高中数学(北师大版)选修2-2教案:第1章 复习点拨:宜用反证法证明的几类命题
- 格式:doc
- 大小:146.00 KB
- 文档页数:2
反证法-北师大版选修2-2教案一、教学目标1.理解反证法的概念及其基本思想。
2.掌握反证法的基本方法和步骤。
3.通过练习,培养学生运用反证法解决问题的能力。
二、教学内容1. 反证法的概念和基本思想反证法是一种推理方法,它是在假设与原论题相反的结论为真的前提下,证明假设是错误的,从而证明原命题为真的方法。
反证法的基本思想是,如果一个命题是正确的,那么这个命题所对应的任何反命题都是错误的,即如果反命题成立,则原命题必为假。
2. 反证法的基本方法和步骤反证法的基本方法和步骤包括以下几个方面:第一步:对原论题进行推定,即假设所证明的结论为假。
第二步:在推定的前提下,运用逻辑推理方法,发现与推定的结论不符的一些事实或规律。
第三步:根据前两步的结果,推翻假设的结论,证明原论题的论证是正确的。
3. 反证法的应用举例反证法可以运用到各种不同领域的问题中,如数学、哲学、物理等。
以下举例说明反证法的应用:(1)数学比如用反证法证明勾股定理:设有两条直角边分别为a和b,斜边为c。
如果假设勾股定理不成立,即c2≠a2+b2,那么存在以下两种情况之一:c2>a2+b2或c2<a2+b^2。
经过推理可得出结论,这两种情况都是不成立的,说明假设的结论是错误的,从而证明了勾股定理是正确的。
(2)哲学比如用反证法证明存在的必要性:假设不存在某一事物B,那么与这个事物相关的一系列因果关系也将不存在,导致整个世界都会发生变化。
但是,事实上这个世界并没有发生任何变化,说明假设不成立,从而证明存在的必要性是成立的。
(3)物理比如用反证法证明相对论时空间的变化与物理定理的一致性:如果假设时空间的变化对物理定理没有影响,那么在不同的参考系中,物理现象的规律将会发生改变,这与实验观测结果是不符的,因此假设不成立,从而证明了时空间的变化对物理定律的影响。
三、教学方法教师通过给学生讲解反证法的基本概念、方法和步骤,引导学生在实际问题中应用反证法,帮助他们理解反证法的基本原理。
归纳推理一、教学目标1.知识与技能:(1)结合已学过的数学实例,了解归纳推理的含义;(2)能利用归纳进行简单的推理;(3)体会并认识归纳推理在数学发现中的作用.2.方法与过程:归纳推理是从特殊到一般的一种推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。
3.情感态度与价值观:通过本节学习正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析事物、发现事物之间的质的联系的良好品质,善于发现问题,探求新知识。
二、教学重点:了解归纳推理的含义,能利用归纳进行简单的推理。
教学难点:培养学生“发现—猜想—证明”的归纳推理能力。
三、教学方法:探析归纳,讲练结合四、教学过程(一)、引入新课归纳推理的前提是一些关于个别事物或现象的命题,而结论则是关于该类事物或现象的普遍性命题。
归纳推理的结论所断定的知识范围超出了前提所断定的知识范围,因此,归纳推理的前提与结论之间的联系不是必然性的,而是或然性的。
也就是说,其前提真而结论假是可能的,所以,归纳推理乃是一种或然性推理。
拿任何一种草药来说吧,人们为什么会发现它能治好某种疾病呢?原来,这是经过我们先人无数次经验(成功的或失败的)的积累的。
由于某一种草无意中治好了某一种病,第二次,第三次,……都治好了这一种病,于是人们就把这几次经验积累起来,做出结论说,“这种草能治好某一种病。
”这样,一次次个别经验的认识就上升到对这种草能治某一种病的一般性认识了。
这里就有着归纳推理的运用。
从一个或几个已知命题得出另一个新命题的思维过程称为推理。
见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理 (二)、例题探析例1、在一个凸多面体中,试通过归纳猜想其顶点数、棱数、面数满足的关系。
解:考察一些多面体,如下图所示:将这些多面体的面数(F )、棱数(E )、顶点数(V )列出,得到下表: 多面体面数(F )棱数(E )顶点数(V )三棱锥 4 6 4 四棱锥 5 8 5 五棱锥 6 10 6 三棱柱 5 9 6 五棱柱 7 15 10 立方体 6 12 8 八面体 8 12 6 十二面体 123020从这些事实中,可以归纳出:V-E+F=2例2、如果面积是一定的,什么样的平面图形周长最小,试猜测结论。
