以()21f x x =-+在区间(),1-∞-上单调递增. (3) 因为()()5,2,1--⊆-∞-,由(1)(2)知()21f x x =-+在区间()5,2--上单调递增 所以()()max 22f x f =-=,()()min 152f x f =-=.即()21f x x =-+在区间()5,2x ∈--上的值域为1,22⎛⎫ ⎪⎝⎭.。
高一数学学习单 函数(7)对称性姓名_____________班级___________日期___________一、自我诊断:1.函数221y x x =-+的对称轴是_______________;2.函数12x y x -=+的对称中心是________________. 3.已知A (2,5),B (4-,3),则A 、B 的中点坐标是___________,则中点坐标公式是___________.4.已知A (1,3),B (1-,2),则A 关于点B 对称点的坐标是______________. 二、问题讨论:1.阅读教材第157页,函数()f x 关于点(a ,0)中心对称的充要条件是什么?有哪几种形式?如果关于点(a ,b )中心对称呢?分析:2.阅读教材第161页,函数()f x 关于直线x a =轴对称的充要条件是什么?有哪几种形式?分析:3.()f x 与()f x -的图象是什么关系?()f x 与()f x a +的图象是什么关系?与()f x a +呢?4.阅读教材第162页,解决“思考与探究”三、例题分析:例1.对于定义在R 上的函数()f x ,有下述四个命题:①若()f x 是奇函数,则()1f x -的图象关于点A (1,0)对称;②若对于任意x R ∈,有()()11f x f x +=-,则函数()f x 的图象关于直线1=x 对称;③若函数()1f x -的图象关于直线1=x 对称,则()f x 为偶函数;④函数()1y f x =+与函数()1y f x =-的图象关于直线1=x 对称.其中正确命序号为 .(把你认为正确命题的序号都填上)四、课堂反馈:1.若函数()()y f x x R =∈满足()()2f x f x +=, 且(]1 1x ∈-,时()||f x x =,则函数()y f x =的图象与函数lg ||y x =的图象的交点个数为( )A .16B .18C .20D .无数个2.()f x 是定义在(-∞,+∞)上的函数,对x ∈R 均有()()20f x f x ++=,当11x -<≤时,()21f x x =-,当13x <≤时,函数()f x 的解析式为__________________________.3.设函数()f x 对一切实数x 均有:()()33f x f x +=-,且方程()0f x =恰好有6个不同的实数根,则6个根的和为___________________________________.五、课后巩固:1.函数()1f x -是奇函数,则函数()y f x =的图像关于( )A . 直线1x =对称B . 直线1x =-对称C . 点()1 0,对称D . 点()1 0-,对称2.若函数()32f x x ax bx =++的图象关于(1,1)点对称,求a 、b 的值.3.设()f x 是定义在[-1,1]上的偶函数,()f x 、()g x 的图象关于直线1x =对称,且当[2 3]x ∈,时,()()()32142g x x x =---,求()f x 的表达式.。
高一数学函数综合试题答案及解析1.已知函数是R上的增函数,则的取值范围是A.≤<0B.≤≤C.≤D.<0【答案】B【解析】若递增,则,若递增,则,若函数是R上的增函数,还需,综上可得的取值范围是≤≤。
【考点】函数的单调性2.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的一年收益与投资额成正比,其关系如图(1);投资股票等风险型产品的一年收益与投资额的算术平方根成正比,其关系如图(2).(注:收益与投资额单位:万元)(1)分别写出两种产品的一年收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使一年的投资获得最大收益,其最大收益是多少万元?【答案】(1),(2)投资债券类产品万元,则股票类投资为万元,收益最大,为万元.【解析】(1)根据题意设,,然后把分别代入,可求出两种产品的一年收益与投资额的函数关系;(2)该家庭的收益等于债卷收益+股票收益,设投资债券类产品万元,则股票类投资为万元,由(1)知债卷收益,股票收益,则总收益为,利用换元法求其最大值。
试题解析:(1)设,,所以,,即,; 5分(2)设投资债券类产品万元,则股票类投资为万元,依题意得:,令,则,所以当,即万元时,收益最大,万元. 13分【考点】(1)待定系数法求函数的解析式;(2)数形结合思想的应用;(3)换元法的应用。
3.定义在上的函数,如果对于任意给定的等比数列,有仍是等比数列,则称为“保等比数列函数”.现有定义在上的如下函数:①=;②=;③;④=||,则其中是“保等比数列函数”的的序号为【答案】①③【解析】设等比数列的公比为,对于函数得为常数,因此得为保等比数列函数;对于函数得不是常数,因此不是保等比数列函数;对于函数得为常数,因此是保等比数列函数;对于函数得不是常数,因此不是保等比数列函数.【考点】判断是否为等比数列.4.函数y=-xcosx的部分图象是().【答案】D.【解析】选判断函数的奇偶性,此时,有,可知此函数为奇函数,排除A,C;又当x>0时,取时,可知此时,易知图像与x轴交于,而当时,,故选D.【考点】函数图像的辨析与识别,奇偶函数的定义与性质,排除法,特殊角的三角函数值.5.已知函数定义在上,对任意的,,且.(1)求,并证明:;(2)若单调,且.设向量,对任意,恒成立,求实数的取值范围.【答案】(1)(2)【解析】(1)借助于特殊值得,然后把变形= 即可,(2)首先判断出函数是增函数,然后找出,代入整理的,最后用分类讨论的思想方法求出即可.(1)令得,又∵,, 2分由得=,∵,∴. 5分(2)∵,且是单调函数,∴是增函数. 6分而,∴由,得,又∵因为是增函数,∴恒成立,.即. 8分令,得 (﹡).∵,∴,即.令, 10分①当,即时,只需,(﹡)成立,∴,解得; 11分②当,即时,只需,(﹡)成立,∴,解得,∴. 12分③当,即时,只需,(﹡)成立,∴,∴, 13分综上,. 14分【考点】抽象函数;函数的单调性;向量的数量积公式;不等式恒成立的问题;分类讨论的思想方法.6.已知函数,则______.【答案】【解析】若,则,,故【考点】分段函数,特殊角的三角函数值.7.设关于x函数其中0将f(x)的最小值m表示成a的函数m=g(a);是否存在实数a,使f(x)>0在上恒成立?是否存在实数a,使函数f(x) 在上单调递增?若存在,写出所有的a组成的集合;若不存在,说明理由.【答案】(1)(2)不存在a;(3).【解析】(1)先利用二倍角公式将化简,将其看成的二次函数,从而转化成求二次函数的最值问题.因为含参数,要注意定义域的范围,对参数进行讨论.(2)恒成立,即求的最大值大于0即可.而的最大值为,所以无解.故不存在a,使得恒成立.(3)本题可看成二次函数在上递增,只需在上单调递减,故.(1)设, 由知,恒成立由于的最大值为,所以无解.故不存在a,使得恒成立.(3)上的减函数,故在上递增,只需在上单调递减,故所以存在,使函数为增函数.【考点】二倍角公式,二次函数的性质,最值,恒成立问题,等价转化的方法,函数的单调性.8.已知函数.(1)若在上存在零点,求实数的取值范围;(2)当时,若对任意的,总存在使成立,求实数的取值范围.【答案】(1);(2).【解析】(1)在上存在零点,只需即可;(2)本问是存在性问题,只需函数的值域为函数的值域的子集即可.试题解析:(1)的对称轴为,所以在上单调递减,且函数在存在零点,所以即解得.故实数的取值范围为.(2)由题可知函数的值域为函数的值域的子集,以下求函数的值域:①时,为常函数,不符合题意;②,,∴解得;③,,∴解得.综上所述,的取值范围为.【考点】1.函数的零点;2.恒成立问题.9.设函数,用二分法求方程的近似根过程中,计算得到,则方程的根落在区间A.B.C.D.【答案】A【解析】解:取,因为,所以方程近似根取,因为,所以方程近似根所以应选A.【考点】二分法.10.已知函数,为偶函数,且当时,.记.给出下列关于函数的说法:①当时,;②函数为奇函数;③函数在上为增函数;④函数的最小值为,无最大值.其中正确的是A.①②④B.①③④C.①③D.②④【答案】B【解析】解:根所题意,函数的图象如下图所示为分段函数,其解析式为由此可知①③④正确,故选B.【考点】函数图象和性质.11.若定义在区间上的函数满足:对于任意的,都有,且时,有,的最大值、最小值分别为,则的值为( )A.2012B.2013C.4024D.4026【答案】C【解析】令,所以.即.再令.代入可得.设.所以.又因为.所以可得.所以可得函数是递增.所以.又因为.故选C.【考点】1.函数的单调性.2.函数的特殊值法寻找等量关系.3.等式与不等式间的互化.4.归纳化归的能力.12.已知为偶函数,当时,,满足的实数的个数为()A.2B.4C.6D.8【答案】D【解析】因为为偶函数,当时,.所以函数的解析式为作出图像如图所示. .由于函数是关于y轴对称,考虑研究x>0部分的图像.当时.或.因为.所以有四个不同的值.因为,所以不存在.所以有四个值.有对称性可得在x<0部分也有一个x的值符合.所以对应有四个值.故选D.【考点】1.分段函数的性质.2.复合函数的运算.3.数形结合的思想.13.定义函数,若存在常数C,对于任意的,存在唯一的,使得,则称函数在D上的“均值”为,已知,则函数上的均值为()A.B.C.D.10【答案】A【解析】因为过点的中点的纵坐标为,所以对于任意的,存在唯一的,使得.所以均值.故选A.本小题的关键是考查函数的对称性问题.【考点】1.新定义的函数问题.2.函数的对称性.14.函数f(x)=x3-2x2+3x-6在区间[-2,4]上的零点必在所在区间是 ( )A.[-2,1]B.[,4]C.[1,]D.[,]【答案】D【解析】因为,,又,由二分法知函数在区间必有零点.故正确答案为D.【考点】二分法15.设函数.(Ⅰ)画出的图象;(Ⅱ)设A=求集合A;(Ⅲ)方程有两解,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(1)需将函数解析式改写成分段函数后在画图(2)利用整体思想把先看成整体,然后再去绝对值(3)方程有两个解即函数和函数的图像有两个交点,利用数形结合思想分析问题试题解析:(Ⅰ)图像如图(1)所示(Ⅱ)即(舍)或或(Ⅲ)由图像(2)分析可知当方程有两解时,或【考点】(1)函数图像的画法(2)一元二次不等式和绝对值不等式(3)数形结合思想16.已知函数,若存在当时,则的取值范围是【答案】【解析】如图所示当时有,当时有所以即【考点】分段函数,要使时,,即使与函数有两个不同的交点,数形结合思想.17.已知,符号表示不超过的最大整数,若关于的方程(为常数)有且仅有3个不等的实根,则的取值范围是( ).A.B.C.D.【答案】B【解析】因为,所以;分和的情况讨论,显然有.若,此时;若,则;若,因为,故,即.且随着的增大而增大。
高中数学《函数的对称性与周期性》基础知识及专项练习题(含答案)一、基础知识(一)函数的对称性1、对定义域的要求:无论是轴对称还是中心对称,均要求函数的定义域要关于对称轴(或对称中心)对称2、轴对称的等价描述:(1)()()f a x f a x −=+⇔()f x 关于x a =轴对称(当0a =时,恰好就是偶函数)(2)()()()f a x f b x f x −=+⇔关于2a b x +=轴对称 在已知对称轴的情况下,构造形如()()f a x f b x −=+的等式只需注意两点,一是等式两侧f 前面的符号相同,且括号内x 前面的符号相反;二是,a b 的取值保证2a b x +=为所给对称轴即可。
例如:()f x 关于1x =轴对称()()2f x f x ⇒=−,或得到()()31f x f x −=−+均可,只是在求函数值方面,一侧是()f x 更为方便(3)()f x a +是偶函数,则()()f x a f x a +=−+,进而可得到:()f x 关于x a =轴对称。
① 要注意偶函数是指自变量取相反数,函数值相等,所以在()f x a +中,x 仅是括号中的一部分,偶函数只是指其中的x 取相反数时,函数值相等,即()()f x a f x a +=−+,要与以下的命题区分:若()f x 是偶函数,则()()f x a f x a +=−+⎡⎤⎣⎦:()f x 是偶函数中的x 占据整个括号,所以是指括号内取相反数,则函数值相等,所以有()()f x a f x a +=−+⎡⎤⎣⎦② 本结论也可通过图像变换来理解,()f x a +是偶函数,则()f x a +关于0x =轴对称,而()f x 可视为()f x a +平移了a 个单位(方向由a 的符号决定),所以()f x 关于x a =对称。
3、中心对称的等价描述:(1)()()f a x f a x −=−+⇔()f x 关于(),0a 轴对称(当0a =时,恰好就是奇函数)(2)()()()f a x f b x f x −=−+⇔关于,02a b +⎛⎫ ⎪⎝⎭轴对称 在已知对称中心的情况下,构造形如()()f a x f b x −=−+的等式同样需注意两点,一是等式两侧f 和x 前面的符号均相反;二是,a b 的取值保证2a b x +=为所给对称中心即可。
函数周期性和对称性高一数学一•定义:若T为非零常数,对于定义域内的任一x,使f(x T) f(x)恒成立则f(x)叫做周期函数,T叫做这个函数的一个周期。
二•重要结论1、f x f x a,则y f x是以T a为周期的周期函数;2、若函数y=f(x)满足f(x+a)=-f(x) (a>0),则f(x)为周期函数且2a是它的一个周期。
3、若函数f x a f x a,贝U f x是以T 2a为周期的周期函数14、y=f(x)满足f(x+a) = (a>0),则f(x)为周期函数且2a是它的一个周期。
f x15、若函数y=f(x)满足f(x+a) = (a>0),则f(x)为周期函数且2a是它的一个周期。
f x6、f (x a) 1一3,则fx是以T 2a为周期的周期函数.1 f(x)7、f(x a)1一L(x),则f x是以T 4a为周期的周期函数•1 f(x)8、若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2 ( b-a)是它的一个周期。
9、函数y f(x) x R的图象关于两点 A a, y0、B b, y0 a b都对称,则函数 f (x)是以2 b a为周期的周期函数;10、函数y f(x) x R的图象关于A a, y。
和直线x b a b都对称,则函数f(x)是以4 b a为周期的周期函数;11、若偶函数y=f(x)的图像关于直线x=a对称,贝U f(x)为周期函数且2 a是它的一个周期。
12、若奇函数y=f(x)的图像关于直线x=a对称,则f(x)为周期函数且4 a是它的一个周期。
13、若函数y=f(x)满足f(x)=f(x-a)+f(x+a)( a>0),则f(x)为周期函数,6a是它的一个周期。
14、若奇函数y=f(x)满足f(x+T)=f(x) (x € R, 0),则f(-)=0.2函数的轴对称:a b定理1 :如果函数y f x满足fax f b x,则函数y f x的图象关于直线x 对2 称•推论1:如果函数y f x满足fax fax,则函数y f x的图象关于直线x a对称•推论2:如果函数y f x满足f x f x ,则函数y f x的图象关于直线x 0 (y轴)对称. 特别地,推论2就是偶函数的定义和性质.它是上述定理1的简化.一、函数的点对称:定理2:如果函数y f x满足fax fax 2b,则函数y f x的图象关于点a,b对称. 推论3:如果函数y f x满足fax fax 0,则函数y f x的图象关于点a,0对称.推论4 :如果函数y f x满足f x f x 0,则函数y f x的图象关于原点0,0对称.特别地,推论4就是奇函数的定义和性质.它是上述定理2的简化.二、函数周期性的性质:定理若函数f x在R上满足f (a x)fax,且f(b x) f b x (其中a b),则函数3:y f x以2 a b为周期.定理4:若函数f x在R上满足f(a x) f a x,且f(b x) f b x (其中 a b),则函数y f x以2 a b为周期.定理5:若函数f x在R上满足f(a x)fax,且f(b x) f b x (其中a b),则函数y fx以4a b为周期.以上几类情形具有一定的迷惑性,但读者若能区分是考查单一函数还是两个函数,同时分析条件特征必能拨开迷雾,马到成功.下面以例题来分析.例1.已知定义为R的函数f x满足f x f x 4,且函数f x在区间2, 上单调递增.如果x-i 2 x2,且x-i x2 4,则f % f x2的值().A.恒小于0 B .恒大于0 C .可能为0 D .可正可负.分析:f x f x 4形似周期函数f x f x 4,但事实上不是,不过我们可以取特殊值代入,通过适当描点作出它的图象来了解其性质.或者,先用x 2代替x,使f x f x 4变形为f 2 x f x 2 .它的特征就是推论 3.因此图象关于点2,0对称.f x在区间2, 上单调递增,在区间,2上也单调递增.我们可以把该函数想象成是奇函数向右平移了两个单位.(如图)2 X2 4 x-,且函数在2, 上单调递增,所以f x2 f 4 X!,又由f x f x 4 ,有 f (4 x 1) f x 1 4 f x 1 4 4 f x 1 ,[3,4] 上是增函数f x 1 f x 2 f x 1 f 4 x 1 f x 1 f x 10.选 A.当然,如果已经作出大致图象后,用特殊值代人也可猜想出答案为A.练1:在R 上定义的函数f (x)是偶函数,且f(x) f (2 x).若f (x)在区间[1,2]上是减函数,则f(x)()A. 在区间[2, 1]上是增函数,在区间[3,4]上是减函数B. 在区间[2, 1]上是增函数,在区间[3,4]上是减函数上是减函数,在区间C.在区间[2, 1][3, 4]上是增函数分析:由f(x) f(2 x)可知f(x)图象关于x 1对称,即推论1的应用.又因为f(x)为偶函数图象关于 x 0对称,可得到f(x)为周期函数且最小正周期为 2,结合f (x)在区间[1,2]上是减函数,可得如右 f(x)草图.故选B例2 •已知函数y f x 的图象关于直线 x 2和x 4都对称,且当0x1时,f X x .在闭区间T,T 上的根的个数记为n ,贝U n 可能为(: )A.0B.1C.3D.5分析:f(T)f( T) 0 ,f( T )f (T ) f( ~T)f (T ),2 222•- f( 匸)f(T ) 0 ,则n 可能为5 ?练2.定义在R 上的函数f(x)既是奇函数,又是周期函数, 2 2D.在区间[2, 1]上是减函数,在区间T 是它的一个正周期•若将方程f(x)求f 19.5的值.分析:由推论1可知, y f x 的图象关于直线 2对称,即f 2 x同样, 满足f 4 x ,现由上述的定理 X 是以4为周期的函数.f 19.5 f 4 4 3.5 f 3.5 0.5 0.5, 同时还知f X 是偶函数,所以0.5 f 0.5 0.5. 例3. f f 398 x f 2158 x f 3214 x ,则f f 999 中最多有()个不同的值. A.165 B.177 C.183 D.199分析:由已知f x f 398 f 2158 x f 3214 x f x 1056f x 1760 f x 704352 . 又有 f x f 398 x2158 x f 3214 x 1056f 2158 1056 xf 1102 x f 1102 x1056f 46 x ,于是f (x)有周期352,于是f o ,f 1 , L ,f 999能在 ,f 351中找到. 又f (x)的图像关于直线x 23对称,故这些值可以在23 , f 24 丄,f 351中找到.又f(x)的图像关于直线x 199对称,故这些值可以在 f 23 , f 24 ,L , f 199 中找到.共有177个.选B. 练3 :已知 1 x1 3x ,x ,…, 则 f 2004 2 分析:由f ,可令 x=f (x )知 f , x 1 3x ,f 2 x3x 13x 1 f(x)为迭代周期函数,故 f 3n x 2004 f x, f 2004练4:函数f (x)在R 上有定义,且满足 f(x)是偶函数,且f 0 2005, g x x 1是奇函数,则f 2005的值为函数的定义域为[—1 , 0 ) U ( 0 , 1 ]故f ( x ) 是奇函数4、抽象函数奇偶性的判定与证明例4•已知函数f (x)对一切x, y R ,都有f (x y) f (x) f (y),(1)求证: f (x)是奇函数;(2)若f( 3) a ,用a 表示f(12)解:(1)显然f(x)的定义域是R ,它关于原点对称•在 f(x y) f (x) f (y)中,令 yx ,得 f(0) f(x) f( x),令 x y 0,得 f (0)f(0) f (0) ,「.f(0)0 ,••• f (x) f ( x) 0,即 f( x) f (x),••• f (x)是奇函数.f y fy 2,即有f :x f x 20,令 a nf x ,则 a n a n 2 0 ,其中 a 。
高一数学函数试题答案及解析1.已知,函数.若,则()A.B.C.D.【答案】A.【解析】首先由可得,,即①;然后根据可得,,即②.最后将①代入②可得,,即,故应选A.【考点】二次函数的求值.2.已知点是直线上的任意一点,则的最小值为()A.B.C.D.【答案】A【解析】点是直线上的任意一点,则有,即,所以有,显然当时,有最小值.【考点】消元法,二次函数中配方法求最值.3.函数的一个零点是,则另一个零点是_________.【答案】【解析】本题要注意零点的概念,零点是指函数的解,并非点的坐标.依题意可知,所以,令或,所以另一个零点是1.【考点】函数的零点.4.已知函数().(1)证明:当时,在上是减函数,在上是增函数,并写出当时的单调区间;(2)已知函数,函数,若对任意,总存在,使得成立,求实数的取值范围.【答案】(1)证明详见解析,在是减函数,在是增函数;(2).【解析】(1)根据函数单调性的定义进行证明即①设;②作差:;③因式分解到最简;④根据条件判定符号;⑤作出结论,经过这五步即可证明在单调递减,同理可证在是增函数,最后由奇函数的性质得出;在是减函数,在是增函数;(2)先将“对任意,总存在,使得成立”转化为“函数在区间的值域包含了在区间的值域”,分别根据函数的单调性求出这两个函数的值域,最后由集合的包含关系即可得到的取值范围.试题解析:(1)证明:当时①设是区间上的任意两个实数,且,则∵,∴,∴,即∴在是减函数 4分②同理可证在是增函数 5分综上所述得:当时,在是减函数,在是增函数 6分∵函数是奇函数,根据奇函数图像的性质可得当时,在是减函数,在是增函数 8分(2)∵() 8分由(1)知:在单调递减,单调递增∴, 10分又∵在单调递减∴由题意知:于是有:,解得 12分.【考点】1.函数的单调性与最值;2.函数的奇偶性;3.函数的值域.5.如图,点从点出发,分别按逆时针方向沿周长均为的正三角形、正方形运动一周,两点连线的距离与点走过的路程的函数关系分别记为,定义函数对于函数,下列结论正确的个数是()①;②函数的图像关于直线对称;③函数值域为;④函数在区间上单调递增.A.1B.2C.3D.4【答案】D【解析】由题意可得由函数与的图像可得函数由图像可知,①②③④都正确.【考点】1.函数的图像;2.分段函数;3.函数的单调性;4.函数的值域.6.关于的方程恰有个不同的实根,则的取值范围是________.【答案】【解析】设,,若有解,则须,即,当时,只有两解,当时,只有3个解,当时,都有四个不同的实数解,先将方程转化为,则要使关于的方程恰有8个根,则关于的二次方程在内有两个不等的正实根,记,则须有即,解之得.【考点】1.函数与方程;2.二次方程根的分布问题.7.定义在区间上的奇函数为增函数,偶函数在上图象与的图象重合.设,给出下列不等式,其中成立的是( )①②③④A.①④B.②③C.①③D.②④【答案】C【解析】因为,定义在区间上的奇函数为增函数,偶函数在上图象与的图象重合.即偶函数在上是增函数,在是减函数。
高一数学周期性和对称性试题1.若函数的图像关于直线x=1对称,则b=__________。