谈类比推理的命题 类比推理是由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理;类比推理由特殊到特殊的推理,借助类比推理可以推测未知、可以发现新结论、可以探索和提供解决问题的思路和方法;因此,类比推理是一种很重要的推理,它在近年各级各类的考试中,也时有出现;本文简介类比推理的命题特点,揭示求解规律,希望对你求解此类问题能有所帮助。
1、类比概念类比某些熟悉的概念,产生的类比推理型试题;在求解时可以借助原概念所涉及的基本方法与基本思路。
例1、等和数列的定义是:若数列{}n a 从第二项起,以后每一项与前一项的和都是同一常数,则此数列叫做等和数列,这个常数叫做等和数列的公和;如果数列{}n a 是等和数列,且11=a ,22=a ,写出数列{}n a 的一个通项公式为;分析:由定义知公和为3,且31=+-n n a a ,那么)23(231--=--n n a a ,于是)23()1(2311--=--a a n n , 因为11=a ,得21)1(23⋅-+=n n a 2、类比定理从初中到高中我们学过的定理很多,这些定理是产生类比型问题的“沃土”。
请看:例2、在平面几何里有勾股定理:“设ABC ∆的两边AC AB ,互相垂直,则222BC AC AB =+。
”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积之间的关系,可以得出的正确结论是:“设三棱锥BCD A -的三侧面ADB ACD ABC ,,两两垂直,则 。
”分析:在平面上是线的关系,在空间呢?假若是面的关系,类比一下:直角顶点所对的边的平方是另外两边的平方和,而直角顶点所对的面会有什么关系呢?大胆一点猜测:2222ADB ACD ABC BCD S S S S ∆∆∆∆++=事实上,如图作CD AE ⊥连BE ,则CD BE ⊥222222222)(41)(4141AB AD AC AE AB CD BE CD S BCD +=+=⋅=∆ =+∆2ACD S 222ADB ACD ABC S S S ∆∆∆++3、类比性质从一个特殊式子的性质、一个特殊图形的性质入手,产生的类比推理型问题;求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键。
1.1 归纳推理教学过程:一:创设情景,引入概念师:今天我们要学习第一章:推理与证明。
那么什么是推理呢?下面请大家仔细看这段flash,体验一下flash动画中,人物推理的过程。
(学生观看flash动画)。
师:有哪位同学能描述一下这段flash动画中的人物的推理过程吗?生:flash中人物通过观察,发现7只乌鸦是黑色的于是得到推理:天下乌鸦一般黑。
师:很好!那么能不能把这个推理的过程用一般化的语言表示出来呢?生:这是从一个或几个已有的判断得到一个新的判断的过程。
师:非常好!(引出推理的概念)。
师:推理包括合情推理和演绎推理,而我们今天要学的知识就是合情推理的一种——归纳推理。
那么,什么是归纳推理呢?下面我们通过介绍数学中的一个非常有名的猜想让大家体会一下归纳推理的思想。
(引入哥德巴赫猜想)师:据说哥德巴赫无意中观察到:3+7=10,3+17=20,13+17=30,这3个等式。
大家看这3个等式都是什么运算?生:加法运算。
师:对。
我们看来这些式子都是简单的加法运算。
但是哥德巴赫却把它做了一个简单的变换,他把等号两边的式子交换了一下位置,即变为:10=3+7,20=3+17,30=13+17。
大家观察这两组式子,他们有什么不同之处?生:变换之前是把两个数加起来,变换之后却是把一个数分解成两个数。
师:大家看等式右边的这些数有什么特点?生:都是奇数。
师:那么等式右边的数又有什么特点呢?生:都是偶数。
师:那我们就可以得到什么结论?生:偶数=奇数+奇数。
师:这个结论我们在小学就知道了。
大家在挖掘一下,等式右边的数除了都是奇数外,还有什么其它的特点?(学生观察,有人看出这些数还都是质数。
)师:那么我们是否可以得到一个结论:偶数=奇质数+奇质数?(学生思考,发现错误!)。
生:不对!2不能分解成两个奇质数之和。
师:非常好!那么我们看偶数4又行不行呢?生:不行!师:那么继续往下验证。
(学生发现6=3+3,8=5+3,10=5+5,12=5+7,14=7+7……)师:那我们可以发现一个什么样的规律?生:大于等于6的偶数可以分解为两个奇质数之和。
反证法一、教学目标:结合已经学过的数学实例,了解间接证明的一种基本方法──反证法;了解反证法的思考过程与特点。
二、教学重点:了解反证法的思考过程与特点教学难点:正确理解、运用反证法三、教学方法:探析归纳,讲练结合四、教学过程(一)、复习:反证法的思考过程与特点。
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n 个/至多有(n 一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。
推理必须严谨。
导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
(二)、探究新课反证法是数学中非构造性证明中的极重要的方法。
对于处理存在性问题、否定性问题、唯一性问题和至多、至少性问题,反证法具有特殊的优越性。
例1、已知1004321>+++a a a a ,求证:4321a a a a ,,,中,至少有一个数大于25。
证明:假设命题的结论不成立,即4321a a a a ,,,均不大于25,那么 100252525254321=+++≤+++a a a a ,这与已知条件相矛盾。
所以,4321a a a a ,,,中,至少有一个数大于25。
例2、求证:1,2,5不可能是一个等差数列中的三项。
§3 反证法(教师用书独具)●三维目标1.知识与技能(1)引导学生发现间接证明的方法——反证法,探索反证法原理;(2)掌握反证法证题的基本步骤及利用反证法证明相关的数学问题.2.过程与方法通过对具体命题的证明及探究,培养学生逆向思维能力;培养学生揭示反证法本质特征的能力.3.情感、态度与价值观(1)通过对具体数学命题的证明方法的探究学习,经历数学探究活动的过程,体会“正难则反”这一解决问题的策略.(2)通过本节学习和运用实践,体会反证法的科学价值、应用价值,学习用数学的思维方法解决问题、认识世界.●重点难点重点:了解反证法的思考过程和特点;运用反证法证明数学问题;难点:对反证法思考过程和特点的概括.教学时应根据具体问题的分析与探究,揭示何时考虑用反证法解决问题,并通过对不同问题的探究与解决揭示反证法的思维特点及理论支持,归纳反证法解决问题的一般步骤,从而突出重点,化解难点.(教师用书独具)●教学建议学生从初中开始就对反证法有所接触.反证法的逻辑规则并不复杂,但用反证法证明数学问题却是学生学习的难点.究其原因,主要是反证法的应用需要逆向思维.因此,本节课的教学需解决好以下三个问题:一是反证法适用于什么情形;二是反证法的理论依据;三是反证法证明命题的一般步骤.●教学流程创设问题情境,引出问题:已知a是整数,2能整除a2,求证:2能整除a.⇒学生探究、自主解决:通过学生运用综合法、分析法等尝试以及师生交流,揭示问题从正面解决的困难.⇒通过引导学生对结论的分析,尝试证明结论的反面不正确,从而得出结论正确.即反证法.⇒通过例1及变式训练,使学生掌握反证法的一般步骤.⇒通过例2及变式训练,使学生提高对“结论”的分析能力,能正确的反设结论.⇒通过例3及变式训练,提高学生综合运用各种证法证明问题的能力和分析问题的能力.⇒归纳小结,整体认识反证法原理和应用步骤.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.【问题导思】著名的“道旁苦李”的故事:王戎小时候,爱和小朋友在路上玩耍.一天,他们发现路边的一颗树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动.等到小朋友摘了李子一尝,原来是苦的.他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这棵树上却结满了李子,所以李子一定是苦的.”1.王戎的论述运用了什么推理思想? 【提示】实质运用了反证法的思想.2.反证法解题的实质是什么?【提示】 否定结论,导出矛盾,从而证明原结论正确.1.反证法的概念在证明数学命题时,要证明的结论要么正确,要么错误,二者必居其一. 