【答案】6【解析】∵对称轴为x=1,∴a=-4,又∵区间[a,b]关于x=1对称,∴b=6.【考点】二次函数的性质.2.若函数满足,且当时,,则.【答案】1【解析】函数满足知,,∴是周期为2的周期函数,∴=2×|0|+|1|="1." 是周期为2的周期函数,∴=2×|0|+|1|=1.【考点】函数的周期性3.已知的图像关于直线对称,则实数的值为 .【答案】1【解析】因为函数为偶函数,其图像关于轴对称,对称轴为,函数的图像由函数的图像向右平移个单位可得,所以函数的对称轴为,又因为函数的图像关于直线对称,故.【考点】1.指数函数;2.函数的对称性;3.函数图像的平移.4.已知函数的定义域为,满足,且当时,,则等于()A.B.C.D.【答案】B【解析】,周期为2【考点】函数性质及求值点评:函数若满足,则周期为;若满足,则周期为5.已知是定义在上的偶函数,并且,当时,,则_________________.【答案】2.5【解析】因为,所以,所以函数f(x)的周期为4,所以.6.若=_________.【答案】【解析】函数的周期是,7.已知偶函数y=f(x)对任意实数x都有f(x+1)=-f(x),且在[0,1]上单调递减,则f、f、f从小到大的顺序【答案】【解析】此题考察奇偶函数的性质思路分析:因为y=f(x)对任意实数x都有f(x+1)=-f(x),所以,函数的周期,又函数为偶函数,故,,,而在上单调递减,,所以,即.点评:先求函数周期,再根据函数单调性比较大小.8.函数的图像关于()轴对称原点对称轴对称直线对称【答案】B【解析】略9.若函数的图像关于原点对称,则.【答案】.【解析】∵函数的图象关于原点对称,∴函数为奇函数,∴,∴,∴解得,.【考点】奇函数的性质.10.定义域为R的函数满足,当时,,则()A.B.C.D.【答案】D【解析】有题可知,有,因此得到,又因为,因此有,,故;【考点】函数的奇偶性以及周期性。
【答案】5【分析】先根据①①可知函数的对称中心和对称轴,再分别画出()f x 和()g x 的部分图像,由图像观察交点的个数.【详解】根据题意,①(2)()0f x f x -+=,得函数()f x 的图像关于点()1,0对称,①(2)()0f x f x ---=,得函数()f x 的图像关于1x =-对称,则函数()f x 与()g x 在区间[3,3]-上的图像如图所示,由图可知()f x 与()g x 的图像在[]3,3-上有5个交点.由图知()f x 与()h x 的图象在区间()2,6-有四个交点,设交点横坐标分别为1234,,,x x x x ,且1422x x +=,2322x x +=,所以12348x x x x +++=,所以()f x 与()h x 的图象所有交点的横坐标之和为8, 3.定义在R 上的函数()f x 满足()(2)f x f x -=,且当1≥x 时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为( )A .1-B .23-C .13-D .13【答案】C 【分析】若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,即对[,1]x t t ∈+,不等式()()1f x f x +t ≤+恒成立,-1x x t ≥+,进而可得答案.【详解】当14x ≤<时,3y x =-+单调递减,()()241log 41f x f >=-=-,当4x ≥时,()f x 单调递减,()()41f x f ≥=-,故()f x 在[)1,+∞上单调递减,由()(2)f x f x -=,得()f x 的对称轴为1x =, 若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,即对[,1]x t t ∈+,不等式()()1f x f x +t ≤+恒成立,-1x x t ∴≥+,即()()221x x t -≥+,即()22110t x t ++-≤,()()()22211011321110t t t t t t t ⎧++-≤⎪⇒-≤≤-⎨+++-≤⎪⎩,故实数t 的最大值为13-. 4.已知()f x 是定义域为R 的奇函数,(1)(1)f x f x +=-,当01x ≤≤时,()1xf x e =-,则23x ≤≤时,()f x 的解析式为( )6.已知函数()f x 满足对任意的x ∈R 都有11222⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭f x f x 成立,则 127...888f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= . 【答案】7 【解析】设,则,因为11222⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭f x f x ,所以,,故答案为7.7.已知函数21()ln |2|45f x x x x =---+,则使不等式(21)(2)f t f t +>+成立的实数t 的取值范围是___________.【答案】111(,)(,1)322⋃ 【分析】由函数解析式知函数()f x 的图象关于直线2x =对称,利用定义证得2x >时,函数()f x 是减函数,2x <时,函数为增函数,利用对称性和单调性解不等式即可.【详解】∵f(x)=1x 2−4x+5−ln |x −2|=1(x−2)2+1−ln |x −2|,21(2)ln ||1f t t t ∴-=-+,。
高一数学同步训练 第1页(共1页)函数的对称性和周期性知识梳理1. 函数的对称性(小学定义,几何定义,代数定义)⑴)(x f y =是偶函数⇔ ⇔ ⑵)()(x a f x a f -=+ ⇔)2()(x a f x f -=⇔函数)(x f y =的图象关于 对称⑶)()(x b f x a f -=+⇔函数)(x f y =的图象关于 对称⑷)(x f y =是奇函数⇔ ⇔ ⑸)()(x a f x a f --=+ ⇔)2()(x a f x f --=⇔函数)(x f y =的图象关于 对称⑹)()(x b f x a f --=+⇔函数)(x f y =的图象关于⎪⎭⎫⎝⎛+0,2b a 对称 2. 函数的周期性⑴周期函数的定义:函数)(x f 在其定义域内,存在一个常数)0T (≠T ,对任意的x 都满足 成立,则称函数)(x f 是周期函数,T 叫做函数)(x f 的一个周期。
设T 是函数)(x f 的一个周期,则)0,(,≠∈k Z k kT 也是函数)(x f 的周期。
⑵常见结论(后三个不要求记忆,以后有机会联系三角函数记忆)(1)若)(x f 对定义域内的任意x 都有)()(x f a x f -=+)0(≠a ,则 =T (2)若)(x f 对定义域内的任意x 都有)(1)(x f a x f =+)0(≠a ,则 =T (3)若)(x f 对定义域内的任意x 都有)(1)(x f a x f -=+)0(≠a ,则 =T(4)若)(x f 对定义域内的任意x 都有)(1)(1)(x f x f a x f +-=+)0(≠a ,则 =T(5)若)(x f 对定义域内的任意x 都有)(1)(1)(x f x f a x f -+=+)0(≠a ,则 =T(6)若)(x f 的图象关于)(,b a b x a x ≠==且关于对称,则=T (7)若)(x f 的图象关于)(),0,(b a b x a ≠=且关于对称,则=T (8)若)(x f 的图象关于))(0,(),0,(b a b a ≠且关于对称,则=T例题1.已知函数)(x f 满足R x x f x f ∈-=),4()(,且)(x f 在2>x 时为增函数,记)53(f a =,)56(f b =,)4(f c =,则c b a ,,之间的大小关系为2.若函数)(x f 在其定义域内满足)2()(x f x f -=,方程0)(=x f 有五个实数根,则其和为 。
高一数学补充讲义6:函数的对称性一、基本结论:(一)单个函数本身具有的对称性:已知函数()y f x =,1、轴对称(1)若()()f x f x =-,则()f x 的图象关于0x =(y 轴)对称;(2)若(1)(1)f x f x +=-,则()f x 的图象关于直线1x =轴对称;(3)若()()f a x f a x +=-,则()f x 的图象关于直线x a =轴对称;(4)若()()f a x f b x +=-,则()f x 的图象关于直线2a b x +=轴对称;2、中心对称(5)若()()f x f x =--,则()f x 的图象关于点(0,0)对称;(6)若(1+)(1)f x f x =--,则()f x 的图象关于点(1,0)对称;(7)若()()f a x f a x +=--,则()f x 的图象关于点(,0)a 对称;(8)若()()2f a x f a x b ++-=,即()2()f a x b f a x +=--,则()f x 的图象关于点(,)a b 对称;对称性的证明例题:(1)求证:2()(1)f x x =-关于1x =对称;(2)求证:3()(1)2f x x =-+关于点(1,2)对称;(二)两个函数间的对称性:已知函数()y f x =,1、轴对称(1)函数()y f x =与函数()y f x =-关于直线0x =(y 轴)对称;(2)函数()y f x =与函数()y f x =-关于直线0y =(x 轴)对称;(3)函数(1)y f x =+与函数(1)y f x =-关于直线0x =(y 轴)对称;(4)函数()y f a x =+与函数()y f a x =-关于直线0x =(y 轴)对称;(5)函数()y f a x =+与函数()y f b x =-关于直线2b a x -=对称; (6)函数()y f x =与函数1()y fx -=关于直线y x =对称;(其中1()y f x -=为函数()y f x =的反函数)。
函数的对称性与周期性补充高一数学知识点——函数的对称性与周期性一、对称性(轴对称、中心对称)函数的对称性是指函数自身具有的对称性,可以分为轴对称和中心对称两种类型。
命题1:若函数y=f(x)对定义域中任意x均有f(a+x)=f(b-x),则函数y=f(x)的图象关于直线x=(a+b)/2对称。
特别地,当f(x) = f(-x)时,函数y=f(x)的图象关于y轴对称;当f(a+x) = f(a-x)时,函数y=f(x)的图象关于直线x=a对称。
命题2:若函数y=f(x)对定义域中任意x均有f(x+a)+f(b-x)=c,则函数y=f(x)的图象关于点(a+b/c,0)成中心对称图形。
特别地,当f(x) + f(-x) = 0时,函数y=f(x)的图象关于原点对称;当f(x) + f(2a-x) = 2b时,函数y=f(x)的图象关于点(a,b)成中心对称图形。
二、周期性1.定义:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),则称T为这个函数的一个周期。
2.如果函数f(x)是R上的奇函数,且最小正周期为T,那么f(x)=f(-x)。
关于函数的周期性的几个重要性质:1)如果y=f(x)是R上的周期函数,且一个周期为T,那么f(x±nT)=f(x)(n∈Z)。
2)如果f(x+a)=f(x-a),则f(x)的周期T=2a;如果f(x+a)=f(x-a),则f(x)的周期T=2a/T。
三、例题讲解例1]若f(x+a)=f(x)-f(x-a),则f(x)的周期T=6a,请推导。
例2]设f(x)是定义在R上的奇函数,且f(x+2)=-f(x),当-1≤x≤1时,f(x)=x,则f(7.5)=-5.5.例3]已知f(x)是定义在R上的偶函数,并且f(x+2)=-f(x),当2≤x≤3时,f(x)=x,则f(105.5)=103.5.例4]设函数y=f(x)的定义域为R,且满足f(x+1)=f(1-x),则y=f(x)图象关于直线x=1/2对称,y=f(x+1)的图象关于y轴对称。
图像平移、对称翻折变换(时间:40分钟出题人:金伟审题人:)一、单选题(本大题共7小题,共35.0分。