我们可以先假定命题结论的反面成立,在这个前提下,若推出的结果与定义、公理、定理相矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此断定命题的结论成立.这种证明方法叫作反证法. 反证法是间接证明的一种基本方法.2.反证法证题步骤用反证法证明命题的一般步骤求证:f (x )=0无整数根.【思路探究】 此题为否定形式的命题,直接证明很困难,可选用反证法,证题的关键是根据f (0),f (1)均为奇数,分析出a ,b ,c 的奇偶情况,并应用之.【自主解答】 假设f (x )=0有整数根n ,则an 2+bn +c =0(n ∈Z),而f (0),f (1)均为奇数,即c 为奇数,a +b 为偶数,则an 2+bn =-c 为奇数,即n (an +b )为奇数.∴n ,an +b 均为奇数,又a +b 为偶数,∴an -a 为奇数,即a (n -1)为奇数,∴n -1为奇数,这与n 为奇数矛盾.∴f (x )=0无整数根.1.对某些结论为肯定形式或者否定形式的命题的证明,从正面突破困难时,可用反证法.通过反设将肯定命题转化为否定命题或将否定命题转化为肯定命题,然后用转化后的命题作为条件进行推理,推出矛盾,从而达到证题的目的.2.求证:2,3,5不可能成等差数列. 【证明】 假设2,3,5成等差数列,则 23=2+ 5.所以(23)2=(2+5)2,化简得 5=210,从而52=(210)2, 即25=40,这是不可能的. 所以,假设不成立.从而,2,3,5不可能成等差数列.2+2cx +a和y =cx 2+2ax +b 确定的三条抛物线至少有一条与x 轴有两个不同的交点.【思路探究】 假设三条抛物线都不与x 轴有两个不同的交点→演绎推理,利用Δ≤0得出矛盾→原命题得证【自主解答】 假设题设中的函数确定的三条抛物线都不与x 轴有两个不同的交点. 由y =ax 2+2bx +c , y =bx 2+2cx +a , y =cx 2+2ax +b ,得Δ1=(2b )2-4ac ≤0, 且Δ2=(2c )2-4ab ≤0, 且Δ3=(2a )2-4bc ≤0. 同向不等式求和得:4b 2+4c 2+4a 2-4ac -4ab -4bc ≤0. ∴2a 2+2b 2+2c 2-2ab -2bc -2ac ≤0. ∴(a -b )2+(b -c )2+(a -c )2≤0. ∴a =b =c .这与题设a ,b ,c 互不相等矛盾, 因此假设不成立,从而命题得证.1.写出结论的正确反设是解决本题的关键.2.反证法证明“至少”“至多”型命题,否定结论时,需弄清楚结论的否定是什么,以免出现错误.需仔细体会“至少有一个”“至多有一个”等表达的意义.若下列三个方程:x 2+4ax -4a +3=0,x 2+(a -1)x +a 2=0,x 2+2ax -2a =0中至少有一个方程有实根,求a 的取值范围.【解】 若三个方程都无实根,根据⎩⎪⎨⎪⎧Δ1=(4a )2-4(-4a +3)<0,Δ2=(a -1)2-4a 2<0,Δ3=(2a )2-4(-2a )<0,解得⎩⎪⎨⎪⎧-32<a <12,a <-1或a >13,-2<a <0,∴-32<a <-1.则满足题目要求a 的取值范围是{a |a ≤-3或a ≥-1}.已知a ≠0,证明关于x 的方程ax =b 有且只有一个根.【思路探究】 “有且只有”有两层含义:一是“有”,即存在性;二是“只有”,即唯一性.一般先证存在性,再用反证法证唯一性即可.【自主解答】 由于a ≠0,因此方程至少有一个根x =ba.假设方程不止一个根,则至少有两根,不妨设x 1,x 2是它的两个不同的根,则 ax 1=b , ① ax 2=b , ②①-②得a (x 1-x 2)=0,因为x1≠x 2,所以x 1-x 2≠0,从而a =0,这与已知条件矛盾,故假设不成立. 所以,当a ≠0时,方程ax=b 有且只有一个根.1.“唯一型”问题的证明一般需两步完成:一是证存在性;二是证唯一性.2.结论以“有且只有”、“只有一个”、“唯一存在”等形式出现的命题,由于反设结论容易导出矛盾,所以用反证法证明简单而又明了.求证:过一点有且只有一条直线与已知平面垂直. 【证明】 已知:平面α和一点P ,求证:过点P 与α垂直的直线只有一条.证明:如图,不管P 在α内或α外,设P A ⊥α,垂足为A (或P ), 假设存在另一条直线PB ⊥α,设P A ,PB 确定平面为β,且α∩β=a .∴在平面β内过P 点有两条直线P A 、PB 垂直于直线a .这与定理“在平面内,过一点有且仅有一条直线与已知直线垂直”矛盾.∴假设不成立,命题结论正确.不能对结论全面否定而致误否定“自然数a ,b ,c 恰有一个偶数”时正确反设为( ) A .a ,b ,c 都是奇数 B .a ,b ,c 都是偶数C .a ,b ,c 中至少有两个偶数D .a ,b ,c 中或都是奇数或至少两个偶数【错解】 恰有一个偶数的反面是一个偶数也没有,即a ,b ,c 都是奇数,故选A. 【错因分析】 没有对结论“a ,b ,c 恰有一个偶数”做出全面分析,仅凭“相当然”进行否定,从而致误.【防范措施】 对结论进行否定时,应对结论描述的问题进行全面分析,然后从集合理论中补集的角度进行否定.【正解】 a ,b ,c 中偶数的个数可能为0个,1个,2个或3个,而“恰有1个偶数”的反面应是“有0个或2个或3个偶数”,故应选D.【答案】 D1.当遇到“否定性”“唯一性”“无限性”“至多”“至少”等类型命题时,常用反证法.2.用反证法证明的一般过程是:(1)否定结论⇒A ⇒B ⇒C ;(注意分清命题和结论后,再否定结论)(2)而C 不合理⎩⎪⎨⎪⎧与教材公理抵触;与此前定理不相容;与本题题设冲突;与临时假定违背;自相矛盾;(3)因此结论C 不成立,原命题正确.1.如果两个数之和为正数,则这两个数( )A .一个是正数,一个是负数B .两个都是正数C .至少有一个是正数D .两个都是负数【解析】 “两个数之和为正数”可能为“一个是正数,一个是负数”,“两个都是正数”“一个是正数,一个是零”即“至少有一个是正数”.故选C.【答案】 C2.有下列叙述:①“a >b ”的反面是“a <b ”;②“x =y ”的反面是“x >y 或x <y ”;③“三角形的外心在三角形外”的反面是“三角形的外心在三角形内”;④“三角形的内角中最多一个钝角”的反面是“三角形的内角没有钝角”,其中,正确的叙述有( )A .0个B .1个C .2个D .3个 【解析】 显然①③④不正确,仅②正确. 【答案】 B3.(改编题)完成下面反面论证题的全过程:题目:若p 1p 2=2(q 1+q 2),则关于x 的方程x 2+p 1x +q 1=0与方程x 2+p 2x +q 2=0中至少有一个方程有实根.证明假设________________.则Δ1=p 21-4q 1<0,Δ2=p 22-4q 2<0,即0≤p 21<4q 1,0≤p 22<4q 2,∴(p 1p 2)2<16q 1q 2≤16·(q 1+q 22)2=4(q 1+q 2)2.∴-2(q 1+q 2)<p 1p 2<2(q 1+q 2), 这与________矛盾.故假设错误,原命题为真.【答案】 两方程都没有实数根 已知p 1p 2=2(q 1+q 2) 4.求证:△ABC 中至少有一个内角大于或等于60°. 【证明】 假设△ABC 中三内角都小于60°, 则A <60°,B <60°,C <60°, 所以A +B +C <180°,这与三角形内角和定理矛盾, 故假设错误,原命题正确.一、选择题1.用反证法证明命题“三角形的内角中至多有一个钝角”时,反设正确的是( ) A .三个内角中至少有一个钝角 B .三个内角中至少有两个钝角 C .三个内角都不是钝角D .三个内角都不是钝角或至少有两个钝角【解析】 “至多一个”即要么一个都没有,要么有一个,故反设为“至少有两个”,故选B.【答案】 B2.实数a ,b ,c 满足a +b +c =0,则正确的说法是( ) A .a ,b ,c 都是0 B .a ,b ,c 都不是0C .a ,b ,c 中至少有一个0D .a ,b ,c 不可能均为正数【解析】 若a ,b ,c 均为正数,则a +b +c >0与a +b +c =0矛盾,故a ,b ,c 不可能均为正数.【答案】 D3.若a ,b ,c 是不全相等的正数,给出下列判断:①(a -b )2+(b -c )2+(c -a )2≠0;②a >b 与a <b 及a =b 中至少有一个成立;③a =c ,b =c ,a =b 不能同时成立.其中判断正确的个数是( )A .0B .1C .2D .3【解析】 “a ,b ,c 不全相等是a ,b ,c 全相等的否定”,故①②③均正确. 