在每小题列出的选项中,选出符合题目的一项)1.将二次函数y=−12x2向左平移1个单位,再向下平移1个单位,得到的图像的解析式为( )A. y=−12(x+1)2−1 B. y=−12(x−1)2+1C. y=−12(x+1)2+1 D. y=−12(x−1)2−12.函数y=x|x|的图像大致是( )A. B.C. D.3.函数f(x)=x2−2|x|的图像是( )A. B.C. D.4.已知定义在区间(0,2)上的函数y=f(x)的图像如图所示.则y=−f(2−x)的图像为( )A.B.C.D.5.函数f(x)=|x+1|+1的图像是( )A. B.C. D.6. 把函数y =−1x 的图象向左平移1个单位再向上平移1个单位后,所得函数的图像应为( )A. B.C. D.7. 在平面直角坐标系中,先将抛物线y =x 2+2x −3关于原点作中心对称变换,再将所得的抛物线关于y 轴作轴对称变换,那么经过两次变换后所得的新抛物线的解析式为( )A. y =−x 2+2x −3B. y =−x 2+2x +3C. y =−x 2−2x +3D. y =x 2+2x +3二、多选题(本大题共1小题,共5.0分。
在每小题有多项符合题目要求) 8. 下列关于函数f(x)=1|x|+1的叙述正确的是( )A. f(x)的定义域为{x|x ≠0},值域为{y|y ≥1}B. f(x)的图象关于y 轴对称C. 当x ∈[−1,0)时,f(x)有最小值2,但没有最大值D. 函数g(x)=f(x)−x 2+1有2个零点第II 卷(非选择题)三、填空题(本大题共2小题,共10.0分)9. 要得到函数y =f(−2x)的图像,只需将函数y =f(−2x +4)的图像向 平移 个单位.10. 已知y =f(x)的图像如图①,则y =f(−x)的图像是 ;y =−f(x)的图像是 ;y =f(|x|)的图像是 ;y =|f(x)|的图像是 .四、解答题(本大题共3小题,共36.0分。
高中数学函数的对称性专题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 已知函数f(x)=x2−2x+m,若f(x1)=f(x2)(x1≠x2),则f(x1+x22)=()A.1B.2C.m−1D.m2. 在同一平面直角坐标系中,函数f(x)=lg(x+1)的图象与函数g(x)=lg(−x+1)的图象关于( )A.原点对称B.x轴对称C.直线y=x对称D.y轴对称3. 下列给出函数y=f(x)的部分对应值,则f(f(8))等于()A.πB.4C.8D.04. 已知幂函数y=f(x),f(8)=2,则y=f(x)一定经过的点是( )A.(2, 1)B.(2, 4)C.(4, 2)D.(0, 1)5. 已知函数f(x+1)=3x+2,则f(x)的解析式是( )A.3x+2B.3x+1C.3x−1D.3x+46. 若函数f(x)=x2+e x−12(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.(−∞,√e)B.√e ) C.√e√e) D.(−√e,√e)7. 定义在上的偶函数,其图像关于点对称,且当时,,则( )A. B. C. D.8. 已知函数f (x )=ln (x −2)+ln (4−x ),则( ) A.f (x )的图象关于直线x =3对称 B.f (x )的图象关于点(3,0)对称 C.f (x )在(2,4)上单调递增 D.f (x )在(2,4)上单调递减9. 函数f (x )=x 3−2021x +1图象的对称中心为( ) A.(0,0) B.(1,0) C.(0,1) D.(1,1)10. 已知函数f (x )=11+ex ,若正实数m ,n 满足f (m −1)=1−f (n ),则1m+4n的最小值为( ) A.7 B.9 C.3+2√2D.8911. 函数f (x )满足f (x )=f (2−x ),x ∈R ,且当x ≥1时,f (x )=lg x ,则有( ) A.f (13)<f (2)<f (12)B.f (12)<f (2)<f (13)C.f (12)<f (13)<f (2) D.f (2)<f (12)<f (13)12. 已知函数f (x )={log a x,x >0,|x +3|,−4≤x <0,(a >0且a ≠1).若函数f (x )的图象上有且只有两个点关于原点对称,则a 的取值范围是( ) A.(0,14) B.(0,14)∪(1,+∞) C.(14,1)∪(1,+∞) D.(0,1)∪(1,4)13. 设函数f(x)=(x −3)3+x −1,{a n }是公差不为0的等差数列,f(a 1)+f(a 2)+⋯+f(a 7)=14,则a 1+a 2+⋯+a 7=( ) A.0 B.7 C.14 D.2114. 已知定义域为R 的函数f (x )在[2,+∞)单调递减,且f (4−x )+f (x )=0,则使得不等式f (x 2+x )+f (x +1)<0成立的实数x 的取值范围是( )A.(−3,1)B.(−∞,−1)∪(3,+∞)C.(−∞,−3)∪(1,+∞)D.(−∞,−1)∪(−1,+∞)15. 已知函数f(x)=x2+e x−1(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是( )A.(−∞,1]B.(−∞,√e)C.(−∞,1)D.(1,√e)16. 函数f(x)=x+1x图象的对称中心为________.17. 若偶函数y=f(x)(满足f(1+x)=f(1−x),且当时,,则函数g(x)=f(x)−的零点个数为________个.18. 设y=f(x)是定义域为R的偶函数,且它的图象关于点(2, 0)对称,若当x∈(0, 2)时,f(x)=x2,则f(19)=________19. 已知函数对于都有,且周期为2,当时,,则________________.20. 已知函数f(x)满足f(x)+f(−x)=2,g(x)=1x+1,y=f(x)与y=g(x)交于点(x1,y1),(x2,y2),则y1+y2=________.21. 已知定义在R上的函数f(x)满足f(x)=−f(2−x),当x≥1时,f(x)=log2x,则不等式f(x)≤2的解集为________.22. 若函数f(x)=(1−x2)(x2+ax+b)的图象关于直线x=−2对称,则f′(x)=________.23. 已知f(x)是定义在R上的奇函数,当x>0时,f(x)={2|x−1|−1,0<x≤2, 12f(x−2),x>2.有下列结论:①函数f(x)在(−6,−5)上单调递增;②函数f(x)的图象与直线y=x有且仅有2个不同的交点;③若关于x的方程[f(x)]2−(a+1)f(x)+a=0(a∈R)恰有4个不相等的实数根,则这4个实数根之和为8;④记函数f(x)在[2k−1,2k](k∈N∗)上的最大值为a k,则数列{a n}的前7项和为12764.其中所有正确结论的编号是________.24. 设函数的图象与的图象关于直线对称,且,求a的值.25. 已知幂函数f(x)=x3m−9(m∈N∗)的图象关于y轴对称,且在(0, +∞)上是减函数,求满足(a+1)−m<(3−2a)−m的实数a的取值范围.26. 已知函数f(x)=2x+2−x.(1)求方程f(x)=52的根;(2)求证:f(x)在[0,+∞)上是增函数;(3)若对于任意x∈[0,+∞),不等式f(2x)≥f(x)−m恒成立,求实数m的最小值.27. 已知函数f(x)=x2−2ax+1满足f(x)=f(2−x).(1)求a的值;(2)若不等式f(2x)4x≥m对任意的x∈[1, +∞)恒成立,求实数m的取值范围;(3)若函数g(x)=f(|log2x|)−k(|log2x|−1)有4个零点,求实数k的取值范围.28. 已知函数f(x)为偶函数,g(x)为奇函数,且f(x)−g(x)=1e x.(1)求函数f(x)和g(x)的解析式;(2)若f(2x)>ag(x)在x∈(1,+∞)上恒成立,求实数a的取值范围;(3)记H(x)=g(x+1)+1,若a,b∈R,且a+b=1,求H(−4+a)+H(b+1)的值.f(x+1)参考答案与试题解析高中数学函数的对称性专题含答案一、选择题(本题共计 15 小题,每题 3 分,共计45分)1.【答案】C【考点】函数的对称性【解析】先求出二次函数的对称轴方程,由条件可得x1+x2=2×1=2,然后代入求值即可. 【解答】解:对于二次函数f(x)=x2−2x+m,其对称轴方程是x=1,若f(x1)=f(x2)(x1≠x2),则x1+x2=2×1=2,故f(x1+x22)=f(22)=m−1.故选C.2.【答案】D【考点】函数的对称性函数的图象变换【解析】易知g(x)=f(−x),由f(−x)与f(x)的图象间的关系可得g(x)与f(x)的图象关系.【解答】解:f(−x)=lg(−x+1)=g(x),因为f(−x)与f(x)的图象关于y轴对称,所以f(x)与g(x)的图象关于y轴对称.故选D.3.【答案】A【考点】函数的求值函数的对称性函数的概念及其构成要素【解析】先求出f(8)=,从而f(8]=t(1),由此能求出结果.【解答】f(θ)=1,f(1)=π,∴ Mf(8)=f(1)=π故选:A.4.【答案】C【考点】幂函数的概念、解析式、定义域、值域抽象函数及其应用函数的对称性【解析】试题分析:由已知得8a=2√2,解得a的值,由此求出f(x)的表达式,得到结论.解:幂函数y=f(x)=x8的图象经过点(8,2√2)∵8a=2√2,解得a=12∴(x)=√x将(4,2)代入f(x),满足方程,故选:c.【解答】此题暂无解答5.【答案】C【考点】利用导数研究函数的单调性函数解析式的求解及常用方法函数的对称性【解析】试题分析:设t=x+1x=t−1f(t)=3(t−1)+2=3t−1【解答】此题暂无解答6.【答案】A【考点】已知函数的单调性求参数问题函数的对称性【解析】由题意可得e x0−12−ln(−x0+a)=0有负根,函数ℎ(x)=e x−12−ln(−x+a)为增函数,由此能求出a的取值范围.【解答】解:由题意可得:存在x0∈(−∞, 0),满足x02+e x0−12=(−x0)2+ln(−x0+a),即e x0−12−ln(−x0+a)=0有负根,∵当x趋近于负无穷大时,e x0−12−ln(−x0+a)也趋近于负无穷大,且函数ℎ(x)=e x −12−ln (−x +a)为增函数,∴ ℎ(0)=e 0−12−ln a >0, ∴ ln a <ln √e , ∴ a <√e ,∴ a 的取值范围是(−∞, √e). 故选A . 7.【答案】 D【考点】函数奇偶性的判断 函数的周期性 函数的对称性 【解析】由偶函数y =f (x ),其图像关于点(12,0)对称,可得f (12+x)+f (12−x)=0,进而可推出f (x )最小正周期为2,所以f (π)=f (π−4)=f (4−π),代入题中所给解析式即可求出结果. 【解答】因为y =f (x )图像关于点(12,0)对称,所以f (12+x)+f (12−x)=0,所以f (1+x )+f (−x )=0,又y =f (x )为偶函数,所以f (−x )=−f (x ),所以f (x +2)=−f (1+x )=f (x ),所以函数f (x )最小正周期为2,所以f (π)=f (π−4)=f (4−π)=π−4+12=π−728. 【答案】 A【考点】复合函数的单调性 函数的对称性【解析】求出函数的定义域,利用对称性进行判断即可. 【解答】解:要使函数有意义,则{x −2>0,4−x >0,解得2<x <4,则函数的定义域为(2,4),f (x +3)=ln (x +1)+ln (1−x ), f (3−x )=ln (1−x )+ln (1+x ), 则f (x +3)=f (3−x ),即函数关于x =3对称,故A 正确,B 错误,∵函数关于x=3对称,∴函数在定义域(2,4)上不具备单调性,故CD错误.故选A.9.【答案】C【考点】函数的对称性【解析】根据函数对称性的性质建立方程进行求解即可.【解答】解:设对称中心的坐标为(a,b),则有2b=f(a+x)+f(a−x)对任意x均成立,代入函数解析式得,2b=(a+x)3−2021(a+x)+1+(a−x)3−2021(a−x)+1对任意x均成立,解得a=0,b=1,即对称中为(0,1).故选C.10.【答案】B【考点】基本不等式在最值问题中的应用函数的对称性【解析】无【解答】解:因为f(x)=11+e x,所以f(−x)=11+e−x,所以f(x)+f(−x)=1.由于函数f(x)=11+e x在定义域上单调递减,正实数m,n满足f(m−1)+f(n)=1,故1−m=n,所以m+n=1,所以1m +4n=(m+n)(1m+4n)=5+nm +4mn≥5+2√4=9(当且仅当2m=n=23时,等号成立).故选B.11.【答案】C【考点】对数函数的单调性与特殊点函数的对称性【解析】【解答】解:由f (x )=f (2−x ).得f (x )的图象关于直线x =1对称,又当x ≥1时,f (x )=lg x . 故函数f (x )的大致图象如图所示.则有f (12)<f (13)<f (0)=f (2).故选C .12.【答案】 C【考点】分段函数的应用 函数的对称性【解析】由题意,a >1时,显然成立;0<a <1时,f (x )=log a x ,关于原点的对称函数为f (x )=−log a (−x )则log a 4<−1,即可得到结论. 【解答】解:由题意,a >1时,显然成立, 0<a <1时,f (x )=log a x 关于原点的对称函数为: f (x )=−log a (−x ),则log a 4<−1, 解得,14<a <1.综上所述,a 的取值范围是(14,1)∪(1,+∞) . 故选C . 13. 【答案】 D【考点】 函数的对称性 等差数列的性质 【解析】此题暂无解析【解答】解:因为f(x)=(x−3)3+x−1,所以f(x)−2=(x−3)3+x−3,令g(x)=f(x)−2,所以g(x)关于(3,0)对称,因为f(a1)+f(a2)+⋯+f(a7)=14,所以f(a1)−2+f(a2)−2+⋯+f(a7)−2=0,所以g(a1)+g(a2)+⋯+g(a7)=0,所以g(4)为g(x)与x轴的交点,因为g(x)关于(3,0)对称,所以a4=3,所以a1+a2+⋯+a7=7a4=21.故选D.14.【答案】C【考点】奇偶性与单调性的综合函数的对称性【解析】由题意,f(x)关于(2,0)对称,f(2)=0,当x>2时,函数f(x)单调递减,则函数f(x)<0,x<2时,函数f(x)单调递减,函数f(x)>0,由题意设x1<x2,则由题意,x1−2<0且x2−2>0,|x1−2|>|x2−2|则f(x1)>0f(x2)<0,且|f(x1)|>|f(x2)|,可将f(x1)+f(x2)小于0等价转化解之可得结果.【解答】解:定义在R上的函数f(x),满足f(−x)=−f(x+4),则f(x)关于(2,0)对称,令x=−2,则f(2)=−f(2),所以f(2)=0,当x>2时,函数f(x)单调递减,所以x>2时,函数f(x)<0,当x<2时,函数f(x)单调递减,所以x<2时,函数f(x)>0,所以函数f(x)在R上单调递减,根据f(x+1)=−f(3−x),所以f(x2+x)<f(3−x),所以x2+x>3−x,解得x>1或x<−3.故选C.15.【答案】C【考点】函数的图象变换函数的对称性【解析】函数g(x)关于y轴对称的函数为y=x2+ln(−x+a),因为函数f(x)=x2+e x−1,x<0与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,函数f(x)=x2+e x−1,x<0与y=x2+ln(−x+a)有交点,化为函数y=e x−1与y=ln(−x+a)在x<0时图象有交点,数形结合法求解即可.【解答】解:设(x,y)是函数g(x)关于y轴对称的图象上的点,则(−x,y)在函数g(x)的图象上,将(−x,y)代入g(x)=x2+ln(x+a),可得y=x2+ln(−x+a),因为函数f(x)=x2+e x−1(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,所以函数f(x)=x2+e x−1(x<0)与y=x2+ln(−x+a)有交点,即x2+e x−1=x2+ln(−x+a),x<0有解,即e x−1=ln(−x+a),x<0有解,作函数y=e x−1与y=ln(−x+a)在x<0时的图象,临界值在x=0处取到(虚取),此时a=1,要使函数y=e x−1与y=ln(−x+a)在x<0时有交点,则a<1.故选C.二、填空题(本题共计 8 小题,每题 3 分,共计24分)16.【答案】(0, 1)【考点】函数的对称性【解析】利用方式函数的性质进行求解即可.【解答】解:f(x)=x+1x =1+1x,则函数f(x)的对称中心为(0, 1),故答案为:(0, 1)17.【答案】10【考点】函数的周期性函数的对称性【解析】运用函数的对称性和奇偶性,确定函数y=f(x)的周期,构造函数y=f(x),ℎ(x)= |lg x|,则函数lg(x)=f(x)−|lg x|的零点问题转化为图象的交点问题,结合图象,即可得到结论.偶函数y=f(x)满足f(1+x)=f(1−x)即函数M(x)关于x=对称,即有f(x+2)=f(−x)=f(x)则函数y =f (x )的周期为2,构造函数y =f (x ),ℎ(x )=lg x则函数lg (x )=f (x )−lg x 的零点问题转化为图象的交点问题,画出函数图象,如图,由于f (x )的最大值1,所以x >10时,图象没有交点,在(0,1)上有一个交点,(1,3),(3,5),(5,7),(7,9)上各有两个交点,在(9,10)上有一个交点,故共有10个交点,即函数零点的个数为10.故答案为10.【解答】此题暂无解答18.【答案】∼1.【考点】函数的对称性复合函数的单调性【解析】根据题意,由函数的奇偶性与对称性分析可得f (x +8)=f (x ),即函数f (x )是周期为8的周期函数,据此可得f (19)=f (3+2×8)=f (3)=−f (−1)=−f (1),再由函数的解析式计算即可.【解答】根据题意,y =f (x )是定义域为R 的偶函数,则f (−x )=f (x )又由y =f (x )得图象关于点(2,0)对称,则f (−x )+f (x +4)=0所以f (x +4)=−f (x ),即函数y =f (x )是周期为8的周期函数,所以f (19)=f (3+2×8)=f (3)=−f (−1)=−f (1)又当x ∈(0,2)时,f (x )=x 2,则f (1)=1所以f (19)=−f (1)=−1故答案为:—1.19.【答案】14【考点】函数的周期性函数的对称性【解析】利用f (4−x )=f (x ),且周期为2,可得f (−x )=f (x ),得f (52)=f (−52)【解答】f (4−x )=f (x ),且周期为2,f (−x )=f (x ),又当x ∈[−3,−2]时,f (x )=(x +2)2f (52)=f (−52)=(−52+2)2=14故答案为:1420.【答案】2【考点】函数的对称性【解析】无【解答】解:因为f(x)+f(−x)=2,所以y=f(x)关于点(0,1)对称,+1也关于点(0,1)对称,y=g(x)=1x则交点关于(0,1)对称,∴y1+y2=2.故答案为:2.21.【答案】(−∞,4]【考点】函数的对称性函数的图象【解析】利用函数的图象和函数的对称性解不等式即可. 【解答】解∵ f(x)=−f(2−x),∴ f(x)+f(2−x)=0,∴ f(x+1)+f(1−x)=0,∴ f(x)关于点(1,0)对称,∵ x≥1时,y=logx,2由对称性作出f(x)在R上的图象,令f(x)=2,则log2x=2,解得x=4,故由图像可知f(x)≤2时,x≤4,故f(x)≤2解集为(−∞,4].故答案为:(−∞,4].22.【答案】−4x 3−24x 2−28x +8【考点】函数的对称性导数的运算【解析】【解答】解:∵ 函数f (x )=(1−x 2)(x 2+ax +b )的图象关于直线x =−2对称,∴ f (−1)=f (−3)=0,且f (1)=f (−5)=0,即[1−(−3)2][(−3)2+a ⋅(−3)+b ]=0,且[1−(−5)2][(−5)2+a ⋅(−5)+b ]=0,整理得{9−3a +b =0,25−5a +b =0,解得{a =8,b =15,因此,f (x )=(1−x 2)(x 2+8x +15)=−x 4−8x 3−14x 2+8x +15,求导得f ′(x )=−4x 3−24x 2−28x +8.故答案为:−4x 3−24x 2−28x +8.23.【答案】①④【考点】奇偶性与单调性的综合函数的对称性根的存在性及根的个数判断等比数列的前n 项和【解析】此题暂无解析【解答】解:①由题得,当x >0时,f(x)在(2k −1,2k](k ∈N ∗)上单调递增,又f(x)是定义在R 上的奇函数,当k =3时,f(x)在(5,6)上单调递增,所以f(x)在(−6,−5)上单调递增,故①正确;②作出函数f(x)的图象,如图,由图知f(x)的图象与y =x 有三个不同的交点,故②错误;③[f (x )]2−(a +1)f (x )+a =0(a ∈R ),整理得[f(x)−a][f(x)−1]=0,设方程的四个跟为x1,x2,x3,x4.当f(x)=1时,有唯一解x1=2,所以f(x)=a(a≠1)有三个不相等的实数根,由图象可知,当a=±12时,方程f(x)=a有三个不相等的实数根,当a=12时,x2+x3=2×1=2,x4=4,此时x1+x2+x3+x4=8当a=−12时,x2+x3=2×(−1)=−2,,x4=−4,此时x1+x2+x3+x4=−4,故③错误;④由函数的单调性可知,f(x)在[2k−1,2k](k∈N∗)上的最大值a k=f(2k)(k∈N∗),所以数列{a n}的通项公式为a n=12n−1,则数列{a n}的前7项和为1−1 271−12=2−126=12764,故④正确.故答案为:①④.三、解答题(本题共计 5 小题,每题 10 分,共计50分)24.【答案】2【考点】函数的对称性【解析】设点(x,y)是y=f(x)的图像上任一点,则点(−y,−x)必在y=2x+1的图象上,根据对称性先求出f(x)的解析式,再代入解析式即可求出答案.【解答】解:设点(x,y)是y=f(x)的图像上任一点,则点(−y,−x)必在y=2x+1的图象上,−x=2−1++y=a−log2(−x),即f(x)=a−log2(−x)f(−2)+f(−4)=(a−log22)+(a−log24)=a−1+a−2=2a−3=1a=225.【答案】解:∵幂函数f(x)=x3m−9(m∈N∗)在(0, +∞)上是减函数,∴3m−9<0,解得m<3,∵m∈N∗,∴m=1或m=2,∵函数的图象关于y轴对称,∴3m−9是偶数,∴m=1,∵(a+1)−m<(3−2a)−m,∴(a+1)−1<(3−2a)−1,∴a+1>3−2a>0或0>a+1>3−2a或a+1<0<3−2a,解得23<a<32.∴实数a的取值范围是(23, 32 ).【考点】函数的对称性其他不等式的解法幂函数的单调性、奇偶性及其应用幂函数的性质【解析】由幂函数的单调性和奇偶性结合已知条件求出m=1,从而得到(a+1)−1<(3−2a)−1,由此能求出实数a的取值范围.【解答】解:∵幂函数f(x)=x3m−9(m∈N∗)在(0, +∞)上是减函数,∴3m−9<0,解得m<3,∵m∈N∗,∴m=1或m=2,∵函数的图象关于y轴对称,∴3m−9是偶数,∴m=1,∵(a+1)−m<(3−2a)−m,∴(a+1)−1<(3−2a)−1,∴a+1>3−2a>0或0>a+1>3−2a或a+1<0<3−2a,解得23<a<32.∴实数a的取值范围是(23, 32 ).26.【答案】解:(1)∵f(x)=2x+12x,∴当2x+12x =52时,解得x=1或x=−1,∴f(x)=52的根为x=1或x=−1.(2)证明:任取x1,x2∈[0,+∞),且x1>x2,则f(x1)−f(x2)=22x1+12x1−22x2+12x2=(2x1−2x2)(2x1+x2−1)2x1+x2.∵x1>x2>0,则2x1>2x2,则2x1+x2>1,∴ f(x1)−f(x2)>0,即f(x1)>f(x2),∴ 证得f(x)在[0,+∞)上是增函数.(3)由题意得f(2x)−f(x)=122x +22x−2x−12x,令2x+12x=t(t≥2),则ℎ(t)=t2−2−t,∴对称轴为t=12,∴ℎ(t)min=ℎ(2)=0,则−m≤0,∴m≥0,综上所述,m的最小值为0. 【考点】函数的求值函数单调性的判断与证明函数恒成立问题函数的对称性【解析】直接求解方程即可.利用函数单调性的定义证明即可.通过构造二次函数,结合函数最值求解即可.【解答】解:(1)∵ f (x )=2x +12x , ∴ 当 2x +12x =52 时,解得 x =1 或x =−1,∴ f (x )=52的根为 x =1 或x =−1. (2)证明:任取x 1,x 2∈[0,+∞) ,且 x 1>x 2,则f (x 1)−f (x 2)=22x 1+12x 1−22x 2+12x 2 =(2x 1−2x 2)(2x 1+x 2−1)2x 1+x 2.