【答案】 D4.设x 、y 、z >0,a =x +1y ,b =y +1z ,c =z +1x,则a 、b 、c 三数( )A .至少有一个不大于2B .都小于2C .至少有一个不小于2D .都大于2【解析】 假设a 、b 、c 都小于2,则a +b +c <6,而事实上:a +b +c =x +1x +y +1y +z +1z≥2+2+2=6,与假设矛盾,∴a 、b 、c 中至少有一个不小于2. 【答案】 C5.已知a ,b ∈N ,ab 可以被5整除,那么a ,b ( ) A .都能被5整除B .最多有一个能被5整除C .至少有一个能被5整除D .都不能被5整除【解析】 假设都不能被5整除,可设a =5m +1,b =5n +2(m ,n ∈N),则ab =25mn +10m +5n +2显然不能被5整除,(其它情形同理可证)这与已知矛盾,故假设不成立,故C 正确.【答案】 C 二、填空题6.将“函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]上至少存在一个实数c ,使f (c )>0”反设,所得命题为______________________________________________________________________.【解析】 “至少存在一个”的反面为“不存在”,“不存在c ,使f (c )>0”即“f (x )≤0恒成立”.【答案】 函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]上恒有f (x )≤0 7.和异面直线AB 、CD 都相交的两条直线的位置关系是________.【解析】 假设这两条直线平行,由空间几何知识可推出AB 、CD 共面,故假设错误,即这两条直线异面或相交.【答案】 异面或相交 8.完成下面的证明过程: 设a 3+b 3=2.求证:a +b ≤2.证明:假设a +b >2,则有a >________, 从而a 3>________,所以a 3+b 3>________=________≥________. 所以a 3+b 3>2,这与已知矛盾. 所以原不等式成立.【答案】 2-b 8-12b +6b 2-b 3 6b 2-12b +8 6(b -1)2+2 2 三、解答题9.已知a ,b ,c ∈(0,1),求证:(1-a )b ,(1-b )c ,(1-c )a 不可能都大于14.【证明】 假设三个式子同时大于14,即(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘,得(1-a )a ·(1-b )b ·(1-c )c >143,①又因为0<a <1,所以0<a (1-a )≤(a +1-a 2)2=14,同理,0<b (1-b )≤14,0<c (1-c )≤14,所以(1-a )a ·(1-b )b ·(1-c )c ≤143,②①与②矛盾,假设不成立,所以原命题成立.10.已知数列{b n }的通项公式为b n =14(23)n -1.求证:数列{b n }中的任意三项不可能成等差数列.【解】 假设数列{b n }存在三项b r 、b s 、b t (r <s <t )按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列,于是有b t <b s <b r ,则只可能有2b s =b r +b t 成立.∴2·14(23)s -1=14(23)r -1+14 23)t -1.两边同乘3t -121-r,化简得3t -r +2t -r =2·2s -r 3t -s ,由于r <s <t ,所以上式左边为奇数,右边为偶数,故上式不可能成立,导致矛盾. 故数列{b n }中任意三项不可能成等差数列.11.求证:当x 2+bx +c 2=0有两个不相等的非零实数根时,bc ≠0. 【证明】 假设bc =0,下面分情况进行讨论:(1)若b =0,c =0,则方程变为x 2=0,此时方程有两个相等的实数根为x 1=x 2=0,这与已知条件方程有两个不相等的非零实数根矛盾.(2)若b =0,c ≠0,则方程变为x 2+c 2=0,此时方程无实数根,这与已知条件方程有两个不相等的非零实数根矛盾.