∵ x 1>x 2>0,则 2x 1>2x 2 ,则 2x 1+x 2>1,∴ f (x 1)−f (x 2)>0 ,即 f (x 1)>f (x 2),∴ 证得 f (x ) 在[0,+∞)上是增函数.(3)由题意得 f (2x )−f (x )=122x +22x −2x −12x ,令 2x +12x =t (t ≥2),则ℎ(t )=t 2−2−t ,∴ 对称轴为 t =12 ,∴ ℎ(t )min =ℎ(2)=0,则 −m ≤0 ,∴ m ≥0,综上所述 ,m 的最小值为0.27.【答案】解:(1)∵ f(x)=f(2−x),∴ f(x)的图象关于x =1对称,∴ a =1.(2)令2x =t ,则原不等式可化为m ≤(1−1t )2(t ≥2)恒成立,∴ m ≤(1−1t )min 2=14,∴ m 的取值范围是(−∞,14]. (3)令b =|log 2x|,则y =g(x)可化为y =b 2−(k +2)b +k +1=(b −1)(b −k −1),由(b −1)(b −k −1)=0可得b 1=1或b 2=k +1,∵ y =g(x)有4个零点,b 1=|log 2x|有2个零点,∴ b 2=|log 2x|有2个零点,∴ b 2=k +1>0,∴ k >−1.【考点】函数的对称性函数恒成立问题函数的零点与方程根的关系【解析】(1)由题意可得对称轴为x =1,计算可得a 的值;(2)原不等式可化为m ≤(1−1t )2(t ≥2)恒成立,由函数的性质可得最小值,即可得到所求范围;(3)令t =|log 2x|,则y =g(x)可化为y =t 2−(k +2)t +k +1=(t −1)(t −k −1),令y =0,解方程,再令其根大于0,可得所求范围.【解答】解:(1)∵ f(x)=f(2−x),∴ f(x)的图象关于x =1对称,∴ a =1.(2)令2x =t ,则原不等式可化为m ≤(1−1t )2(t ≥2)恒成立,∴ m ≤(1−1t )min 2=14,∴ m 的取值范围是(−∞,14]. (3)令b =|log 2x|,则y =g(x)可化为y =b 2−(k +2)b +k +1=(b −1)(b −k −1),由(b −1)(b −k −1)=0可得b 1=1或b 2=k +1,∵ y =g(x)有4个零点,b 1=|log 2x|有2个零点,∴ b 2=|log 2x|有2个零点,∴ b 2=k +1>0,∴ k >−1.28.【答案】解:(1)由题知:函数f (x )为偶函数,函数g (x )为奇函数,且f (x )−g (x )=e −x ①,则f(−x)−g(−x)=e −(−x)=e x ,又由f (−x )=f (x ),g (−x )=−g (x ),故f (x )+g (x )=e x ②,则由①②式,解得f (x )=e x +e −x 2,g (x )=e x −e −x 2.(2)由f (2x )>ag (x )在(1,+∞)上恒成立,即e 2x +e −2x 2>a ⋅e x −e −x 2在(1,+∞)上恒成立,即e 2x −2⋅e x ⋅e −x +e −2x +2>a (e x −e −x )在(1,+∞)上恒成立,则(e x −e −x )2−a (e x −e −x )+2>0在(1,+∞)上恒成立.令t =e x −e −x ,易知t =e x −e −x 在x ∈(1,+∞)上单调递增,故t ∈(e −1e ,+∞), 即t 2−at +2>0在(e −1e ,+∞)上恒成立.由at <t 2+2,即a <t +2t ,且y =t +2t 在[√2,+∞)上单调递增,e −1e >√2, 得y =t +2t 在(e −1e ,+∞)上的最小值为e 2−1e +2e e 2−1=e 4+1e (e 2−1), 故a ≤e 4+1e (e 2−1). (3)由H (x )=g (x+1)f (x+1)+1=e x+1−e −(x+1)e x+1+e −(x+1)+1 =2e x+1e x+1+e −(x+1).令G (x )=2e x e x +e −x ,则G (−x )=2e −x e −x +e x ,故G (x )+G (−x )=2(e x +e −x )e x +e −x =2,又由G (x +1)=H (x ),a +b =1,故H (−4+a )+H (b +1)=G (−3+a )+G (b +2)=G(−3+a)+G[(1−a)+2]=G (−3+a )+G (3−a )=2.【考点】函数奇偶性的性质函数解析式的求解及常用方法函数恒成立问题二次函数在闭区间上的最值函数的求值函数的对称性【解析】由题知:函数f (x )为偶函数,函数g (x )为奇函数,且f (x )−g (x )=e −x ①,则f(−x)−g(−x)=e −(−x)=e x ,又由f (−x )=f (x ),g (−x )=−g (x ),故f (x )+g (x )=e x ②,则由①②式,解得f (x )=e x +e −x 2,g (x )=e x −e −x 2. (2)由f (2x )>ag (x )在(1,+∞)上恒成立,即e 2x +e −2x 2>a e x −e −x 2在(1,+∞)上恒成立,即e 2x −2⋅e x ⋅e −x +e −2x +2>a (e x −e −x )在(1,+∞)上恒成立,则(e x −e −x )2−a (e x −e −x )+2>0在(1,+∞)上恒成立,令t =e x −e −x ,易知t =e x −e −x 在x ∈(1,+∞)上单调递增;解关于t 的二次函数求出a 的范围.(3)由H (x )=g (x+1)f (x+1)+1=e x+1−e −(x+1)e x+1+e −(x+1)=2e n+1e x+1+e −(x+1),令G (x )=2e x e x +e −x ,又由G (−x )=2e −xe −x +e x ,且G (−x )+G (x )=2(e x +e −x )e x +e −x =2,故G (x +1)=H (x ),a +b =1,故H (−4+a )+H (b +1)=G (−3+a )+G (b +2)=2.【解答】解:(1)由题知:函数f (x )为偶函数,函数g (x )为奇函数,且f (x )−g (x )=e −x ①, 则f(−x)−g(−x)=e −(−x)=e x ,又由f (−x )=f (x ),g (−x )=−g (x ),故f (x )+g (x )=e x ②,则由①②式,解得f (x )=e x +e −x 2,g (x )=e x −e −x 2.(2)由f (2x )>ag (x )在(1,+∞)上恒成立,即e 2x +e −2x 2>a ⋅e x −e −x 2在(1,+∞)上恒成立,即e 2x −2⋅e x ⋅e −x +e −2x +2>a (e x −e −x )在(1,+∞)上恒成立,则(e x −e −x )2−a (e x −e −x )+2>0在(1,+∞)上恒成立.令t =e x −e −x ,易知t =e x −e −x 在x ∈(1,+∞)上单调递增,故t ∈(e −1e ,+∞), 即t 2−at +2>0在(e −1e ,+∞)上恒成立. 由at <t 2+2,即a <t +2t ,且y =t +2t 在[√2,+∞)上单调递增,e −1e >√2, 得y =t +2t 在(e −1e ,+∞)上的最小值为e 2−1e +2e e 2−1=e 4+1e (e 2−1), 故a ≤e 4+1e (e 2−1). (3)由H (x )=g (x+1)f (x+1)+1=e x+1−e −(x+1)e x+1+e −(x+1)+1=2e x+1e x+1+e −(x+1).令G (x )=2e x e x +e −x ,则G (−x )=2e −x e −x +e x ,故G (x )+G (−x )=2(e x +e −x )e x +e −x =2,又由G (x +1)=H (x ),a +b =1,故H(−4+a)+H(b+1)=G(−3+a)+G(b+2) =G(−3+a)+G[(1−a)+2]=G(−3+a)+G(3−a)=2.。
1.2.8 二次函数的图象和性质——对称性1.偶函数:如果对一切使F(x)有定义的x,F(-x)也有定义,并且①成立,则称F(x)为偶函数.2.奇函数:如果对一切使F(x)有定义的x,F(-x)也有定义,并且②成立,则称F(x)为奇函数.3.二次函数图象的对称性函数二次函数y=ax2+bx+c(a≠0)a>0 a<0图象性质抛物线开口向上,并向上无限延伸抛物线开口向下,并向下无限延伸对称轴是③,顶点坐标是④对称轴是⑤,顶点坐标是⑥4.(1)当a>0时,f(x)=ax2+bx+c的图象、f(x)=0的根、f(x)>0(或<0)的解集可用下表表示: Δ=b2-4ac Δ>0Δ=0Δ<0f(x)=ax2+bx+c(a>0)的图象ax2+bx+c=0(a>0)的根有两个不等的实根x1,x2且x1<x2有两个相等的实根x1,x2且x1=x2没有实数根ax2+bx+c>0(a>0)的解集⑦⑧⑨ax2+bx+c<0(a>0)的解集⑩(2)当a<0时,若Δ<0,则图象总在x轴下方,二次函数的函数值恒为负;若Δ=0,则图象和x轴相切于点(x0,0),这里x=-b2a正好是方程ax2+bx+c=0的“相等”实根,图象除这一点外都在x轴下方;若Δ>0,则图象和x轴交于两点(x1,0)和(x2,0),这里x1<x2,且x1,x2是方程ax2+bx+c=0的两个不等实根,当x∈(x1,x2)时,图象在x轴上方,当x在[x1,x2]之外时,图象在x轴下方.一、函数奇偶性的判断1.(2014课标Ⅰ,3,5分,★☆☆)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数思路点拨利用函数奇偶性的定义进行判断.2.(2014广东深圳宝安期末,★★☆)已知函数f(x)=x-1x.(1)研究此函数的奇偶性;(2)证明f(x)在(0,+∞)上为增函数.二、二次函数在给定区间上的最值及应用3.(2014河北邯郸模拟,★☆☆)若f(x)=-x2+2ax+1-a在[0,1]上有最大值2,则a的取值集合是.4.(2010广东文,20,14分,★★☆)已知函数f(x)对任意实数x均有f(x)=kf(x+2),其中常数k为负数,且f(x)在区间[0,2]上有表达式f(x)=x(x-2).(1)求f(-1), f(2.5)的值;(2)写出f(x)在[-3,3]上的表达式,并讨论函数f(x)在[-3,3]上的单调性;(3)求出f(x)在[-3,3]上的最小值与最大值,并求出相应的自变量的取值.思路点拨根据已知区间上函数的解析式f(x)=x(x-2)和关系式f(x)=kf(x+2)进行转化,然后分情况进行讨论.5.(2014江西赣州期末,★☆☆)已知二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)当x∈[-1,1]时,函数y=f(x)的图象恒在函数y=2x+m的图象的上方,求实数m的取值范围.三、二次函数图象的对称轴及应用6.(2013天津模拟,★★☆)设函数g(x)=x2-2(x∈R), f(x)={g(x)+x+4,x<g(x),g(x)-x,x≥g(x),则f(x)的值域是( )A.[-94,0]∪(1,+∞)B.[0,+∞)C.[-94,+∞)D.[-94,0]∪(2,+∞)思路点拨本题考查分段函数及二次函数在给定区间上的值域.利用二次函数的图象,明确单调性是通法.注意分段函数的值域应分开求后取并集.7.(2013河北模拟,★★☆)已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1时,求函数的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.思路点拨 (1)根据二次函数在区间[-5,5]上的图象分析判断其取得最大值和最小值时自变量x 的取值;(2)只要对称轴与x 轴的交点的横坐标不在区间(-5,5)内即可.一、选择题1.若函数f(x)是R 上的奇函数,则下列关系式恒成立的是( ) A.f(x)-f(-x)≥0 B.f(x)-f(-x)≤0 C.f(x)·f(-x)≤0 D.f(x)·f(-x)≥02.