(3)若b ≠0,c =0,则方程变为x 2+bx =0,此时方程的根为x 1=0,x 2=-b ,这与已知条件方程有两个不相等的非零实数根矛盾.综上所述.假设错误.所以当x 2+bx +c 2=0有两个不相等的非零实数根时,bc ≠0.(教师用书独具)实数a ,b ,c ,d 满足a +b =c +d =1,ac +bd >1,求证:a ,b ,c ,d 中至少有一个为负数.【思路探究】 a ,b ,c ,d 中至少有一个为负数的否定是a ,b ,c ,d 都是非负数. 【自主解答】 证明 假设a ,b ,c ,d 都是非负数,则由a +b =c +d =1, 有1=(a +b )(c +d )=ac +bd +ad +bc ≥ac +bd ,即ac +bd ≤1,这与ac +bd >1矛盾,故假设不成立. 即a ,b ,c ,d 中至少有一个为负数.结论若是“都是”“都不是”“至多”“至少”形式的不等式,或直接从正面入手难以寻觅解题的突破口的问题,宜考虑使用反证法.用反证法证明命题时,推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与已知事实相违背等等,推导出的矛盾必须是明显的.已知f (x )=x 2+ax +b . (1)求:f (1)+f (3)-2f (2);(2)求证:|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12.【解】 ∵f (1)=a +b +1,f (2)=2a +b +4, f (3)=3a +b +9,∴f (1)+f (3)-2f (2)=2.(2)证明 假设|f (1)|,|f (2)|,|f (3)|都小于12.则-12<f (1)<12,-12<f (2)<12,-12<f (3)<12, ∴-1<-2f (2)<1,-1<f (1)+f (3)<1. ∴-2<f (1)+f (3)-2f (2)<2, 这与f (1)+f (3)-2f (2)=2矛盾. ∴假设错误,即所证结论成立.。
利用数学归纳法解题举例归纳是一种有特殊事例导出一般原理的思维方法。
归纳推理分完全归纳推理与不完全归纳推理两种。
不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。
完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。
数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。
它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。
这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或且n∈N)结论都正确”。
由这两步可以看出,数学归纳法是由递推实现归纳n≥n的,属于完全归纳。
运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。
运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。
一、运用数学归纳法证明整除性问题例1.当n∈N,求证:11n+1+122n-1能被133整除。
证明:(1)当n=1时,111+1+1212×1-1=133能被133整除。
命题成立。
(2)假设n=k时,命题成立,即11k+1+122k-1能被133整除,当n=k+1时,根据归纳假设,11k+1+122k-1能被133整除。
又能被133整除。
所以,11(k+1)+122(k+1)-1能被133整除,即n=k+1时,命题成立。
由(1),(2)命题时n∈N都成立。
点评:同数学归纳法证明有关数或式的整除问题时,要充分利用整除的性质,若干个数(或整式)都能被某一个数(或整式)整除,则其和、差、积也能被这个数(或整式)整除。
第十三课时本章小结复习一、教学目标1、了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用。
2、了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程与特点.3、了解间接证明的一种基本方法—-反证法;了解反证法的思考过程与特点。
4、了解数学归纳法原理,能用数学归纳法证明一些简单的数学命题.二、教学重点:1、能利用归纳和类比等进行简单的推理2、能用综合法、分析法、反证法、数学归纳法证明一些简单的数学命题。
教学难点:数学归纳法三、教学方法:探析归纳,讲练结合四、教学过程(一)知识结构本章在回顾已有知识的基础上逐一介绍了合情推理的两种基本思维方式:归纳推理、类比推理,以及数学证明的主要方法:分析法、综合法、反证法、数学归纳法,上述推理方式和证明方法都是数学的基本思维过程,它们贯穿于整个高中数学的学习中,数学知识的学习过程也是这些思维方法的领悟、训练和应用的过程,要通过学习感受逻辑思维在数学以及日常生活中的作用。
(二)、例题探析例1、将下面平面几何中的概念类比到立体几何中的相应结果是什么?请将下表填充完整.推理与证明FBCMEA 例2、分别用分析法和综合法证明:在△ABC 中,如果AB =AC ,BE ,CF 分别是三角形的高线,BE 与CF 相交于点M ,那么,MB =MC 。
证明:(分析法)要证明MB =MC ,只需证明△BFM ≌△CEM 。
因为△BFM ,△CEM 均为直角三角形,且∠BMF =∠CME ,只需证明BF =CE 即可。
在Rt △BFC 与Rt △CEB 中,由于△ABC 为等腰三角形,∠ABC =∠ACB ,BC =BC ,∠EBC =∠FCB ,有△BFC ≌△CEB ,BF =CE 以上各布可逆,故MB =MC 。
(综合法)在Rt △BFC 与Rt △CEB 中,由于△ABC 为等腰三角形, 有∠ABC =∠ACB ,BC =BC ,∠EBC =∠FCB ,可知△BFC ≌△CEB ,所以BF =CE在Rt △BFM 与Rt △CEM 中,∠BMF=∠CME,∠FBM =∠ECM , 所以△BFM ≌△CEM ,MB =MC ,得证。
宜用反证法证明的几类命题
反证法是证明数学命题的一种重要方法,当直接证明思路受阻,难以成功时,反证法常使人茅塞顿开,柳暗花明.它通常用来证明下列几类命题.
一、否定性命题
问题的结论是以否定形式出现(例如“没有…”,“不是…”,“不存在…”等)的命题,宜用反证法.
例1 求证:3lg 2是无理数.
分析:在实数集内,证它是无理数,即证它不是有理数.
证明:假设3lg 2不是无理数,即为有理数,则设3lg 2=
m n (,m n ∈+N ,n m ,互质)从而32=m n
得, m n 32=
上式表明:偶数等于奇数,这与偶数不等于奇数矛盾,于是假设不成立. 故3lg 2是无理数.
例2 证明:一个三角形中不可能有两个直角.
分析:用三角形内角和为0180证一个三角形中不存在两个直角. 证明:假设一个三角形中有两个直角.不妨设∠A=090,∠B=090. ∵∠A+∠B+∠C=090+090+∠C=0180+∠C>0180
这与三角形内角和定理矛盾. ∴ 假设不成立,即原命题成立.
二、“至少”或“至多”类命题
若一个命题的结论是“至少…”或“至多…”,“不都…”则可考虑用反证法.
例3 已知1p 、2p 、1q 、2q ∈R,且1p 2p =2(1q +2q )
求证:方程2x +1p x +1q =0和2x +2p x +2q =0中,至少有一个方程有实根.
分析:“至少有一个”是“有一个”、 “有两个”,它的反面是“一个都没有”.
证明:假设这两个一元二次方程都没有实根,那么他们的判别式都小于0,即:
A B P ⎪⎩⎪⎨⎧<<⇒⎪⎩⎪⎨⎧<-=∆<-=∆2
2212122221211440404q p q p q p q p ∴)(4212
221q q p p +<+ ∵1p 2p =2(1q +2q )代入上式得 02212221<-+p p p p ,即.0)(221<-p p .这与“任何实数的平方为非负数”相矛盾,所以假设不成立.
故这两方程中,至少有一个方程有实根.
三、唯一性命题
若一个命题的结论是“…唯一”的形式出现,则可考虑用反证法. 例4 求证:在一个平面内,过直线l 外一点P 只能作出一条直线垂直于l . 证明:假设过点P可以作两条直线垂直于直线l 如图,那么∠PAB =∠PBA =090. 于是∠APB +∠PAB +∠PBA >0180.
即∆PAB 的内角和大于0180,
这与定理“三角形内角和等于0180”相矛盾,
故假设不成立.
l。