下列函数:①f(x)=x 2-x;②f(x)=x 2-|x|;③f(x)=x 3-xx -1;④f(x)=5;⑤f(x)=|3x+2|-|3x-2|,其中具有奇偶性的为( )A.①③⑤B.②③④C.②④⑤D.③④⑤3.二次函数y=x 2+bx+c 的图象经过(1,0)与(2,5)两点,则这个二次函数的图象( ) A.过点(0,1) B.顶点为(1,-4) C.对称轴为x=-1D.与x 轴无交点4.设b>0,二次函数y=ax 2+bx+a 2-1的图象为下列之一:则a 的值为( ) A.1 B.-1C.-1-√52D.-1+√52二、填空题5.已知f(x)在R 上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x 2,则f(7)= .6.已知函数f(x)=ax 2+bx+3a+b 是偶函数,且定义域为[a-1,2a],则a= ,b= . 三、解答题7.已知f(x)是R 上的奇函数,且当x>0时,f(x)=-x 2+2x+2. (1)求f(x)的解析式;(2)画出f(x)的大致图象,并指出f(x)的单调区间.8.已知f(x)=x2+ax+3在[-1,1]上的最小值为-3,求a的值.一、选择题1.(2015浙江台州高一期末,★☆☆)已知函数f(x)=x2+bx+c,且f(2+x)=f(-x),则下列不等式中成立的是( )A.f(-4)<f(0)<f(4)B.f(0)<f(-4)<f(4)C.f(0)<f(4)<f(-4)D.f(4)<f(0)<f(-4)2.(2014重庆西南大学附中期中,★☆☆)若函数y=(x+1)(x-a)为偶函数,则a等于( )A.-2B.-1C.1D.23.(2014重庆西南大学附中期中,★☆☆)定义在R上的函数f(x)为偶函数,且f(3+x)=f(5-x),当x∈[-4,0]时,f(x)=x+2,则f(7)=( )A.0B.1C.2D.34.(2013重庆杨守坪中学期中,★☆☆)已知f(x)=x2+ax是偶函数,则当x∈[-1,2]时,f(x)的值域是( )A.[1,4]B.[0,4]C.[-4,4]D.[0,2]二、填空题5.(2013重庆江津五中期中,★☆☆)已知函数f(x)=x2+(a-1)x+2的图象关于x=1对称,则f(1)= .三、解答题6.(2015山西大学附中月考,★★☆)已知函数f(x)=3x2-6x-5.(1)设g(x)=f(x)-2x2+mx,其中m∈R,求g(x)在[1,3]上的最小值;(2)若对于任意的a∈[1,2],关于x的不等式f(x)≤x2-(2a+6)x+a+b在区间[1,3]上恒成立,求实数b的取值范围.7.(2014湖北孝感期中,★★☆)设f(x)是定义在R上的函数,且对任意实数x,有f(1-x)=x2-3x+3.(1)求函数f(x)的解析式;(2)若函数g(x)=f(x)-5x+1在[m,m+1]上的最小值为-2,求实数m的取值范围.8.(2013北京清华附中测试,★★☆)判断下列函数的奇偶性:(1)f(x)={x2+x(x<0), x2-x(x>0);(2)f(x)=2+2(3)f(x)=x2-|x-a|+2.9.(2013重庆南开中学期中,★★☆)已知函数f(x)=x2-2(a-1)x+3(a∈R).(1)讨论f(x)的奇偶性;(2)求f(x)在区间[-1,3]上的最小值.10.(2013重庆西南大学附中期中,★★★)已知二次函数f(x)=ax2+bx(a、b为常数且a≠0)满足条件:f(-x+5)=f(x-3),方程f(x)=x有两相等实根.求f(x)的解析式.知识清单①F(-x)=F(x) ②F(-x)=-F(x) ③x=-b2a ④(-b2a,4ac-b24a)⑤x=-b2a⑥(-b2a,4ac-b24a)⑦{x|x<x1,或x>x2} ⑧{x|x≠x1}⑨R⑩{x|x1<x<x2} ⌀⌀链接高考1.C 由题意可知 f(-x)=-f(x),g(-x)=g(x),对于选项A, f(-x)·g(-x)=-f(x)·g(x),所以f(x)g(x)是奇函数,故A项错误;对于选项B,|f(-x)|g(-x)=|-f(x)|g(x)=|f(x)|g(x),所以|f(x)|·g(x)是偶函数,故B项错误;对于选项C, f(-x)|g(-x)|=-f(x)|g(x)|,所以f(x)·|g(x)|是奇函数,故C项正确;对于选项D,|f(-x)g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,所以|f(x)g(x)|是偶函数,故D项错误,选C.2.解析(1)f(x)的定义域为(-∞,0)∪(0,+∞),且对定义域内任意x,有f(-x)=-x-1-x =-(x-1x)=-f(x),∴f(x)为奇函数.(2)证明:任取x1,x2∈(0,+∞)且x1<x2,则x1-x2<0,x1x2>0,∴1+1x1x2>0,f(x1)-f(x2)=(x1-1x1)-(x2-1x2)=(x1-x2)+(1x2-1x1)=(x1-x2)·(1+1x1x2)<0,∴f(x1)<f(x2),由增函数定义可知,f(x)在(0,+∞)上为增函数.3.答案{-1,2}解析f(x)=-(x-a)2+a2-a+1.(1)当a<0时, f(x)max=f(0)=2,得a=-1.(2)当0≤a≤1时, f(x)max =f(a)=2,解得a=1±√52∉[0,1],故该方程在[0,1]上无解.(3)当a>1时, f(x)max=f(1)=2,得a=2.综上,a=-1或a=2.4.解析(1)由已知得f(-1)=kf(1)=-k, f(0.5)=kf(2.5),∴f(2.5)=1k f(0.5)=1k(0.5-2)×0.5=-34k.(2)∵对任意实数x, f(x)=kf(x+2),∴f(x-2)=kf(x),∴f(x)=1kf(x-2), 当-2≤x<0时,0≤x+2<2, f(x)=kf(x+2)=kx(x+2);当-3≤x<-2时,-1≤x+2<0,f(x)=kf(x+2)=k2(x+2)·(x+4);当2<x≤3时,0<x-2≤1, f(x)=1k ·f(x-2)=1k(x-2)(x-4).故f(x)={k 2(x +2)(x +4), -3≤x <-2,kx (x +2),-2≤x <0,x (x -2),0≤x ≤2,1k(x -2)(x -4),2<x ≤3.∵k<0,∴由函数图象得f(x)在[-3,-1]与[1,3]上为增函数,在[-1,1]上为减函数. (3)由函数f(x)在[-3,3]上的单调性可知,f(x)在x=-3或x=1处取得最小值 f(-3)=-k 2或f(1)=-1,在x=-1或x=3处取得最大值f(-1)=-k 或 f(3)=-1k .故有①k<-1时, f(x)在x=-3处取得最小值f(-3)=-k 2,在x=-1处取得最大值f(-1)=-k.②k=-1时, f(x)在x=-3与x=1处取得最小值f(-3)=f(1)=-1,在x=-1与x=3处取得最大值f(-1)=f(3)=1. ③-1<k<0时, f(x)在x=1处取得最小值f(1)=-1,在x=3处取得最大值f(3)=-1k . 5.解析 (1)设f(x)=ax 2+bx+c(a≠0), 由f(0)=1可知c=1, 由f(x+1)-f(x)=2ax+a+b=2x,可知{2a =2,a +b =0,∴{a =1,b =-1,∴f(x)=x 2-x+1.(2)由题意可得f(x)>2x+m 在x∈[-1,1]上恒成立, 即x 2-x+1>2x+m 在x∈[-1,1]上恒成立, ∴m<(x 2-3x+1)min ,x∈[-1,1],而y=x 2-3x+1=(x -32)2-54在[-1,1]上递减,∴y min =-1, ∴m<-1.6.D ∵x<g(x),即x<x 2-2,(x-2)(x+1)>0,∴x∈(-∞,-1)∪(2,+∞), f(x)={x 2+x +2, x ∈(-∞,-1)⋃(2,+∞),x 2-x -2,x ∈[-1,2],={(x +12)2+74, x ∈(-∞,-1)⋃(2,+∞),(x -12)2-94,x ∈[-1,2].∴f(x)的值域为[-94,0]∪(2,+∞). 7.解析 (1)当a=-1时, f(x)=x 2-2x+2,图象的对称轴为x=1,故f(x)min =f(1)=1, 由f(x)的图象及性质得f(x)max =f(-5)=37, 所以f(x)max =37, f(x)min =1. (2)f(x)的图象的对称轴为x=-a, 当-a≤-5或-a≥5时, f(x)在[-5,5]上是单调函数, 所以a≥5或a≤-5.基础过关一、选择题1.C ∵f(x)是R 上的奇函数,∴f(-x)=-f(x),∴f(x)·f(-x)=f(x)·[-f(x)]=-[f(x)]2≤0.2.C 对于①,f(-1)=2,f(1)=0,∴f(-1)≠f(1),且f(-1)≠-f(1),∴f(x)是非奇非偶函数;对于②,定义域为R,且f(-x)=x 2-|x|=f(x),是偶函数;对于③,定义域为(-∞,1)∪(1,+∞),不关于原点对称,∴不具有奇偶性;④中函数是偶函数;对于⑤,定义域为R,且满足f(-x)=|-3x+2|-|-3x-2|=-(|3x+2|-|3x-2|)=-f(x),为奇函数,∴②④⑤具有奇偶性. 3.C 由已知得D 错误.∵y=x 2+bx+c 的图象经过(1,0)与(2,5), ∴{1+b +c =0,4+2b +c =5⇒{b =2,c =-3, ∴y=x 2+2x-3=(x+1)2-4,∴图象的对称轴为x=-1,顶点为(-1,-4).当x=0时,y=-3,即图象过点(0,-3)∴A,B 错误,C 正确. 4.B ∵b>0,∴x=-b2a ≠0,显然(1)(2)不是函数图象,从(3)(4)可知a 2-1=0,即a=±1.当a=1时,抛物线开口向上,x=-b2a <0,∴(4)不是函数图象.当a=-1时,抛物线开口向下,x=-b2a >0,故(3)为函数图象,且a=-1. 二、填空题 5.答案 -2解析 ∵f(x+4)=f(x),∴f(7)=f(3+4)=f(3)=f[4+(-1)]=f(-1). 又∵f(-x)=-f(x), ∴f(-1)=-f(1)=-2×12=-2, ∴f(7)=-2. 6.答案 13;0解析∵f(x)为偶函数,∴对定义域内的任意实数x都有f(-x)=f(x). ∴ax2-bx+3a+b=ax2+bx+3a+b恒成立.∴b=0.又f(x)的定义域为[a-1,2a],∴(a-1)+2a=0,∴a=13.三、解答题7.解析(1)设x<0,则-x>0,所以f(-x)=-(-x)2-2x+2=-x2-2x+2,又∵f(x)为奇函数,∴f(-x)=-f(x),且f(0)=0,∴f(x)=x2+2x-2,∴f(x)={x2+2x-2(x<0),0(x=0),-x2+2x+2(x>0).(2)先画出y=f(x)(x>0)的图象,利用奇函数的对称性可得到相应y=f(x)(x<0)的图象,其大致图象如图所示.由图可知,其增区间为[-1,0)和(0,1],减区间为(-∞,-1]和[1,+∞).8.解析当-a2>1,即a<-2时,f(x)min=f(1)=4+a=-3,∴a=-7.当-1≤-a2≤1,即-2≤a≤2时,f(x)min =f(-a2)=12-a24=-3,∴a=±2√6(舍去).当-a 2<-1,即a>2时,f(x)min =f(-1)=4-a=-3,∴a=7.综上可知,a=±7.三年模拟一、选择题1.C 由f(2+x)=f(-x)得f(x)的图象的对称轴为x=1,∴f(x)在(-∞,1]上单调递减,在(1,+∞)上单调递增.∵f(4)=f(-2),∴f(0)<f(4)=f(-2)<f(-4).2.C 令f(x)=(x+1)(x-a),由f(x)为偶函数知f(x)=f(-x),所以x 2+x-ax-a=x 2-x+ax-a,则a=1.3.B 由f(3+x)=f(5-x)得f(x)的图象关于直线x=4对称,所以f(7)=f(1).又因为f(x)为偶函数,所以f(7)=f(1)=f(-1)=-1+2=1.4.B 由f(x)=f(-x)得x 2+ax=(-x)2+a(-x),所以a=0,则f(x)=x 2,当x∈[-1,2]时,f(x)的值域为[0,4].二、填空题5.答案 1解析 由题意可知-a -12=1,则a=-1,所以f(x)=x 2-2x+2,则f(1)=1. 三、解答题6.解析 (1)g(x)=x 2+(m-6)x-5,①当-m -62<1,即m>4时,g(x)min =g(1)=m-10; ②当-m -62>3,即m<0时,g(x)min =g(3)=3m-14;③当1≤-m -62≤3,即0≤m≤4时,g(x)min =g (-m -62)=-m 2+12m -564.综上可得,g(x)min ={3m -14,m <0,-m 2+12m -564,0≤m ≤4,m -10,m >4.(2)由题意可知,只需b≥2x 2+2ax-a-5在x∈[1,3],a∈[1,2]上恒成立.设h(x)=2x 2+2ax-a-5,x∈[1,3],则只需b≥h(x)max ,x∈[1,3].∵1≤a≤2,∴-1≤-a 2<12,∴h(x)max =h(3)=5a+13,∴只需b≥5a+13在a∈[1,2]上恒成立,设φ(a)=5a+13,a∈[1,2],只需b≥φ(a)max ,∵φ(a)max =23,∴b≥23.7.解析 (1)令1-x=t,则x=1-t,由题意知f(t)=(1-t)2-3(1-t)+3=t 2+t+1. 所以f(x)=x 2+x+1.(2)g(x)=f(x)-5x+1=x 2-4x+2,g(x)的图象的对称轴为直线x=2.当m≥2时,g(x)在[m,m+1]上单调递增,所以g(x)min =g(m)=m 2-4m+2,则m 2-4m+2=-2,解得m=2,符合m≥2.当m<2≤m+1,即1≤m<2时,g(x)min =g(2)=22-4×2+2=-2.当m+1<2,即m<1时,g(x)在[m,m+1]上单调递减,所以g(x)min =g(m+1)=(m+1)2-4(m+1)+2,则(m+1)2-4(m+1)+2=-2,解得m=1,不符合m<1.综上所述,m 的取值范围是[1,2].8.解析 (1)显然函数定义域关于原点对称.当x<0时,-x>0,则f(-x)=(-x)2-(-x)=x 2+x=f(x);当x>0时,-x<0,则f(-x)=(-x)2+(-x)=x 2-x=f(x).∴对任意x∈(-∞,0)∪(0,+∞)都有f(-x)=f(x),故f(x)为偶函数.(2)由{3-x 2≥0,x 2-3≥0,得x=-√3或x=√3, ∴函数f(x)的定义域为{-√3,√3}.又∵对任意的x∈{-√3,√3},f(x)=0,∴f(-x)=f(x)=-f(x).∴f(x)既是奇函数又是偶函数.(3)函数f(x)的定义域是R.当a=0时,f(x)=f(-x),∴f(x)是偶函数;当a≠0时,f(a)=a 2+2,f(-a)=a 2-2|a|+2,f(a)≠f(-a),且f(a)+f(-a)=2(a 2-|a|+2)=2(|a |-12)2+72≠0,∴f(x)是非奇非偶函数. 9.解析 (1)当a=1时,f(-x)=f(x),f(x)为偶函数.当a≠1时,f(-x)≠f(x),且f(-x)≠-f(x),f(x)为非奇非偶函数.(2)f(x)图象的对称轴为直线x=a-1.当a-1≤-1,即a≤0时,f(x)在[-1,3]上单调递增,f(x)min=f(-1)=2a+2.当-1<a-1≤3,即0<a≤4时,f(x)min=f(a-1)=-a2+2a+2.当a-1>3,即a>4时,f(x)在[-1,3]上单调递减,f(x)min=f(3)=18-6a.综上,f(x)在区间[-1,3]上的最小值f(x)min ={2a+2,a≤0,-a2+2a+2,0<a≤4, 18-6a,a>4.10.解析∵f(-x+5)=f(x-3),∴f(x)的图象的对称轴为x=5-32=1, 又∵f(x)=x有两相等实根,∴ax2+(b-1)x=0有两相等实根.∴{-b2a=1,Δ=(b-1)2=0,∴{a=-12,b=1,∴f(x)=-12x2+x.。
高中函数对称性精选习题高中数学的函数部分是整个数学学科中的重点部分,而其中的对称性更是数学家们一直以来所研究的基础问题,因为对称性不仅在数学中有很强的应用性,而且在生物、物理结构等很多领域中都具有相当的重要性。
这篇文章将介绍一些高中函数对称性的精选习题,以帮助学生加深对该知识点的理解和掌握。
对称性习题1:画出 f(x) = x^3 的图像,然后画出他的零点对称的图像、 y 轴对称的图像、 x 轴对称的图像。
对称性是函数图像基本特征之一,在本题中可以通过将函数图像平移,并通过数学方法进行计算,得出它的零点对称、y轴对称和x轴对称的特点。
对称性习题2:函数 f(x) = (x-a)^2+b 和 g(x) = -f(x) + c 都具有对称性,请问a,b,c分别代表哪些对称特征?本题需要考虑三种对称性,即顶点对称、水平对称和垂直对称。
其中,a和b分别是关于顶点对称的坐标,而c则表示关于水平对称以及垂直对称的中轴线位置。
对称性习题3:函数 f(x) = sin(x) 具有什么对称性?你能画出它的图形吗?本题便是考察对函数图像的理解能力。
由于sin(x)是周期性函数,因此它在范围为2π的极端取值点上具有水平对称性,即f(x)= f(2π-x)。
除此之外,该函数还具有原点对称性,即f(x) = -f(-x),即可利用这两个特点绘制出它的详细图形。
对称性习题4:函数 f(x) = (x-1)(x-2)(x-3) 具有哪些对称性?在该函数中,通过计算它的一阶、二阶和三阶导数,可以得出它分别关于y轴、x=2和x=1.5处的对称性,即关于Y轴对称,对于x=2,(2.5-(1.5))(1.5-1) = 2 和 (2.5-(2.5))(2.5-1) = 1.25,所以这个点具有对称特性。
除此之外,该函数还具有奇偶性,即f(-x) = -f(x)。
对称性习题5:函数 f(x) = ln(x) 具有哪些对称性?你能画出它的图形吗?对于该函数,本题需要考虑的对称性有两种,一是y轴对称,二是零点对称。
高一数学函数的对称性习题
函数的对称性是数学中一个重要的概念,它能帮助我们理解函
数的性质和图像的特点。
本文将介绍一些高一数学中关于函数对称
性的题,并给出对应的解答。
1.函数的奇偶性
题 1.已知函数 f(x) 的定义域为实数集,且满足 f(-x) = -f(x),则
函数 f(x) 的奇偶性是什么?题 1.已知函数 f(x) 的定义域为实数集,
且满足 f(-x) = -f(x),则函数 f(x) 的奇偶性是什么?题 1.已知函数
f(x) 的定义域为实数集,且满足 f(-x) = -f(x),则函数 f(x) 的奇偶性
是什么?题 1.已知函数 f(x) 的定义域为实数集,且满足 f(-x) = -f(x),则函数 f(x) 的奇偶性是什么?
解答。
函数 f(x) 满足 f(-x) = -f(x),这意味着函数在自身的对称
轴上,y 值与相应的负 x 值处的 y 值相等但符号相反。
由此可知,
函数 f(x) 是奇函数。
解答。
函数 f(x) 满足 f(-x) = -f(x),这意味着函
数在自身的对称轴上,y 值与相应的负 x 值处的 y 值相等但符号相反。
由此可知,函数 f(x) 是奇函数。
解答。
函数 f(x) 满足 f(-x) = -
f(x),这意味着函数在自身的对称轴上,y 值与相应的负 x 值处的 y 值相等但符号相反。
由此可知,函数 f(x) 是奇函数。
解答。
函数
f(x) 满足 f(-x) = -f(x),这意味着函数在自身的对称轴上,y 值与相
应的负 x 值处的 y 值相等但符号相反。
由此可知,函数 f(x) 是奇函数。
2.函数图像的对称性
题 2.函数 f(x) 的图像关于 y 轴对称,并且经过点 (-1.2),求函
数 f(x) 的解析式。
题 2.函数 f(x) 的图像关于 y 轴对称,并且经过点(-1.2),求函数f(x) 的解析式。
题2.函数f(x) 的图像关于y 轴对称,并且经过点 (-1.2),求函数 f(x) 的解析式。
题 2.函数 f(x) 的图像关
于 y 轴对称,并且经过点 (-1.2),求函数 f(x) 的解析式。
解答。
由于函数 f(x) 的图像关于 y 轴对称,可以得知函数 f(x)
中不含有 x 的一次及其以上次幂。
又因为函数经过点 (-1.2),代入
该点可得到等式 f(-1) = 2.结合图像对称性的特点,我们可以得出
f(x) = 2 的解析式。
解答。
由于函数 f(x) 的图像关于 y 轴对称,可
以得知函数 f(x) 中不含有 x 的一次及其以上次幂。
又因为函数经过
点 (-1.2),代入该点可得到等式 f(-1) = 2.结合图像对称性的特点,
我们可以得出 f(x) = 2 的解析式。
解答。
由于函数 f(x) 的图像关于
y 轴对称,可以得知函数 f(x) 中不含有 x 的一次及其以上次幂。
又因为函数经过点 (-1.2),代入该点可得到等式 f(-1) = 2.结合图像对
称性的特点,我们可以得出 f(x) = 2 的解析式。
解答。
由于函数 f(x) 的图像关于 y 轴对称,可以得知函数 f(x) 中不含有 x 的一次及其以上次幂。
又因为函数经过点 (-1.2),代入该点可得到等式 f(-1) = 2.
结合图像对称性的特点,我们可以得出 f(x) = 2 的解析式。
3.函数的轴对称性
题 3.函数 f(x) 的图像关于直线 x = a 对称,请求函数 f(x) 的解
析式。
题 3.函数 f(x) 的图像关于直线 x = a 对称,请求函数 f(x) 的
解析式。
题 3.函数 f(x) 的图像关于直线 x = a 对称,请求函数 f(x)
的解析式。
题 3.函数 f(x) 的图像关于直线 x = a 对称,请求函数 f(x) 的解析式。
解答。
函数 f(x) 的图像关于直线 x = a 对称,表示对于任意的
x 值,在直线 x = a 上对称点的 y 值与原点的 y 值相等。
根据轴对
称性的特点,我们可以得出 f(x) = f(2a - x) 的解析式。
解答。
函数
f(x) 的图像关于直线 x = a 对称,表示对于任意的 x 值,在直线 x =
a 上对称点的 y 值与原点的 y 值相等。
根据轴对称性的特点,我们
可以得出 f(x) = f(2a - x) 的解析式。
解答。
函数 f(x) 的图像关于直
线 x = a 对称,表示对于任意的 x 值,在直线 x = a 上对称点的 y 值
与原点的 y 值相等。
根据轴对称性的特点,我们可以得出 f(x) =
f(2a - x) 的解析式。
解答。
函数 f(x) 的图像关于直线 x = a 对称,表
示对于任意的 x 值,在直线 x = a 上对称点的 y 值与原点的 y 值相等。
根据轴对称性的特点,我们可以得出f(x) = f(2a - x) 的解析式。
4.对称函数的性质
题 4.已知函数 f(x) 的图像关于点 (1.3) 对称,并且函数 f(x) 是
增函数,求函数 f(x) 的解析式。
题 4.已知函数 f(x) 的图像关于点(1.3) 对称,并且函数 f(x) 是增函数,求函数 f(x) 的解析式。
题 4.已知函数 f(x) 的图像关于点 (1.3) 对称,并且函数 f(x) 是增函数,求
函数 f(x) 的解析式。
题 4.已知函数 f(x) 的图像关于点 (1.3) 对称,
并且函数 f(x) 是增函数,求函数 f(x) 的解析式。
解答。
函数 f(x) 的图像关于点 (1.3) 对称,表示对于任意的 x 值,在点 (1.3) 对称点的 y 值与原点的 y 值相等。
由于函数 f(x) 是
增函数,即 x 增大时,f(x) 的值也增大。
结合对称性的特点,我们
可以得出 f(x) = f(2 - x) + 3 的解析式。
解答。
函数 f(x) 的图像关于点 (1.3) 对称,表示对于任意的 x 值,在点 (1.3) 对称点的 y 值与原点的 y 值相等。
由于函数 f(x) 是增函数,即 x 增大时,f(x) 的值也增大。
结合对称性的特点,我们可以得出 f(x) = f(2 - x) + 3 的解析式。
解答。
函数 f(x) 的图像关于点 (1.3) 对称,表示对于任意的 x 值,在点 (1.3) 对称点的 y 值与原点的 y 值相等。
由于函数 f(x) 是增函数,即 x 增大时,f(x) 的值也增大。
结合对称性的特点,我们可以得出 f(x) = f(2 - x) + 3 的解析式。
解答。
函数 f(x) 的图像关于点 (1.3) 对称,表示对于任意的 x 值,在点 (1.3) 对称点的 y 值与原点的 y 值相等。
由于函数 f(x) 是增函数,即 x 增大时,f(x) 的值也增大。
结合对称性的特点,我们可以得出 f(x) = f(2 - x) + 3 的解析式。
以上是关于高一数学函数的对称性习题的解答。
对于函数的对称性,我们在分析和理解函数性质时,可以运用这些概念和解题方法。
希望本文对你有所帮助!。